Tag Archives: Europe

LaBiotechMap (a map of European biotechnology companies)

Thanks to Joachim Eeckhout of the LaBiotechMap team for contacting me regarding his and co-founder Philip Hemme’s European  biotechnology company map.

You can find the map here and for those who need an incentive to explore, here’s a bit of information and a few images from the site’s homepage to whet your interest,

It’s Elegant.

We spent time designing the map. And it’s apparent. Benefit from its unique user experience and finally enjoy surfing through Biotech companies.

It’s Focused.

Instead of gathering the universe of Biotech companies, we offer you a pre-selected galaxy. It results in the most coherent European Biotech Database.

It’s Smart.

Weekly updated, to keep you on track. Searchable, to directly reach your target. Sortable, for high precision.
In a word: Smart.

Here’s a screen capture or representation of the map,

LaBiotechMap

Here’s a screen capture or representation of the database search,

LaBiotechDatabase

Here’s more about the project from the FAQ (frequently asked questions) page,

What is our definition of a Biotech company?

Biotech is certainly one of the most difficult technological term to define.

For us, Biotech is not all life sciences, neither beer or cheese manufacturing. The gene editing revolution of the 80s gave birth to the term Biotechnology and is linked to the foundation of Genentech in California. Today, Biotechnology have a significant impact on the World by helping cure, feed and fuel people. Ground-breaking technologies includes for example gene therapy, biofuels, monoclonal antibodies, cell therapy and GMOs.

Which are our selection criteria?

Our selection criteria to enter for free on the map is to have raised or generated over €1M and to be innovative (spending high % of revenues in R&D and owning patents).

Can you help us improving it?

Yes, everybody can participate. You saw a company missing, a wrong information, an old information or something else? You can use our feedback page or send us a mail to contact-at-labiotechmap.com

Can people stop getting bored by surfing through Biotech companies?

We hope so.

Can I share the map if I like it?

We hope so.

They have a company blog on the website which doesn’t include any dates on the posts (sigh) but I believe their mention of launching the final version of the map in Munich (Munchen, Germany) is relatively recent,

Here we go, we launched the final version of LaBiotech Map in Munich in front of 30 CEOs during a brunch organized by the IZB cluster.

Creating a European Biotech Map may sound crazy, but we like challenges. We started working on it in September 2014 and launched a beta version beginning of November. Within 3 months, we received over 100 exciting feedback and more than 2000 people tried it out. …

I wish the founders and their team good luck with visualizing the biotech company scene in Europe.

Final note: this is not the only European map of its kind, there’s also France’s interactive nanotechnology map featured in my Feb. 4, 2013 posting.

Aug. 5, 2014 deadline for European Union public consultation on measures to increase transparency on nanomaterials on the market

A May 14, 2014 news item on Nanowerk announces a new ‘nanomaterials’ consultation (Public Consultation  on Impact Assessment on Possible Measures to Increase Transparency on Nanomaterials on the Market) in Europe,

As part of the Communication on the Second Regulatory Review on Nanomaterials, the European Commission has announced to launch an impact assessment to identify and develop the most adequate means to increase transparency and ensure regulatory oversight on nanomaterials.

The text of the May 14, 2014 news item can be found on this announcement page, which explains the background leading up to this consultation and the role of the companies  engaged to hold the study and the consultation, on the Risk Policy Analysts website,

More information on the background, methodology and planned timing of this impact assessment can be found in the working document – CASG(Nano)/02/14 (an updated version including a final version of the problem definition, objectives and policy options will be published in the second half of May). This document also contains a draft problem definition, policy objectives and a more detailed description of the following policy options that are under consideration:

     0.  Baseline scenario

  1. Recommendation on how to implement a “best practice model” for Member States wishing to establish a national system (soft law approach)
  2. Structured approach to collect information (“Nanomaterials Observatory”)
  3. Regulation creating an EU nanomaterial registry with one annual registration per substance for each manufacturer/importer/downstream user/distributor
  4. Regulation creating an EU nanomaterial registry with one annual registration per use (including substances, mixtures and articles with intended release)

The European Commission (DG Enterprise and Industry) has commissioned Risk & Policy Analysts Ltd. (RPA) and BiPRO GmbH to undertake a study to support the Commission on the preparation of this impact assessment. The terms of reference and the resulting reports are available here.

The description of the terms for the public consultation follows,

This public consultation is an integral part of this study. The objective of the public consultation is to obtain stakeholder views on the currently available information on nanomaterials on the market (as defined here), the problem definition that forms the basis of the impact assessment, as well as the potential positive and/or negative impacts of the aforementioned policy options.

Please be aware that within the European Union, France has already established a mandatory reporting scheme for manufactured nanomaterials produced, imported or distributed in its territory.  The Interministerial decree No. 2012-232 entered into force in January 2013. Moreover, at European level, when cosmetic products containing nanomaterials are put on the EU market, Article 16 of Regulation (EC) No 1223/2009 requires the responsible persons to submit information on the nanomaterial(s) contained through the Cosmetic Products Notification Portal.   Further information on these and other proposed schemes is available here.

Complete the questionnaire for non-industry stakeholders

(preview in pdf or in Word)

Complete the questionnaire for industry stakeholders

(preview in pdf or in Word)

Please note that, if your company/organisation is registered in the Transparency Register, you will be requested to indicate your Register ID number.  Your contribution will then be considered as representing the views of your organisation.  If your organisation is not registered, you have the opportunity to learn more and/or register now.

Please note that if your company has to notify to the French Notification System and/or to the Cosmetic Products Notification Portal but did not participate in the consultation undertaken by RPA/BiPRO for the European Commission in early 2014, please take the time to fill in the questionnaire on the administrative burden of the notification schemes which is available here.

I wonder what it means when the Cosmetic Products Notification Portal does not participate. This nonparticipation adds a level of intrigue I hadn’t anticipated when I caught sight of this announcement. Are the ‘cosmetics portal’ people boycotting the consultation for some reason?

* Upper case ‘M” changed to lower case ‘m’ in head on May 16, 2014 at 9:47 am PDT.

Nanomaterials and safety: Europe’s non-governmental agencies make recommendations; (US) Arizona State University initiative; and Japan’s voluntary carbon nanotube management

I have three news items which have one thing in common, they concern nanomaterials and safety. Two of these of items are fairly recent; the one about Japan has been sitting in my drafts folder for months and I’m including it here because if I don’t do it now, I never will.

First, there’s an April 7, 2014 news item on Nanowerk (h/t) about European non-governmental agencies (CIEL; the Center for International Environmental Law and its partners) and their recommendations regarding nanomaterials and safety. From the CIEL April 2014 news release,

CIEL and European partners* publish position paper on the regulation of nanomaterials at a meeting of EU competent authorities

*ClientEarth, The European Environmental Bureau, European citizen’s Organization for Standardisation, The European consumer voice in Standardisation –ANEC, and Health Care Without Harm, Bureau of European Consumers

… Current EU legislation does not guarantee that all nanomaterials on the market are safe by being assessed separately from the bulk form of the substance. Therefore, we ask the European Commission to come forward with concrete proposals for a comprehensive revision of the existing legal framework addressing the potential risks of nanomaterials.

1. Nanomaterials are different from other substances.

We are concerned that EU law does not take account of the fact that nano forms of a substance are different and have different intrinsic properties from their bulk counterpart. Therefore, we call for this principle to be explicitly established in the REACH, and Classification Labeling and Packaging (CLP) regulations, as well as in all other relevant legislation. To ensure adequate consideration, the submission of comprehensive substance identity and characterization data for all nanomaterials on the market, as defined by the Commission’s proposal for a nanomaterial definition, should be required.

Similarly, we call on the European Commission and EU Member States to ensure that nanomaterials do not benefit from the delays granted under REACH to phase-in substances, on the basis of information collected on their bulk form.

Further, nanomaterials, due to their properties, are generally much more reactive than their bulk counterpart, thereby increasing the risk of harmful impact of nanomaterials compared to an equivalent mass of bulk material. Therefore, the present REACH thresholds for the registration of nanomaterials should be lowered.

Before 2018, all nanomaterials on the market produced in amounts of over 10kg/year must be registered with ECHA on the basis of a full registration dossier specific to the nanoform.

2. Risk from nanomaterials must be assessed

Six years after the entry into force of the REACH registration requirements, only nine substances have been registered as nanomaterials despite the much wider number of substances already on the EU market, as demonstrated by existing inventories. Furthermore, the poor quality of those few nano registration dossiers does not enable their risks to be properly assessed. To confirm the conclusions of the Commission’s nano regulatory review assuming that not all nanomaterials are toxic, relevant EU legislation should be amended to ensure that all nanomaterials are adequately assessed for their hazardous properties.

Given the concerns about novel properties of nanomaterials, under REACH, all registration dossiers of nanomaterials must include a chemical safety assessment and must comply with the same information submission requirements currently required for substances classified as Carcinogenic, Mutagenic or Reprotoxic (CMRs).

3. Nanomaterials should be thoroughly evaluated

Pending the thorough risk assessment of nanomaterials demonstrated by comprehensive and up-to-date registration dossiers for all nanoforms on the market, we call on ECHA to systematically check compliance for all nanoforms, as well as check the compliance of all dossiers which, due to uncertainties in the description of their identity and characterization, are suspected of including substances in the nanoform. Further, the Community Roling Action Plan (CoRAP) list should include all identified substances in the nanoform and evaluation should be carried out without delay.

4. Information on nanomaterials must be collected and disseminated

All EU citizens have the right to know which products contain nanomaterials as well as the right to know about their risks to health and environment and overall level of exposure. Given the uncertainties surrounding nanomaterials, the Commission must guarantee that members of the public are in a position to exercise their right to know and to make informed choices pending thorough risk assessments of nanomaterials on the market.

Therefore, a publicly accessible inventory of nanomaterials and consumer products containing nanomaterials must be established at European level. Moreover, specific nano-labelling or declaration requirements must be established for all nano-containing products (detergents, aerosols, sprays, paints, medical devices, etc.) in addition to those applicable to food, cosmetics and biocides which are required under existing obligations.

5. REACH enforcement activities should tackle nanomaterials

REACH’s fundamental principle of “no data, no market” should be thoroughly implemented. Therefore, nanomaterials that are on the market without a meaningful minimum set of data to allow the assessment of their hazards and risks should be denied market access through enforcement activities. In the meantime, we ask the EU Member States and manufacturers to use a precautionary approach in the assessment, production, use and disposal of nanomaterials

This comes on the heels of CIEL’s March 2014 news release announcing a new three-year joint project concerning nanomaterials and safety and responsible development,

Supported by the VELUX foundations, CIEL and ECOS (the European Citizen’s Organization for Standardization) are launching a three-year project aiming to ensure that risk assessment methodologies and risk management tools help guide regulators towards the adoption of a precaution-based regulatory framework for the responsible development of nanomaterials in the EU and beyond.

Together with our project partner the German Öko-Institut, CIEL and ECOS will participate in the work of the standardization organizations Comité Européen de Normalisation and International Standards Organization, and this work of the OECD [Organization for Economic Cooperation and Development], especially related to health, environmental and safety aspects of nanomaterials and exposure and risk assessment. We will translate progress into understandable information and issue policy recommendations to guide regulators and support environmental NGOs in their campaigns for the safe and sustainable production and use of nanomaterials.

The VILLUM FOUNDATION and the VELUX FOUNDATION are non-profit foundations created by Villum Kann Rasmussen, the founder of the VELUX Group and other entities in the VKR Group, whose mission it is to bring daylight, fresh air and a better environment into people’s everyday lives.

Meanwhile in the US, an April 6, 2014 news item on Nanowerk announces a new research network, based at Arizona State University (ASU), devoted to studying health and environmental risks of nanomaterials,

Arizona State University researchers will lead a multi-university project to aid industry in understanding and predicting the potential health and environmental risks from nanomaterials.

Nanoparticles, which are approximately 1 to 100 nanometers in size, are used in an increasing number of consumer products to provide texture, resiliency and, in some cases, antibacterial protection.

The U.S. Environmental Protection Agency (EPA) has awarded a grant of $5 million over the next four years to support the LCnano Network as part of the Life Cycle of Nanomaterials project, which will focus on helping to ensure the safety of nanomaterials throughout their life cycles – from the manufacture to the use and disposal of the products that contain these engineered materials.

An April 1, 2014 ASU news release, which originated the news item, provides more details and includes information about project partners which I’m happy to note include nanoHUB and the Nanoscale Informal Science Education Network (NISENet) in addition to the other universities,

Paul Westerhoff is the LCnano Network director, as well as the associate dean of research for ASU’s Ira A. Fulton Schools of Engineering and a professor in the School of Sustainable Engineering and the Built Environment.

The project will team engineers, chemists, toxicologists and social scientists from ASU, Johns Hopkins, Duke, Carnegie Mellon, Purdue, Yale, Oregon’s state universities, the Colorado School of Mines and the University of Illinois-Chicago.

Engineered nanomaterials of silver, titanium, silica and carbon are among the most commonly used. They are dispersed in common liquids and food products, embedded in the polymers from which many products are made and attached to textiles, including clothing.

Nanomaterials provide clear benefits for many products, Westerhoff says, but there remains “a big knowledge gap” about how, or if, nanomaterials are released from consumer products into the environment as they move through their life cycles, eventually ending up in soils and water systems.

“We hope to help industry make sure that the kinds of products that engineered nanomaterials enable them to create are safe for the environment,” Westerhoff says.

“We will develop molecular-level fundamental theories to ensure the manufacturing processes for these products is safer,” he explains, “and provide databases of measurements of the properties and behavior of nanomaterials before, during and after their use in consumer products.”

Among the bigger questions the LCnano Network will investigate are whether nanomaterials can become toxic through exposure to other materials or the biological environs they come in contact with over the course of their life cycles, Westerhoff says.

The researchers will collaborate with industry – both large and small companies – and government laboratories to find ways of reducing such uncertainties.

Among the objectives is to provide a framework for product design and manufacturing that preserves the commercial value of the products using nanomaterials, but minimizes potentially adverse environmental and health hazards.

In pursuing that goal, the network team will also be developing technologies to better detect and predict potential nanomaterial impacts.

Beyond that, the LCnano Network also plans to increase awareness about efforts to protect public safety as engineered nanomaterials in products become more prevalent.

The grant will enable the project team to develop educational programs, including a museum exhibit about nanomaterials based on the LCnano Network project. The exhibit will be deployed through a partnership with the Arizona Science Center and researchers who have worked with the Nanoscale Informal Science Education Network.

The team also plans to make information about its research progress available on the nanotechnology industry website Nanohub.org.

“We hope to use Nanohub both as an internal virtual networking tool for the research team, and as a portal to post the outcomes and products of our research for public access,” Westerhoff says.

The grant will also support the participation of graduate students in the Science Outside the Lab program, which educates students on how science and engineering research can help shape public policy.

Other ASU faculty members involved in the LCnano Network project are:

• Pierre Herckes, associate professor, Department of Chemistry and Biochemistry, College of Liberal Arts and Sciences
• Kiril Hristovski, assistant professor, Department of Engineering, College of Technology and Innovation
• Thomas Seager, associate professor, School of Sustainable Engineering and the Built Environment
• David Guston, professor and director, Consortium for Science, Policy and Outcomes
• Ira Bennett, assistant research professor, Consortium for Science, Policy and Outcomes
• Jameson Wetmore, associate professor, Consortium for Science, Policy and Outcomes, and School of Human Evolution and Social Change

I hope to hear more about the LCnano Network as it progresses.

Finally, there was this Nov. 12, 2013 news item on Nanowerk about instituting  voluntary safety protocols for carbon nanotubes in Japan,

Technology Research Association for Single Wall Carbon Nanotubes (TASC)—a consortium of nine companies and the National Institute of Advanced Industrial Science and Technology (AIST) — is developing voluntary safety management techniques for carbon nanotubes (CNTs) under the project (no. P10024) “Innovative carbon nanotubes composite materials project toward achieving a low-carbon society,” which is sponsored by the New Energy and Industrial Technology Development Organization (NEDO).

Lynn Bergeson’s Nov. 15, 2013 posting on nanotech.lawbc.com provides a few more details abut the TASC/AIST carbon nanotube project (Note: A link has been removed),

Japan’s National Institute of Advanced Industrial Science and Technology (AIST) announced in October 2013 a voluntary guidance document on measuring airborne carbon nanotubes (CNT) in workplaces. … The guidance summarizes the available practical methods for measuring airborne CNTs:  (1) on-line aerosol measurement; (2) off-line quantitative analysis (e.g., thermal carbon analysis); and (3) sample collection for electron microscope observation. …

You can  download two protocol documents (Guide to measuring airborne carbon nanotubes in workplaces and/or The protocols of preparation, characterization and in vitro cell based assays for safety testing of carbon nanotubes), another has been published since Nov. 2013, from the AIST’s Developing voluntary safety management techniques for carbon nanotubes (CNTs): Protocol and Guide webpage., Both documents are also available in Japanese and you can link to the Japanese language version of the site from the webpage.

Nano-solutions for the 21st century, University of Oxford Martin School, and Eric Drexler

Eric Drexler (aka, K. Eric Drexler) is a big name in the world of nanotechnology as per my May 6, 2013 posting abut his talk in Seattle as part of a tour promoting his latest book,

Here’s more from the University Bookstore’s event page,

Eric Drexler is the founding father of nanotechnology, the science of engineering on a molecular level—and the science thats about to change the world. Already, says Drexler, author of Radical Abundance, scientists have constructed prototypes for circuit boards built of millions of precisely arranged atoms. This kind of atomic precision promises to change the way we make things (cleanly, inexpensively, and on a global scale), the way we buy things (solar arrays could cost no more than cardboard and aluminum foil, with laptops about the same)—and the very foundations of our economy and environment.

… Drexler’s latest effort, Radical Abundance, here’s what he had to say about the book in a July 21, 2011 posting on his Meta Modern blog,

Radical Abundance will integrate and extend several themes that I’ve touched on in Metamodern, but will go much further. The topics include:

  • The nature of science and engineering, and the prospects for a deep transformation in the material basis of civilization.
  • Why all of this is surprisingly understandable.
  • A personal narrative of the emergence of the molecular nanotechnology concept and the turbulent history of progress and politics that followed
  • The quiet rise of macromolecular nanotechnologies, their power, and the rapidly advancing state of the art
  • ….

About the same time he was promoting his book, Radical Abundance, the University of Oxford Martin School released a report written by Drexler and co-authored with Dennis Pamplin,, which is featured in an Oct. 28, 2013 news item on Nanowerk (Note: A link has been removed),

The world faces unprecedented global challenges related to depleting natural resources, pollution, climate change, clean water, and poverty. These problems are directly linked to the physical characteristics of our current technology base for producing energy and material products. Deep and pervasive changes in this technology base can address these global problems at their most fundamental, physical level, by changing both the products and the means of production used by 21st century civilization. The key development is advanced, atomically precise manufacturing (APM).

This report (“Nano-solutions for the 21st century”; pdf) examines the potential for nanotechnology to enable deeply transformative production technologies that can be developed through a series of advances that build on current nanotechnology research.

Coincidentally or not, Eric Drexler is writing a series of posts for the Guardian about nanotechnology and the future. Here’s a sampling from his Oct. 28, 2013 post on the Guardian’s Small World Nanotech blog sponsored by NanOpinion,

In my initial post in this series, I asked, “What if nanotechnology could deliver on its original promise, not only new, useful, nanoscale products, but a new, transformative production technology able to displace industrial production technologies and bring radical improvements in production cost, scope, and resource efficiency?”

The potential implications are immense, not just for computer chips and other nanotechnologies, but for issues on the scale of global development and climate change. My first post outlined the nature of this technology, atomically precise manufacturing (APM), comparing it with today’s 3D printing and digital nanoelectronics.

My second post placed APM-level technologies in the context of today’s million-atom atomically precise fabrication technologies and outlined the direction of research, an open path, but by no means short, that leads to larger atomically precise structures, a growing range of product materials and a wider range of functional devices, culminating in the factory-in-a-box technologies of APM.

Together, these provided an introduction to the modern view of APM-level technologies. Here, I’d like to say a few words about the implications of APM-level technologies for human life and global society.

At the bottom of the posting, this is noted,

Eric Drexler, often called “the father of nanotechnology”, is at the Oxford Martin Programme on the Impacts of Future Technology, University of Oxford. His most recent book is Radical Abundance: How a Revolution in Nanotechnology Will Change Civilization

The Oxford Martin School of Oxford University and the Research Center for Sustainable Development of the China Academy of Social Sciences recently released a report on atomically precise manufacturing, Nano-solutions for the 21st century. The report discusses the status and prospects for atomically precise manufacturing (APM) together with some of its implications for economic and international affairs.

Publicity is a beautiful thing, especially when you can tie so many things together. Drexler, his book, the report, and the Guardian’s special section sponsored by NanOpinion.

Getting back to the report, Nano-solutions for the 21st century, I notice that there’s been a lot of collaboration with Chinese researchers and institutions if the acknowledgements are a way to judge these things,

This work results from an extensive process that has included interaction and contributions by scientists,
governments, philanthropists, and forward-thinkers around the world. Over the last three years workshops
have been conducted in China, India, US, Europe, Japan, and more to discuss these findings and their
global implications. Draft findings have also been presented at many meetings, from UNFCCC events to
specialist conferences. The wealth of feedback received from this project has been of utmost importance
and we see the resulting report as a collaboration project than as the work of two individuals.

The authors wish to thank all those who have participated in the process and extend particular thanks
to China and India, especially Institute for Urban & Environmental Studies, Chinese Academy of Social
Sciences (CASS) and the team from the National Center for Nanoscience and Technology (NCNST)
including Dr. ZHI Linjie, Dr. TANG Zhiyong, Dr. WEI Zhixiang and Dr. HAN Baohang. Professor Linjie Zhi
was also kind enough to translate the abstract. In India the Rajiv Gandhi Foundation and CII – ITC Centre
of Excellence for Sustainable Development where among those providing valuable input.

This report is only a start of what we hope is a vital international discussion about one of the most
interesting fields of the 21st century. We would therefor like to extend special thanks to the Chinese
Academy of Social Sciences (CASS), Chinese Academy of Sciences (CAS) and The Oxford Martin School
that are examples of world leading institutions that support further discussions in this important area.

Dr. Eric Drexler and Dennis Pamlin worked together to make this report a reality. Drexler, currently at the
Oxford Martin School, provided technical leadership and served as primary author of the report. Pamlin
contributed through discussions, structure and input regarding overall trends in relation to the key aspects
of report. Both authors want to thank Dr. Stephanie Corchnoy who contributed to the research and final
editing. As always the sole responsibility for the content of report lies with the authors.

Eric Drexler
Dennis Pamlin (p. 1)

I find the specific call outs to China, India, and Japan quite interesting since any European partners are covered under the term for the entire continent, Europe. I haven’t read the report but for what it’s worth here’s the abstract,

The report has five sections:
1. Nanotechnology and global challenge
The first section discusses the basics of advanced, atomically precise nanotechnology and
explains how current and future solutions can help address global challenges. Key concepts
are presented and different kinds of nanotechnology are discussed and compared.
2. The birth of Nanotechnology
The second section discusses the development of nanotechnology, from the first vision
fifty years ago, expanding via a scientific approach to atomically precise manufacturing
thirty years ago, initial demonstrations of principle twenty years ago, to the last decade
of of accelerating success in developing key enabling technologies. The important role
of emerging countries is discussed, with China as a leading example, together with an
overview of the contrast between the promise and the results to date.
3. Delivery of transformative nanotechnologies
Here the different aspects of APM that are needed to enable breakthrough advances in
productive technologies are discussed. The necessary technology base can be developed
through a series of coordinated advances along strategically chosen lines of research.
4. Accelerating progress toward advanced nanotechnologies
This section discusses research initiatives that can enable and support advanced
nanotechnology, on paths leading to APM, including integrated cross-disciplinary research
and Identification of high-value applications and their requirements.
5. Possible next steps
The final section provides a short summary of the opportunities and the possibilities to
address institutional challenges of planning, resource allocation, evaluation, transparency,
and collaboration as nanotechnology moves into its next phase of development: nanosystems engineering.

The report in its entirety provides a comprehensive overview of the current global condition, as well as
notable opportunities and challenges. This content is divided into five independent sections that can
be read and understood individually, allowing those with specific interests to access desired information
more directly and easily. With all five sections taken together, the report as a whole describes low-
cost actions that can help solve critical problems, create opportunities, reduce security risks, and help
countries join and accelerate cooperative development of this global technological revolution. Of
particular importance, several considerations are highlighted that strongly favor a policy of transparent,
international, collaborative development.

One final comment, I’m not familiar with Drexler’s co-author, Dennis Pamlin so went searching for some details. Here’s a self-description from the About page on his eponymous website,

Dennis Pamlin is an entrepreneur and founder of 21st Century Frontiers. He works with companies, governments and NGOs as a strategic economic, technology and innovation advisor. His background is in engineering, industrial economy and marketing. Mr Pamlin worked as Global Policy Advisor for WWF from 1999 to 2009. During his tenure, Pamlin initiated WWFs Trade and Investment Programme work in the BRICs (Brazil, Russia, India, China and South Africa) and led the work with companies (especially high-tech companies such as ICT) as solution providers.

Pamlin is currently an independent consultant as well as Director for the Low Carbon Leaders Project under the UN Global Compact and is a Senior Associate at Chinese Academy of Social Sciences. Current work includes work to establish a web platform to promote transformative mobile applications, creating the first Low Carbon City Development Index (LCCDI) make transformative low-carbon ICT part of the global climate discussions, leading the Global ICT companies work (through GeSI) to establish the ICT sector as a global solution provider when it comes to resource efficient solutions, advising the EU on how public procurement can increase innovation and the uptake of transformative solutions.

Pamlin is also exploring how new ideas can be financed through web-tools/apps and the cultural tensions between the “west” and the re-emerging economies (with focus on China and India).

He is also leading work to develop methodologies for companies and cities to measure and report their positive impacts, focus on climate, water and poverty, but other areas are also under development.

I also found this on Pamlin’s LinkedIn profile,

Entrepreneur, advisor and transformative explorer

Other
International Affairs

Current

21st century Frontiers,
Chinese Academy of Social Sciences (CASS),
Global Challenges Foundation

Previous

WWF,
Greenpeace

It seems to me there’s a ‘sustainability and nanotechnology theme being implied in the introduction to the report (“The world faces unprecedented global challenges related to depleting natural resources, pollution, climate change, clean water, and poverty.”)  and I’m certainly inferring it from my reading of Pamlin’s background and interests and this phrase in the acknowledgements: “… Rajiv Gandhi Foundation and CII – ITC Centre of Excellence for Sustainable Development where among those providing valuable input … .”

Oddly, I last mentioned nanotechnology and sustainability In an Oct. 28, 2013 posting about a nanotechnology-enabled consumer products database where I also made note of the Second Sustainable Nanotechnology Organization Conference whose website can be found here.

Nano and Europe’s Chief Science Adviser

In late November 2011 there was murmuring about the possibility that Anne Glover, then Chief Science Adviser for Scotland, was due to be announced as Europe’s first Chief Science Adviser (mentioned in my Nov. 24, 2011 posting). Now that the announcement has been made, Glover has been profiled in a Feb. 14, 2012 article by Jop de Vrieze for ScienceInsider.

Amongst other things she discusses Europeans and their attitudes towards risk and new technologies in the context of genetically modified organisms (GMO) and nanotechnology,

Q: You mean Europe is too risk-adverse when it comes to new technologies?

A.G.: If you take people’s opinions, for instance by looking at the Eurobarometer, people seem to be reluctant to accept innovative technologies. They are suspicious almost just because it’s new, rather than thinking: “Oh this is new, I need to find out more about it so that I can judge.” At the moment, we are way too much on the side of: “It is new I don’t want it, not even discuss it.” This leaves the door open for pressure groups which are against certain things and have a very loud voice. There should be more communication about the rewards of the technologies. I would like to balance that.

Q: Are you talking about genetically modified organisms (GMOs)?

A.G.: Yes, that is the most important example. In the beginning, decades ago, people were careful to get good regulations in place. Over time, it has been shown that GMO is not a risky technology. But people seem not to have all the information they need to make their own decision. It is not up to Europe to say: “You have to do this,” but give the information and let them choose.

Q: Has communication been the problem?

A.G.: Yes. And if we have the same misinformation that was used around GMOs in the relatively new field of nanotechnology, we could severely disinhibit our ability to contribute to that market. That would be an enormous loss for Europe.

She goes on to discuss her plans for the future, the budget necessary to get there and dealing with the European Commission’s bureaucracy.

Bureaucratic incomprehensibility: REACH Nanomaterials Implementation Projects

This looks to be one of those announcements made by an organization that is simply going through the motions or perhaps they’ve forgotten that no one understands bureaucratese unless they’re intimately involved.

This first bit isn’t so bad, from the Oct.19, 2011 news item on Nanowerk,

Final reports have been published from two REACH Implementation Projects on Nanomaterials (RIP-oN 2&3). Commissioned by the JRC’s Institute for Health & Consumer Protection, the projects intended to develop specific advice on the implementation of REACH for nanomaterials. The outputs from the projects have been developed over a period of 12-16 months in consultation with a range of stakeholders. The reports have scoped the current state-of-the-science regarding assessment of nanomaterials in the context of REACH, and provide recommendations to the European Commission on how the REACH Guidance on Information Requirements and Chemical Safety Assessment could be further developed to better address nanomaterials.

So we have two final reports. Here’s the description of the reports,

The RIP-oN 2 project has addressed the REACH information requirements on intrinsic properties of nanomaterials, and the information needed for safety evaluation of nanomaterials. The RIP-oN 3 project has addressed exposure assessments and hazard and risk characterisation for nanomaterials within the REACH context.

Not the most informative description I’ve ever read. And as it turns out, there’s a third report,

Under a separate process, a third report from the RIPoN activity relating to Substance Identity (Rip-oN 1) has also been published. This report is also available online, however, according to the Commission it was not possible to reach consensus amongst the experts on the recommendations, therefore further work of the Commission, in collaboration with CARACAL, is required before recommendations can be forwarded to ECHA

Maybe a government bureaucrat understands some of this?

Canada’s plans for nanosunscreens mentioned at Europe’s Nanotechnology Safety for Success Dialogue and sunscreens in Australia

I posted (April 14, 2011) about the March 29 – 30, 2011 Nanotechnology Safety for Success Dialogue which took place in Brussels (Belgium). I took note of a fierce debate over a nanomaterials definition. (The debate was whether there should be an interim definition or if they should wait until they had enough information to create a finalized definition.

Thankfully a reader has recently redirected my attention to this meeting as I had failed to notice that Canada made a presentation at the meeting. Consequently, I have found more information about Canada’s nanotechnology activities as they pertain to safety through an international organization. (I have searched the Health Canada website and the Canadian federal nanoportal and am unable to locate this presentation on either site.)

The presentation (all 15 slides) was given by Ratna Bose, Ph. D., Manager, Nonprescription Drugs Evaluation Division; Bureau of Gastroenterology, Infection, and Viral Diseases; Therapeutic Products Directorate. There is a Health Portfolio Nanotechnology WG (I imagine this means working group). Here’s how the portfolio is organized and managed (from slide #3),

Chaired by Science Policy Directorate
• Co-ordinates activities and facilitates information sharing on nanotechnology and nanomaterials within HC
• Includes representatives from Directorates regulating nanomaterials
• Each Directorate is responsible for policies and guidances specific to their respective jurisdiction

Here are the products Health Canada regulates (from slide #5),

Health Canada Regulated Products that May Contain Nanotechnology

• Drugs
• Medical devices
• Biotechnology products
• Tissue engineering products
• Vaccines
• Natural Health products
• Food Ingredients, packaging, manufacturing process

I notice that the head states that the products may contain nanotechnology, which seems odd. They might contain nanomaterial(s) and/or be nanotechnology-enabled but they can’t contain nanotechnology in the same way they contain biology. Plus, I thought Agriculture Canada regulated food (I will check this out).

This is what they are proposing for future work (from slide #12),

Regulatory Perspective
Develop standardized risk assessment methods
Develop regulatory, product-specific guidance documents
Build regulatory capacity/expertise

Scientific Perspective
Continue participation in international activities (e.g., ISO, OECD)
Explore collaborative work to develop methodologies to detect, characterize and measure NMs by working with industry as well as domestic and international partners

Awareness Perspective
Develop public engagement and risk communication strategies
Engage industry stakeholders

Under Awareness Perspective they’ve linked public engagement and risk communication together. Is risk communication the only reason they’re planning public engagement?

The slides indicate that there will be a case study developed around nanosunscreens. From slides 13 & 14,

Sunscreens are regulated as drugs in Canada, subject to either the Food and Drug Regulations or the Natural Health Product Regulations depending on the active ingredient and claim.

The Sunburn Protectants Monograph outlines active ingredients and their concentrations, as well as appropriate warnings, directions for use, and claims which are generally considered to be safe and effective.

The nanomaterial based sunscreens are excluded from the Sunburn Protectants monograph.

In order to satisfy the Safety & Effectiveness requirements of the Regulations, safety data are being requested.

I wonder where the safety data is coming from?

Meanwhile, there was a May 23, 2011 post by Dr. Andrew Maynard on the University of Michigan’s Risk Science Blog about a recent nanosunscreen event in Australia. From the posting,

Last week, the Victoria branch of the Australian Education Union (AEU) passed a resolution recommending that “workplaces use only nanoparticle-free sunscreen” and that sunscreens used by members on children are selected from those “highlighted in the Safe Sunshine Guide produced by Friends of the Earth” as being nano-free. The AEU also resolved to provide the Friends of the Earth Safe Sunscreen Guide and Recommendations to all workplaces their members are associated with. Given what is currently known about sunscreens – nano and otherwise, I can’t help wonder whether this is an ill-advised move.

The debate over the safety or otherwise of nanoparticle-containing sunscreens has been going on for over a decade now. Prompted by early concerns over possible penetration through the skin and into the body of the nanosized titanium dioxide and/or zinc oxide particles used in these products – and potential adverse impacts that might result – there has been a wealth of research into whether these small particles can actually get through the skin when applied in a sunscreen. And the overall conclusion is that they cannot. There have been a small number of studies that demonstrate that, under specific conditions, some types of nanoparticle might penetrate through the upper layers of the skin. But the overwhelming majority of studies have failed to find either plausible evidence for significant penetration, or plausible evidence for adverse health impacts [emphasis mine] – a body of evidence that led the Environmental Working Group to make an about-face from questioning the use of nanoparticle-containing sunscreens to endorsing them in 2010.

If you’re interested in the nanosunscreen discussion, I highly recommend Andrew’s writing on the subject, the report by the Environmental Working Group, and the report by the Friends of the Earth for a comprehensive view of the discussion.

As for me, I believe, given the information at hand, that nanosunscreens are relatively safe for most adults and I reserve the right to change my opinion should new information emerge. Meanwhile, I look forward to learning more about Health Canada’s nanotechnology safety efforts and hope that one day the information will be easily accessible on the Health Canada website or the federal nanoportal. Who knows maybe there’ll be a public engagement exercise on the topic of nanosunscreens?

Innovation discussion in Canada lacks imagination

Today, Feb. 18, 2011, is the last day you have to make a submission to the federal government of Canada’s Review of Federal Support to Research and Development.

By the way, the  expert panel appointed and tasked with carrying out this consultation consists of:

Mr. Thomas Jenkins – Chair
Dr. Bev Dahlby
Dr. Arvind Gupta
Ms. Monique F. Leroux
Dr. David Naylor
Mrs. Nobina Robinson

They represent a mix of industry and academic representatives; you can read more about them here. You will have to click for each biography. Unfortunately, neither the website nor the consultation paper offer a list of members of the panel withbiographies that are grouped together for easy scanning.

One sidenote, big kudos to whomever decided this was a good idea (from the Review web page),

Important note: Submissions received by the panel will be made publicly available on this site as early as March 4, 2011.[emphases mine] * The name and organizational affiliation of the individual making the submission will be posted on the site; however, contact information (i.e., email addresses, phone numbers and postal addresses) will not be posted, unless that information is embedded in the submission itself.

This initiative can be viewed in two ways: (a) necessary housecleaning of funding programmes for research and development (R&D) that are not effective and (b) an attempt to kickstart more innovation, i.e. better ties between government R&D efforts and industry to achieve more productivity, in Canada. From the consultation paper‘s introduction,

WHY A REVIEW?

Innovation by business is a vital part of maintaining a high standard of living in Canada and building Canadian sources of global advantage. The Government of Canada plays an important role in fostering an economic climate that encourages business innovation, including by providing substantial funding through tax incentives and direct program support to enhance business research and development (R&D). Despite the high level of federal support, Canada continues to lag behind other countries in business R&D expenditures (see Figure 1), and this is believed to be a significant factor in contributing to the country’s weak productivity growth. Recognizing this, Budget 2010 announced a comprehensive review of federal support to R&D in order to maximize its contribution to innovation and to economic opportunities for business. (p. 1 print;  p. 3 PDF)

I’d like to offer a submission but I can’t for two reasons. (a)  I really don’t know much about the ‘housecleaning’ aspects. (b) The panel’s terms of reference vis à vis innovation are so constrained that any comments I could offer fall far outside it’s purview.

Here’s what I mean by ‘constrained terms of reference’ (from the consultation paper),

The Panel has been asked to provide advice related to the following questions:

§ What federal initiatives are most effective in increasing business R&D and facilitating commercially relevant R&D partnerships?

§ Is the current mix and design of tax incentives and direct support for business R&D and businessfocused R&D appropriate?

§ What, if any, gaps are evident in the current suite of programming, and what might be done to fill these gaps?

In addition, the Panel’s mandate specifies that its recommendations not result in an increase or decrease to the overall level of funding required for federal R&D initiatives. (p. 3 print; p. 5 PDF)

The ‘housecleaning’ effort is long overdue. Even good government programmes can outlive their usefulness while ineffective and/or bad programmes don’t get jettisoned soon enough or often enough. If you want a sense of just how complicated our current R & D funding system is, just check this out from Nassif Ghoussoub’s (Piece of Mind blog) Jan. 14, 2011 posting,

Now the number of programs that the government supports, and which are under review is simply mind boggling.

First, you have the largest piece of the puzzle, the $4-billion “Scientific Research and Experimental Develoment tax credit program” (SR&ED), which seems to be the big elephant in the room. I hardly know anything about this program, besides the fact that it is a federal tax incentive program, administered by the Canada Revenue Agency, that encourages Canadian businesses of all sizes, and in all sectors to conduct research and development in Canada. Former VP of the NRC and former President of Alberta Ingenuity, Peter Hackett, has lots to say about this. Also on youtube.

But you don’t need to be an expert to imagine the line-up of CEOs waiting to testify as to how important these tax incentives are to the country? “Paris vaut bien une messe” and a billion or four are surely worth testifying for.

Next, just take a look (below) at this illustrative list of more directly funded federal programs. Why “illustrative”?, because there is at least one hundred more!

Do you really think that anyone of the heads/directors/presidents (the shopkeepers!) of these programs (the shops!) are going to testify that their programs are deficient and need less funding? What about those individuals that are getting serious funding from these programs (the clients!)?

Nassif’s list is 50 (!) programmes long and he suggests there are another 100 of them? Yes, housecleaning is long overdue but as Nassif points out. the people most likely to submit comment about these programmes  are likely to be beneficiaries uninclined to see their demise.

There is another problem with this ‘housecleaning’ process in that they seem to be interested in ‘tweaking’ rather than renovating or rethinking the system. Rob Annan at the Researcher Forum (Don’t leave Canada behind) blog, titled his Feb. 4, 2011 post, Innovation vs. Invention, as he questions what we mean by innovation (excerpt from his posting),

I wonder if we’ve got the whole thing wrong.

The fact is: universities don’t produce innovation. For that matter, neither does industrial R&D.

What university and industrial research produces is invention.

The Blackberry is not an innovation, it’s an invention. A new cancer-fighting drug is not an innovation, it’s an invention. A more durable prosthetic knee is not an innovation, it’s an invention.

Universities can – and do – produce inventions.

In fact, they produce inventions at an astonishing rate. University tech transfer offices (now usually branded as “centres for innovation and commercialization”) register more intellectual property than could ever be effectively commercialized.

But innovation is distinct from invention. Innovation is about process.

Innovation is about finding more efficient ways to do things. Innovation is about increasing productivity. Innovation is about creating new markets – sometimes through the commercialization of inventions.

Innovation is about the how not about the what.

Thought-provoking, yes? I think a much broader scope needs to be taken if we’re going really discuss innovation in Canada. I’m talking about culture and making a cultural shift. One of the things I’ve noticed is that everyone keeps saying Canadians aren’t innovative. Fair enough. So, how does adding another government programme change that? As far as I can tell, most of the incentives that were created have simply encouraged people to game the system, which is what you might expect from people who aren’t innovative.

I think one of the questions that should have been asked is, how do you encourage the behaviour, in this case a cultural shift towards innovation, you want when your programmes haven’t elicited that behaviour?

Something else I’d suggest, let’s not confine the question(s) to the usual players as they’ll be inclined to offer more of the same. (There’s an old saying, if you’re a hammer, everything looks like a nail.)

Another aspect of making a cultural shift is modeling at least some of the behaviours. Here’s something what Dexter Johnson at the Nanoclast blog (IEEE Spectrum) noticed about US President Barack Obama’s January 2011 State of the Union address in his January 28, 2011 posting,

Earlier this week in the President’s State of the Union Address, a 16-year-old girl by the name Amy Chyao accompanied the First Lady at her seat.

No doubt Ms. Chyao’s presence was a bit of stage craft to underscore the future of America’s ingenuity and innovation because Ms. Chyao, who is still a high school junior, managed to synthesize a nanoparticle that when exposed to infrared light even when it is inside the body can be triggered like a bomb to kill cancer cells. [emphasis mine] Ms. Chyao performed her research and synthesis in the lab of Kenneth J. Balkus, Jr., a chemistry professor at the University of Texas at Dallas.

This is a remarkable achievement and even more so from someone still so young, so we would have to agree with Prof. Balkus’ assessment that “At some point in her future, she’ll be a star.”

However, Chyao was given to us as a shining example of the US potential for innovation, and, as a result, its competitiveness. So beyond stage craft, what is the assessment of innovation for the US in a time of emerging technologies such as nanotechnology? [emphasis mine]

As President Obama attempts to rally the nation with “This is our Sputnik moment”, Andrew Maynard over on his 20/20 blog tries to work out what innovation means in our current context as compared to what it meant 50 years ago at the dawn of the space race.

Notice the emphasis on innovation. Our US neighbours are as concerned as we are about this and what I find interesting is that there glimmers of a very different approach. Yes, Chyao’s presence was stagecraft but this kind of ‘symbolic communication’ can be incredibly important. I say ‘can’ because if it’s purely stagecraft then it will condemned as a cheap stunt but if they are able to mobilize ‘enough’ stories, programmes, education, etc. that support the notion of US ingenuity and innovation then you can see a cultural shift occur. [Perfection won’t be achieved; there will be failures. What you need are enough stories and successes.] Meanwhile, Canadians keep being told they’re not innovative and ‘we must do something’.

This US consultation may be more stagecraft but it shows that not all consultations have to be as thoroughly constrained as the Canadian one finishing today.  From Mike Masnick’s Feb. 9, 2011 posting (The White House Wants Advice On What’s Blocking American Innovation) on Techdirt,

The White House website kicked off a new feature this week, called Advise the Advisor, in which a senior staff member at the White House will post a YouTube video [there’s one in this posting on the Techdirt website] on a particular subject, asking the public to weigh in on that topic via a form. The very first such topic is one near and dear to our hearts: American Innovation. [emphasis mine] …

And here is the answer I provided:

Research on economic growth has shown time and time again the importance of basic innovation towards improving the standard of living of people around the world. Economist Paul Romer’s landmark research into innovation highlighted the key factor in economic growth is increasing the spread of ideas.

Traditionally, many people have considered the patent system to be a key driver for innovation, but, over the last few decades, research has repeatedly suggested that this is not the case. In fact, patents more frequently act as a hindrance to innovation rather than as a help to it. Recent research by James Bessen & Michael Meurer (reviewing dozens of patent studies) found that the costs of patents far outweigh the benefits.

This is a problem I see daily as the founder of a startup in Silicon Valley — often considered one of the most innovative places on earth. Patents are not seen as an incentive to innovation at all. Here, patents are simply feared. The fear is that anyone doing something innovative will be sued out of nowhere by someone with a broad patent. A single patent lawsuit can cost millions of dollars and can waste tons of resources that could have gone towards actual innovation. Firms in Silicon Valley tend to get patents solely for defensive purposes.

Getting back to Dexter, there is one other aspect of his comments that should be considered, the emphasis on ’emerging technologies’. The circumstances in which we currently find ourselves are hugely different than they were during the Industrial revolution, the arrival of plastics and pesticides, etc. We understand our science and technology and their impacts quite differently than we did even a generation ago and that requires a different approach to innovation than the ones we’ve used in the past. From Andrew Maynard’s Jan. 25, 2011 posting (2020 Science blog),

… if technology innovation is as important as Obama (and many others besides) believes it is, how do we develop the twenty first century understanding, tools and institutions to take full advantage of it?

One thing that is clear is that in connecting innovation to action, we will need new insights and “intelligence” on how to make this connection work in today’s world. These will need to address not only the process of technology innovation, but also how we develop and use it within an increasingly connected society, where more people have greater influence over what works – and what doesn’t – than ever before. This was the crux of a proposal coming out of the World Economic Forum Global Redesign Agenda earlier this year, which outlined the need for a new Global Center for Emerging Technologies Intelligence.

But beyond the need for new institutions, there is also the need for far more integrated approaches to building a sustainable future through technology innovation – getting away from the concept of technology innovation as something that is somebody else’s business, and making it everybody’s business. This was a central theme in the World Economic Forum report that Tim Harper of CIENTIFICA Ltd. and I published last week.

There’s a lot more to be said about the topic. Masnick did get a response of sorts to his submission about US innovation (from his Feb. 17, 2011 posting on Techdirt),

Tony was the first of a bunch of you to send over the news that President Obama’s top advisor, David Plouffe, has put up a blog post providing a preliminary overview of what he “heard” via the Ask the Advisor question, which we wrote about last week, concerning “obstacles to innovation.” The only indication that responses like mine were read was a brief mention about how some people complained about how the government, and particularly patent policy, got in the way of innovation:

Many respondents felt that too much government regulation stifled businesses and innovators and that the patent process and intellectual property laws are broken.

Unfortunately, rather than listening to why today’s patent system is a real and significant problem, it appears that Plouffe is using this to score political points for his boss …

Masnick hasn’t lost hope as he goes on to note in his posting.

For yet another perspective, I found Europeans weighed in on the innovation topic at the American Association for the Advancement of Science (AAAS) 2011 annual meeting this morning (Feb. 18, 2011). From a Government of Canada science blog (http://blogs.science.gc.ca/) posting, Mobilizing resources for research and innovation: the EU model, by Helen Murphy,

EU Commission Director-General of the Joint Research Centre Robert-Jan Smits spoke about what all countries agree on: that research and innovation are essential to prosperity — not just now, but even more so in the future.

He said European leaders are voicing the same message as President Obama, who in his recent State of the Union address linked innovation to “winning the future” — something he called the “Sputnik movement of our generation.”

Smits talked about the challenge of getting agreement among the EU’s 27 member countries on a growth strategy. But they have agreed; they’ve agreed to pursue growth that is smart (putting research and innovation at centre stage), sustainable (using resources efficiently and responsibly) and inclusive (leaving no one behind and creating new jobs).

The goal is ambitious: the EU aims to create nearly four million new jobs in Europe and increase the EU’s GDP by 700 billion Euros by 2025.

What I’m trying to say is that innovation is a big conversation and I hope that the expert panel for Canada’s current consultation on this matter will go beyond its terms reference to suggest that ‘housecleaning and tweaking’ should be part of a larger initiative that includes using a little imagination.

Europe’s definition of nanomaterials for regulatory purposes? Maybe not so much.

The European Commission has just released a reference report for a definition of nanomaterials which will set the base for a regulatory framework in Europe. From the news item on Nanowerk,

Despite the growing utilisation of engineered nanomaterials in consumer products and innovative technological applications, there is at present no widely accepted definition of the term “nanomaterial” that is suitable as a basis for legislation on their safe use. Responding to a request of the European Parliament, the Joint Research Centre (JRC) published today a reference report entitled “Considerations on a definition of nanomaterial for regulatory purposes” (pdf download).

The report discusses possible elements of a definition aiming at reducing ambiguity and confusion for regulators, industry and the general public. It recommends that the specific term “particulate nanomaterial” should be employed in legislation to avoid inconsistencies with other definitions and that size should be used as the only defining property. [emphases mine]

I have to say I’m a little underwhelmed, especially so after reading (very quickly) the report. The best I can say about the report is that it provides a good summary of the definitions for nanomaterials that have been proposed by various international organizations, government entities, and countries in Europe, as well as, including the US, Canada, and Australia. (I have my fingers crossed that one day there’ll be a report that mentions some other jurisdictions as well.)

Here’s the definition as recommended in the report,

For a definition aimed for regulatory purposes the term ‘nanomaterial’ in its current general understanding is not considered appropriate. Instead, the more specific term ‘particulate nanomaterial’ is suggested.

The term ‘material’ is proposed to refer to a single or closely bound ensemble of substances at least one of which is a condensed phase, where the constituents of substances are atoms and molecules.

For a basic and clear definition of ‘particulate nanomaterial’, which is broadly applicable and enforceable, it is recommended not to include properties other than size.

For the size range of the nanoscale, a lower limit of 1 nm and an upper limit of 100 nm or higher should be chosen.

The questions of size distribution, shape, and state of agglomeration or aggregation, may need to be addressed specifically in subsequently developed legislation. It is also likely that certain particulate materials of concern that fall outside a general definition might have to be listed in specific legislation.

Additional qualifiers, like specific physico-chemical properties or attributes such as ‘engineered’ or ‘manufactured’ may be relevant in the scope of specific regulations. (p. 31 print version, p. 33 PDF)

Given the work in the report, this seems a remarkably modest recommendation that could almost have been written prior. It’s almost as if they made a survey of the current recommendations and pulled together the most commonly occurring and least contentious versions to create a relatively innocuous definition.