Tag Archives: European Union (EU)

Buildings with living tattoos?

Caption: A variety of fungal species isolated from building facades in the coastal city of Izola (Slovenia). Credit: Ana Gubenšek

This proposed work comes from Austria by way of a May 21, 2025 Graz University of Technology (TU Graz) press release (also on EurekAlert),

External walls of buildings are normally lifeless and have no additional function. An international team of researchers and companies, in which Carole Planchette from the Institute of Fluid Mechanics and Heat Transfer is involved, wants to change this by adding microbial life to building façades. In the project “Archibiome tattoo for resistant, responsive, and resilient cities” (REMEDY), the consortium is working on integrating specifically composed communities of beneficial microorganisms into living ink that adheres to exterior walls made of concrete, wood, metal and other building materials. These living tattoos on buildings are intended to protect the façades from weathering, store CO2 and filter pollutants from the air. The European Innovation Council is funding the four-year project with a total of almost three million euros as part of the Pathfinder funding programme.

Billions of square metres of potential wall space

Over the next 25 years, building façades and roofs with a total area of 9.4 billion square metres will be renovated or newly built in the European Union. “This is a huge potential that we should utilise. Microbiological communities on roofs and façades could fulfil numerous functions without taking up scarce, undeveloped space,” says Carole Planchette.

Useful microbiome for buildings

At the University of Ljubljana, a team led by microbiologist Nina Gunde-Cimerman is looking for suitable microorganisms. The researchers want to design interkingdom microbial consortia that form stable communities.

”The aim is to create a beneficial microbiome for buildings that is resistant to pathogenic microbes and repairs superficial cracks on its own,” says Carole Planchette. “Additional benefits will range from carbon sequestration and oxygen production to bioremediation, among others.”

At the Institute of Fluid Mechanics and Heat Transfer, Carole Planchette is responsible for developing a suitable, printable ink in which the microorganisms can survive. “We opted for inkjet printing because it allows us to apply the living ink very precisely, in a controlled manner and quickly at the same time,” explains Carole Planchette. The dimensions of the microorganisms, which reach the size of several micrometres and are expected to aggregate in millimetric clusters, are a challenge: They are too bulky for conventional inkjet technology, in which usually particles in the nanometre range are sprayed. Together with the Slovak inkjet manufacturer Qres Technologies and the Austrian coating specialist Tiger Coatings, Carole Planchette is working on the necessary technological modifications.

Technology breakthrough

“The ambition of REMEDY is to achieve a breakthrough in fundamental research in microbiology and synthetic biology, transfer the know-how to materials science in the form of engineered living materials, and develop compatible biofabrication processes that allow personalised design in the architectural context,” says project coordinator Anna Sandak from the research institute InnoRenew CoE in Izola, Slovenia.

”I am confident that we will develop suitable inks and the customised inkjet technology within the project duration,” says Carole Planchette. “I also expect that we will find suitable microorganisms that survive in the ink and under the stress generated by printing. It will be interesting to see whether we succeed in making this process already fully reproducible over the next four years. Using living – thus evolving – inks for industrial processes such as inkjet printing, which tolerate little parameter variations, is a challenge, as we are entering uncharted territory with the REMEDY project.”

The consortium brings together six partners from four EU countries: Slovenia, Austria, the Netherlands, and Slovakia. The collaboration includes InnoRenew CoE acting as coordinator, University of Ljubljana, Graz University of Technology, TIGER Coatings, Xylotrade B.V., and Qres Technologies, with the in-kind support of the University of Primorska as a third party.

You can find the Archibiome tattoo for resistant, responsive, and resilient cities (REMEDY) project here.

World’s largest and most powerful pulsed magnet system completed—ITER and fusion energy + local fusion news

Before launching into the news, I have a few explanatory bits, which can be easily skipped.

Fusion energy

There’s a lot of interest in fusion energy, a form of nuclear energy, that promises to be sustainable and ‘clean’. Adam Stein’s May 29, 2024 article “Nuclear fusion: the true, the false and the uncertain” for Polytechique insights (Institut polytechnique de Paris) tempers some of the enthusiasm/hype about fusion energy. In this excerpt, he examines claims about ‘clean’ energy, Note: A link has been removed,

#2 Fusion will become a source of clean, limitless energy

TRUE — Fusion is generally seen as “clean” energy.

It produces substantially less radioactive “waste” than fission – though it is possible that with emerging technologies, waste from fusion and fission could be reused. Still, like other nuclear fission, fusion will require appropriate and comprehensive oversight. One concern is that the reaction could be used to generate fissile materials usable in weapons. Fusion machines and related reactions do not directly produce material useful for weapons. The reaction does, however, create an enormous amount of neutrons.

On the bright side, these neutrons could help generate more fuel for the fusion reaction — many designs plan to incorporate a “breeding blanket,” a layer of materials that acts as heat insulation, but is also lined with materials that can capture the neutrons to create more tritium. Uranium or thorium could also be placed in some breeding blanket designs. The concern is that these materials, once irradiated, could generate uranium-235 that can be used in nuclear weapons. Physical ways to deter this process exist, such as requiring the use of lithium‑6 in the blanket modules. The IAEA [International Atomic Energy Agency] will be important in ensuring non-proliferation safeguards and oversight.

ITER

The International Thermonuclear Experimental Reactor (ITER) is (from its Wikipedia entry), Note: Links have been removed,

ITER (initially the International Thermonuclear Experimental Reactor, iter meaning “the way” or “the path” in Latin)[4][5][6] is an international nuclear fusion research and engineering megaproject aimed at creating energy through a fusion process similar to that of the Sun. It is being built next to the Cadarache facility in southern France.[7][8] Upon completion of the main reactor and first plasma, planned for 2033–2034,[9][10] ITER will be the largest of more than 100 fusion reactors built since the 1950s, with six times the plasma volume of JT-60SA in Japan, the largest tokamak operating today.[11][12][13]

The long-term goal of fusion research is to generate electricity; ITER’s stated purpose is scientific research, and technological demonstration of a large fusion reactor, without electricity generation.[14][11] ITER’s goals are to achieve enough fusion to produce 10 times as much thermal output power as thermal power absorbed by the plasma for short time periods; to demonstrate and test technologies that would be needed to operate a fusion power plant including cryogenics, heating, control and diagnostics systems, and remote maintenance; to achieve and learn from a burning plasma; to test tritium breeding; and to demonstrate the safety of a fusion plant.[12][8]

ITER is funded and operated by seven member parties: China, the European Union, India, Japan, Russia, South Korea and the United States. In the immediate aftermath of Brexit, the United Kingdom continued to participate in ITER through the EU’s Fusion for Energy (F4E) program until September 2023.[15][1][2] Switzerland participated through Euratom and F4E until 2021,[16] though it is poised to rejoin in 2026 following subsequent negotiations with the EU.[17][18] ITER also has cooperation agreements with Australia, Canada, Kazakhstan and Thailand.[19]

Construction of the ITER complex in France started in 2013,[20] and assembly of the tokamak began in 2020.[21] The initial budget was close to €6 billion, but the total price of construction and operations is projected to be from €18 to €22 billion;[22][23] other estimates place the total cost between $45 billion and $65 billion, though these figures are disputed by ITER.[24][25] Regardless of the final cost, ITER has already been described as the most expensive science experiment of all time,[26] the most complicated engineering project in human history,[27] and one of the most ambitious human collaborations since the development of the International Space Station (€100 billion or $150 billion budget) and the Large Hadron Collider (€7.5 billion budget).[note 1][28][29]

ITER’s planned successor, the EUROfusion-led DEMO, is expected to be one of the first fusion reactors to produce electricity in an experimental environment.[30]

Tokamak

As this comes up again in the next section, here’s more about the tokamak from its Wikipedia entry, Note: Links have been removed,

A tokamak (/ˈtoʊkəmæk/; Russian: токамáк) is a device which uses a powerful magnetic field generated by external magnets to confine plasma in the shape of an axially symmetrical torus.[1] The tokamak is one of several types of magnetic confinement devices being developed to produce controlled thermonuclear fusion power. The tokamak concept is currently one of the leading candidates for a practical fusion reactor for providing minimally polluting electrical power.[2]

Now, the ITER news

An April 30, 2025 news item on phys.org announces a new development at ITER,

In a landmark achievement for fusion energy, ITER has completed all components for the world’s largest, most powerful pulsed superconducting electromagnet system.

ITER is an international collaboration of more than 30 countries to demonstrate the viability of fusion—the power of the sun and stars—as an abundant, safe, carbon-free energy source for the planet.

An April 30, 2025 ITER press release on EurekAlert, which originated the news item, provides more details about the achievement,

The final component was the sixth module of the Central Solenoid, built and tested in the United States. When it is assembled at the ITER site in Southern France, the Central Solenoid will be the system’s most powerful magnet, strong enough to lift an aircraft carrier.

The Central Solenoid will work in tandem with six ring-shaped Poloidal Field (PF) magnets, built and delivered by Russia, Europe, and China.

The fully assembled pulsed magnet system will weigh nearly 3,000 tons. It will function as the electromagnetic heart of ITER’s donut-shaped reactor, called a Tokamak.

How does this pulsed superconducting electromagnet system work?

Step 1. A few grams of hydrogen fuel—deuterium and tritium gas—are injected into ITER’s gigantic Tokamak chamber.

Step 2. The pulsed magnet system sends an electrical current to ionize the hydrogen gas, creating a plasma, a cloud of charged particles.

Step 3. The magnets create an “invisible cage” that confines and shapes the ionized plasma.

Step 4. External heating systems raise the plasma temperature to 150 million degrees Celsius, ten times hotter than the core of the sun. 

Step 5. At this temperature, the atomic nuclei of plasma particles combine and fuse, releasing massive heat energy.

A tenfold energy gain

At full operation, ITER is expected to produce 500 megawatts of fusion power from only 50 megawatts of input heating power, a tenfold gain. At this level of efficiency, the fusion reaction largely self-heats, becoming a “burning plasma.”

By integrating all the systems needed for fusion at industrial scale, ITER is serving as a massive, complex research laboratory for its 30-plus member countries, providing the knowledge and data needed to optimize commercial fusion power.

A global model

ITER’s geopolitical achievement is also remarkable: the sustained collaboration of ITER’s seven members—China, Europe, India, Japan, Korea, Russia, and the United States. Thousands of scientists and engineers have contributed components from hundreds of factories on three continents to build a single machine. 

Pietro Barabaschi, ITER Director-General, says, “What makes ITER unique is not only its technical complexity but the framework of international cooperation that has sustained it through changing political landscapes.”

“This achievement proves that when humanity faces existential challenges like climate change and energy security, we can overcome national differences to advance solutions.” 

“The ITER Project is the embodiment of hope. With ITER, we show that a sustainable energy future and a peaceful path forward are possible.” 

Major progress

In 2024, ITER reached 100 percent of its construction targets. With most of the major components delivered, the ITER Tokamak is now in assembly phase. In April 2025, the first vacuum vessel sector module was inserted into the Tokamak Pit, about 3 weeks ahead of schedule.

Extending collaboration to the private sector

The past five years have witnessed a surge in private sector investment in fusion energy R&D. In November 2023, the ITER Council recognized the value and opportunity represented by this trend. 

They encouraged the ITER Organization and its Domestic Agencies to actively engage with the private sector, to transfer ITER’s accumulated knowledge to accelerate progress toward making fusion a reality.

In 2024, ITER launched a private sector fusion engagement project, with multiple channels for sharing knowledge, documentation, data, and expertise, as well as collaboration on R&D. This tech transfer initiative includes sharing information on ITER’s global fusion supply chain, another way to return value to Member governments and their companies.

In April 2025, ITER hosted a public-private workshop to collaborate on the best technological innovation to solve fusion’s remaining challenges.

The ITER experiment under construction in southern France. The tokamak building is the mirrored structure at center. Courtesy ITER Organization/EJF Riche.


How have ITER’s Members contributed to this achievement?

Under the ITER Agreement, Members contribute most of the cost of building ITER in the form of building and supplying components. This arrangement means that financing from each Member goes primarily to their own companies, to manufacture ITER’s challenging technology. In doing so, these companies also drive innovation and gain expertise, creating a global fusion supply chain.

Europe, as the Host Member, contributes 45 percent of the cost of the ITER Tokamak and its support systems. China, India, Japan, Korea, Russia, and the United States each contribute 9 percent, but all Members get access to 100 percent of the intellectual property.

United States

The United States has built the Central Solenoid, made of six modules, plus a spare. 

The U.S. has also delivered to ITER the “exoskeleton” support structure that will enable the Central Solenoid to withstand the extreme forces it will generate. The exoskeleton is comprised of more than 9,000 individual parts, manufactured by eight U.S. suppliers.

Additionally, the U.S. has fabricated about 8 percent of the Niobium-Tin (Nb3Sn) superconductors used in ITER’s Toroidal Field magnets.

Russia

Russia has delivered the 9-meter-diameter ring-shaped Poloidal Field magnet that will crown the top of the ITER Tokamak.

Working closely with Europe, Russia has also produced approximately 120 tonnes of Niobium-Titanium (NbTi) superconductors, comprising about 40 percent of the total required for ITER’s Poloidal Field magnets.

Additionally, Russia has produced about 20 percent of the Niobium-Tin (Nb3Sn) superconductors for ITER’s Toroidal Field magnets.

And Russia has manufactured the giant busbars that will deliver power to the magnets at the required voltage and amperage, as well as the upper port plugs for ITER’s vacuum vessel sectors.

Europe

Europe has manufactured four of the ring-shaped Poloidal Field magnets onsite in France, ranging from 17 to 24 meters in diameter. 

Europe has worked closely with Russia to manufacture the Niobium-Titanium (NbTi) superconductors used in PF magnets 1 and 6. 

Europe has also delivered 10 of ITER’s Toroidal Field magnets and has produced a substantial portion of the Niobium-Tin (Nb3Sn) superconductors used in these TF magnets. 

And Europe is creating five of the nine sectors of the Tokamak vacuum vessel, the donut-shaped chamber where fusion will take place.

China

China, under an arrangement with Europe, has manufactured a 10-metre Poloidal Field magnet. It has already been installed at the bottom of the partially assembled ITER Tokamak. 

China has also contributed the Niobium-Titanium (NbTi) superconductors for PF magnets 2, 3, 4, and 5, about 65 percent of the PF magnet total—plus about 8 percent of the Toroidal Field magnet superconductors. 

Additionally, China is contributing 18 superconducting Correction Coil magnets, positioned around the Tokamak to fine-tune the plasma reactions. 

China has delivered the 31 magnet feeders, the multi-lane thruways that will deliver the electricity to power ITER’s electromagnets as well as the liquid helium to cool the magnets to -269 degrees Celsius, the temperature needed for superconductivity.

Japan

Japan has produced and sent to the United States the 43 kilometers of Niobium-Tin (Nb3Sn) superconductor strand that was used to create the Central Solenoid modules.

Japan has also produced 8 of the 18 Toroidal Field (TF) magnets, plus a spare—as well as all the casing structures for the TF magnets.

Japan also produced 25 percent of the Niobium-Tin (Nb3Sn) superconductors that went into the Toroidal Field magnets.

Korea

Korea has produced the tooling used to pre-assemble ITER’s largest components, enabling ITER to fit the Toroidal Field coils and thermal shields to the vacuum vessel sectors with millimetric precision. 

Korea has also manufactured 20 percent of the Niobium-Tin (Nb3Sn) superconductors for the Toroidal Field magnets.

Additionally, Korea has manufactured the thermal shields that provide a physical barrier between the ultra-hot fusion plasma and the ultra-cold magnets. 

And Korea has delivered four of the nine sectors of the Tokamak vacuum vessel.

India

India has fabricated the ITER Cryostat, the 30-metre high, 30-metre diameter thermos that houses the entire ITER Tokamak.

India has also provided the cryolines that distribute the liquid helium to cool ITER’s magnets. 

Additionally, India has been responsible for delivering ITER’s cooling water system, the in-wall shielding of the Tokamak, and multiple parts of the external plasma heating systems.

In total, ITER’s magnet systems will comprise 10,000 tons of superconducting magnets, with a combined stored magnetic energy of 51 Gigajoules. The raw material to fabricate these magnets consisted of more than 100,000 kilometers of superconducting strand, fabricated in 9 factories in six countries.

* * *

What are the technical specifications for each of ITER’s magnet systems?

Central Solenoid (cylindrical magnet)

Height: 18 meters (59 feet)
Diameter: 4.25 meters (14 feet)
Weight: ~1,000 tonnes
Magnetic field strength: 13 Tesla (280,000 times stronger than the Earth’s magnetic field)
Stored magnetic energy: 6.4 Gigajoules
Will initiate and sustain a plasma current of 15 MA for 300-500 second pulses
Fabricated in the United States
Material: Niobium-tin (Nb₃Sn) superconducting strand produced in Japan
Cooling: operated at 4.5 Kelvin (-269°C) using liquid helium cryogenics to maintain superconductivity
Structure (exoskeleton): built to withstand 100 MN (meganewtons) of force—equivalent to twice the thrust of a space shuttle launch.

Poloidal Field Magnets (ring-shaped magnets)

Diameters: varying in range from 9 meters (PF1) to 10 meters (PF6) to 17 meters (PF2, PF5) to 25 meters (PF3, PF4)
Weight: from 160 to 400 tonnes
Fabricated in Russia, Europe (France) and China
Material: niobium-titanium (NbTi) superconducting strand produced in Europe, China, and Russia
Cooling: operated at 4.5 Kelvin (-269°C) using liquid helium cryogenics to maintain superconductivity

Toroidal Field Coils (D-shaped magnets, completed in late 2023)

Each coil: 17 meters high × 9 meters wide
Weight: ~360 tonnes each
Fabricated in Europe (Italy) and Japan
Material: niobium-tin (Nb3Sn) superconducting strand produced in Europe, Korea, Russia, and the United States
Cooling: operated at 4.5 Kelvin (-269°C) using liquid helium to maintain superconductivity

Correction Coils and Magnet Feeders

Correction Coils: manufactured by China; critical for fine plasma stability adjustments.
Magnet Feeders: deliver cryogenics, electrical power, and instrumentation signals to the magnets; also produced by China

Vancouver’s (Canada) General Fusion news

Recently, there have been some big ups and downs for General Fusion as this May 5, 2025 General Fusion news release written as an open letter from the company’s Chief Executive Office (CEO), Greg Twinney

General Fusion has been at the forefront of fusion technology development for more than 20 years. Today, we stand as a world leader on the cusp of our most exciting technical milestone yet—and one of the most challenging financial moments in our history. We are closer than ever to delivering practical fusion, but success depends on securing the right financing partners to carry this breakthrough forward. 

On April 29th [2025], we achieved a transformative milestone at our Vancouver, B.C., headquarters in Canada—we successfully compressed a large-scale magnetized plasma with lithium using our world-first LM26 fusion demonstration machine. The full, integrated system and diagnostics operated safely and as designed, and an early review of the data indicates we saw ion temperature and density increase, and our lithium liner successfully trapped the magnetic field. This was an incredible success for our first shot! What does this mean? From a technology perspective, we’re one step closer to bringing zero-carbon fusion energy to the electricity grid using our unique, home-grown Canadian technology that global industry leaders recognize as one of the most practical for commercialization.   

Our incredible, innovative, and nimble team achieved these results about a year and a half after we launched the LM26 fusion demonstration program—designing, building, commissioning, optimizing, and operating on a rapid timeline with constrained capital. LM26 is the only machine of its kind in the world, designed and built to achieve the technical results required to scale a fusion technology to a practical power plant. It is backed by peer-reviewed scientific results published in 2024 and 2025 issues of Nuclear Fusion, making us one of only four private fusion companies in the world to have achieved and published meaningful fusion results on the path to scientific breakeven. We are also the only one with the machine already built to get there. Truly, there has never been a more promising time to be at—or invest in—General Fusion.  

General Fusion has been around the block. We’ve proven a lot with a lean budget. We’re not a shiny new start-up with a drawing and a dream; we are experienced fusioneers with a clear view of the path to success and the machine to prove it. We’ve built a global network of partners and early adopters focused on a fusion technology—Magnetized Target Fusion—that is durable, cost-effective, fuel-sustainable, and practical. We are ready to execute our plan but are caught in an economic and geopolitical environment that is forcing us to wait.  

Keeping a fusion company funded in today’s world requires more than just meaningful capital. It takes ambition, steadfast patience, a bold national vision aligned with the opportunity, and constant refreshing of the investor base as timelines stretch beyond typical fund horizons. Our mission has historically been supported financially by a mix of strong private investors and the Canadian federal government. We have been competing against aggressive nationally funded fusion programs around the world. We have risen to global leadership by charting a distinct course—founded on entrepreneurship and commercial focus—while others follow government-led or academic pathways. However, today’s funding landscape is more challenging than ever as investors and governments navigate a rapidly shifting and uncertain political and market climate.  

This rapidly shifting environment has directly and immediately impacted our funding. Therefore, as a result of unexpected and urgent financing constraints, we are taking action now to protect our future with our game-changing technology and IP—including reducing both the size of our team and LM26 operations—while we navigate this difficult environment. We’re doing what resilient teams do and what we have done before: refocus, protect what matters, and keep building. 

While this is a challenging time for General Fusion, it is also an attractive opportunity for those with the financial means to transform the world. Everything is in place—the technology, science, LM26, and the know-how and passion. All we need now is the capital to finish the job. We are opening our doors and actively seeking strategic options with investors, buyers, governments, and others who share our vision. Reach out now and become part of the future of energy. 

Greg Twinney

Chief Executive Officer
General Fusion, Inc.

Twinney also gave a May 8, 2025 radio interview(approximately 7 mins.) to Stephen Quinn of the Canadian Broadcasting Corporation’s (CBC) Early Edition.

May 8, 2025

General Fusion CEO, Greg Twinney tells Stephen Quinn how his company has made big breakthroughs in fusion energy – and how market chaos caused by President Trump has made it hard to find investors.

The interview provides an introduction to fusion energy and the company while this May 5, 2025 article by John Fingas for Betakit fills in some details, Note: Links have been removed,

In a statement, General Fusion told BetaKit it was looking for $125 million USD (about $172.7 million CAD) to fulfill its goals. While the company didn’t share the scope of the layoffs, The Globe and Mail reported that the company let go of a quarter of staff.

General Fusion created its first magnetized plasma, which is needed for its fusion reactions, at its LM26 demonstration facility in March [2025], and conducted a large-scale test on April 29. It still plans to create plasma at a hotter 10 million C within months, and eventually to reach the 100-million-degree mark needed to achieve a “scientific breakeven equivalent” where LM26 could generate more energy than required for the reaction.

The company ultimately hopes to deploy reactors based on its Magnetized Target Fusion technology, which creates fusion conditions in short pulses, by the mid-2030s. The technique theoretically costs less than the lasers or superconducting magnets used in designs like Tokamak reactors, and could be used in facilities close to the cities they serve. One 300-megawatt electrical plant powered by fusion could provide enough continuous power for 150,000 Canadian homes, the company claims.

The company has raised about $440 million CAD so far, including $69 million from the Government of Canada. Some of its private investors include Amazon founder Jeff Bezos, Shopify founder Tobi Lütke, and engineering consultancy Hatch. Bob Smith, the former CEO of Bezos’s spaceflight company Blue Origin, became a strategic advisor for General Fusion in early April [2025].

“We’re not a shiny new startup with a drawing and a dream; we are experienced fusioneers with a clear view of the path to success and the machine to prove it,” he [Greg Twinney, General Fusion CEO] said.

It seems logical to follow with this:

Business investments and fusion energy

First, here’s more about the agency, which released a 2025 report on investments in fusion energy. The European Union (EU) has created an organization known as Fusion for Energy (F4E), from its Wikipedia entry, Note: Links have been removed,

Fusion for Energy (F4E) is a joint undertaking of the European Atomic Energy Community (Euratom) that is responsible for the EU’s contribution to the International Thermonuclear Experimental Reactor (ITER), the world’s largest scientific partnership aiming to demonstrate fusion as a viable and sustainable source of energy. The organisation is officially named European Joint Undertaking for ITER and the Development of Fusion Energy and was created under article 45 of the Treaty establishing the European Atomic Energy Community by the decision of the Council of the European Union on 27 March 2007 for a period of 35 years.[1]

F4E recently released a report “Global investment in fusion private sector, 1st edition, Cutoff: 10 June 2025,” from the June 12, 2025 F4E press release,

The F4E Fusion Observatory has published its first-ever report, an analysis of global investment in the fusion private sector. Based on a collection of all available data, the analysis provides a picture of who is investing and where, showing rapid growth and significant geographical differences.

The figures reveal a sharp increase in investments in fusion start-ups in recent years. The total amount has grown from just over 1.5 billion EUR in 2020 to an estimated 9.9 billion EUR at present (June 2025), doubling in the last two years alone [emphasis mine]. The investment remains concentrated in the US, host of most private companies (38 out of 67), absorbing 60% of global funding. China comes second at 25%, with fewer projects (6) backed by large public funds [emphasis mine].

Meanwhile, Europe takes a smaller share of investment (5%) [emphasis mine], with Germany leading the continent at 460 M EUR million,  just above the UK, at 416 M EUR. Among the EU’s seven private companies, the largest sums are received by Marvel Fusion and Focused Energy. F4E can support these emerging players by leveraging on its experience in large projects and knowledge of the market. For this purpose, F4E has an ongoing call inviting EU-based private fusion initiatives to collaborate.

The analysis goes on to present the origin and profile of the investors. While US funding is largely led by venture capital firms or big tech, those in the EU show a more even distribution between public and private investors.

As for the kinds of fusion concepts, magnetic confinement takes the lion’s share of global investment, at €6,1 billion, predominantly for Tokamaks (doughnut-shaped devices, similar to ITER). However, in Europe, inertial confinement technologies are the most funded in the private sector.

By contrast, when considering the public funding used for the in-kind contributions to ITER, the geographic distribution is rebalanced. The €6.8 billion invested by F4E in the EU supply chain is larger than other regions due to the EU’s larger share of the ITER project. This contribution has shaped a strong European industry, capable of delivering complex technologies for fusion. That said, investment in the supply chain, while substantial, has a different impact than equity in a fast-scaling fusion company.

The findings of the report will be discussed at the F4E Roundtable, a key stakeholder forum hosted this week by F4E in Barcelona. With these data-based insights, the F4E Observatory aims to support the policy conversation and help steer it towards the future EU fusion strategy.

Download the report here

It seems that Canadian fusion efforts are not on the EU’s radar.

Wrapping up

To state the obvious, it’s an exciting and volatile time. In addition to this latest breakthrough at ITER, my April 11, 2025 posting “The nuclear fusion energy race” covers some of what were then the latest international technical breakthroughs along with some coverage of how President Donald Trump’s tariffs were creating uncertainty for investors and, also, Bob Smith’s, former CEO of Jeff Bezos’ spaceflight company Blue Origin, recent appointment as a strategic advisor for General Fusion.

I wish General Fusion good luck in finding new investors and, while it’s not a perfect energy solution, I wish all the researchers the best as they race to find ways to produce energy more sustainably.

One last comment, it’s easy to forget in a time when Russia is conducting a war with Ukraine and Israel is conducting an ever evolving action against Palestine, Iran, and more that cooperation amongst ‘enemies’ is possible. The list of ITER full members (United States, Russia, Europe, China, Japan, Korea, India, Note: There are other member categories) is a reminder that even countries that often work at cross purposes can work together.

The nuclear fusion energy race

In addition to the competition to develop commercial quantum computing, there’s the competition to develop commercial nuclear fusion energy. I have four stories about nuclear fusion, one from Spain, one from Chine, one from the US, and one from Vancouver. There are also a couple of segues into history and the recently (April 2, 2025) announced US tariffs (chaos has since ensued as these have become ‘on again/off again’ tariffs) but the bulk of this posting is focused on the latest (January – early April 2025) in fusion energy.

Fission nuclear energy, where atoms are split, is better known; fusion nuclear energy is released when a star is formed. For anyone unfamiliar with the word tokamak as applied to nuclear fusion (which is mentioned in all the stories), you can find out more in the Tokamak Wikipedia entry.

Spain

A January 21, 2025 news item on phys.org announces the first plasma generated by a tokamak,

In a pioneering approach to achieve fusion energy, the SMART device has successfully generated its first tokamak plasma. This step brings the international fusion community closer to achieving sustainable, clean, and virtually limitless energy through controlled fusion reactions.

A January 21, 2025 University of Seville press release on EurekAlert, which originated the news item, provides some explanations and more detail about the work, Note: Links have been removed,

The SMART tokamak, a state-of-the-art experimental fusion device designed, constructed and operated by the Plasma Science and Fusion Technology Laboratory of the University of Seville, is a worldwide unique spherical tokamak due to its flexible shaping capabilities. SMART has been designed to demonstrate the unique physics and engineering properties of Negative Triangularity shaped plasmas towards compact fusion power plants based on Spherical Tokamaks.

Prof. Manuel García Muñoz, Principal Investigator of the SMART tokamak, stated: “This is an important achievement for the entire team as we are now entering the operational phase of SMART. The SMART approach is a potential game changer with attractive fusion performance and power handling for future compact fusion reactors. We have exciting times ahead!
Prof. Eleonora Viezzer, co-PI of the SMART project, adds: “We were all very excited to see the first magnetically confined plasma and are looking forward to exploiting the capabilities of the SMART device together with the international scientific community. SMART has awoken great interest worldwide.

When negative becomes positive and compact

The triangularity describes the shape of the plasma. Most tokamaks operate with positive triangularity, meaning that the plasma shape looks like a D. When the D is mirrored (as shown in the figure on the right), the plasma has negative triangularity.

Negative triangularity plasma shapes feature enhanced performance as it suppresses instabilities that expel particles and energy from the plasma, preventing severe damage to the tokamak wall. Besides offering high fusion performance, negative triangularity also feature attractive power handling solutions, given that it covers a larger divertor area for distributing the heat exhaust. This also facilitates the engineering design for future compact fusion power plants.

Fusion2Grid aimed at developing the foundation for the most compact fusion power plant

SMART is the first step in the Fusion2Grid strategy led by the PSFT team and, in collaboration with the international fusion community, is aimed at the most compact and most efficient magnetically confined fusion power plant based on Negative Triangularity shaped Spherical Tokamaks.

SMART will be the first compact spherical tokamak operating at fusion temperatures with negative triangularity shaped plasmas.

The objective of SMART is to provide the physics and engineering basis for the most compact design of a fusion power plant based on high-field Spherical Tokamaks combined with Negative Triangularity. The solenoid-driven plasma represents a major achievement in the timeline of getting SMART online and advancing towards the most compact fusion device.

The Plasma Science and Fusion Technology Lab of the University of Seville hosts the SMall Aspect Ratio Tokamak (SMART) and leads several worldwide efforts on energetic particles and plasma transport and stability towards the development of magnetically confined fusion energy.

Here’s a link to and a citation for the paper,

Performance prediction applying different reduced turbulence models to the SMART tokamak by D.J. Cruz-Zabala, M. Podestàa, F. Polib, S.M. Kaye, M. Garcia-Munoz, E. Viezzer and J.W. Berkery. Nuclear Fusion, Volume 64, Number 12DOI 10.1088/1741-4326/ad8a70 Published 7 November 2024 © 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the IAEA (International Atomic Energy Agency)

This paper is open access.

China

Caption: The Experimental Advanced Superconducting Tokamak achieved a remarkable scientific milestone by maintaining steady-state high-confinement plasma operation for an impressive 1,066 seconds. Credit: Image by HFIPS ( Hefei Institutes of Physical Science at the Chinese Academy of Sciences)

China has made a business announcement and there is no academic paper mentioned in their January 21, 2025 press release on EurekAlert (also available on phys.org as a January 21, 2025 news item), Note: A link has been removed,

The Experimental Advanced Superconducting Tokamak (EAST), commonly known as China’s “artificial sun,” has achieved a remarkable scientific milestone by maintaining steady-state high-confinement plasma operation for an impressive 1,066 seconds. This accomplishment, reached on Monday, sets a new world record and marks a significant breakthrough in the pursuit of fusion power generation.

The duration of 1,066 seconds is a critical advancement in fusion research. This milestone, achieved by the Institute of Plasma Physics (ASIPP) at Hefei Institutes of Physical Scienece [sic] (HFIPS) of the Chinese Academy of Sciences, far surpasses the previous world record of 403 seconds, also set by EAST in 2023.

The ultimate goal of developing an artificial sun is to replicate the nuclear fusion processes that occurr [sci] in the sun, providing humanity with a limitless and clean energy source, and enabling exploration beyond our solar system.

Scientists worldwide have dedicated over 70 years to this ambitious goal. However, generating electricity from a nuclear fusion device involves overcoming key challenges, including reaching temperatures exceeding 100 million degrees Celsius, maintaining stable long-term operation, and ensuring precise control of the fusion process.

“A fusion device must achieve stable operation at high efficiency for thousands of seconds to enable the self-sustaining circulation of plasma, which is essential for the continuous power generation of future fusion plants,” said SONG Yuntao, ASIPP director and also vice president of HFIPS. He said that the recent record is monumental, marking a critical step toward realizing a functional fusion reactor.

According to GONG Xianzu, head of the EAST Physics and Experimental Operations division, several systems of the EAST device have been upgraded since the last round of experiments. For example, the heating system, which previously operated at the equivalent power of nearly 70,000 household microwave ovens, has now doubled its power output while maintaining stability and continuity.

Since its inception in 2006, EAST has served as an open testing platform for both Chinese and international scientists to conduct fusion-related experiments and research.

China officially joined the International Thermonuclear Experimental Reactor (ITER) program in 2006 as its seventh member. Under the agreement, China is responsible for approximately 9 percent of the project’s construction and operation, with ASIPP serving as the primary institution for the Chinese mission.

ITER, currently under construction in southern France, is set to become the world’s largest magnetic confinement plasma physics experiment and the largest experimental tokamak nuclear fusion reactor upon completion.

In recent years, EAST has consistently achieved groundbreaking advancements in high-confinement mode, a fundamental operational mode for experimental fusion reactors like ITER and the future China Fusion Engineering Test Reactor (CFETR). These accomplishments provide invaluable insights and references for the global development of fusion reactors.

“We hope to expand international collaboration via EAST and bring fusion energy into practical use for humanity,” said SONG.

In Hefei, Anhui Province, China, where EAST is loacated [sic], a new generation of experimental fusion research facilities is currently under construction. These facilities aim to further accelerate the development and application of fusion energy.

I always feel a little less confident about the information when there are mistakes. Three typos in the same press release? Maybe someone forgot to give it a final once over?

US

Despite the Cambridge University Press mention, this March 27, 2025 Cambridge University Press press release (also on EurekAlert) is about a US development,

Successfully harnessing the power of fusion energy could lead to cleaner and safer energy for all – and contribute substantially to combatting [UK spelling] the climate crisis. Towards this goal, Type One Energy has published a comprehensive, self-consistent, and robust physics basis for a practical fusion pilot power plant.  

This groundbreaking research is presented in a series of six peer-reviewed scientific papers in a special issue of the prestigious Journal of Plasma Physics (JPP), published by Cambridge University Press. 

The articles serve as the foundation for the company’s first fusion power plant project, which Type One Energy is developing with the Tennessee Valley Authority utility in the United States.  

Alex Schekochihin, Professor of Theoretical Physics at the University of Oxford and Editor of the JPP, spoke with enthusiasm about this development: 

“JPP is very proud to provide a platform for rigorous peer review and publication of the papers presenting the physics basis of the Infinity Two stellarator — an innovative and ground-breaking addition to the expanding family of proposed fusion power plant designs.  

“Fusion science and technology are experiencing a period of very rapid development, driven by both public and private enthusiasm for fusion power. In this environment of creative and entrepreneurial ferment, it is crucial that new ideas and designs are both publicly shared and thoroughly scrutinised by the scientific community — Type One Energy and JPP are setting the gold standard for how this is done (as we did with Commonwealth Fusion Systems 5 years ago for their SPARC physics basis).” 

The new physics design basis for the pilot power plant is a robust effort to consider realistically the complex relationship between challenging, competing requirements that all need to function together for fusion energy to be possible.  

This new physics solution also builds on the operating characteristics of high-performing stellarator fusion technology – a stellarator being a machine that uses complex, helical magnetic fields to confine the plasma, thereby enabling scientists to control it and create suitable conditions for fusion. This technology is already being used with success on the world’s largest research stellarator, the Wendelstein 7-X, located in Germany, but the challenge embraced by Type One Energy’s new design is how to scale it up to a pilot plant. 

Building the future of energy 

Functional fusion technology could offer limitless clean energy. As global energy demands increase and energy security is front of mind, too, this new physics design basis comes at an excellent time.  

Christofer Mowry, CEO of Type One Energy, is cognisant of the landmark nature of his company’s achievement and proud of its strong, real-world foundations. 

“The physics basis for our new fusion power plant is grounded in Type One Energy’s expert knowledge about reliable, economic, electrical generation for the power grid. We have an organisation that understands this isn’t only about designing a science project.” 

This research was developed collaboratively between Type One Energy and a broad coalition of scientists from national laboratories and universities around the world. Collaborating organisations included the US Department of Energy, for using their supercomputers, such as the exascale Frontier machine at Oak Ridge National Laboratory, to perform its physics simulations. 

While commercial fusion energy has yet to move from theory into practice, this new research marks an important and promising milestone. Clean and abundant energy may yet become reality.  

You can read the six papers and the accompanying Editorial (all of which are open access) in this special issue, Physics Basics of the Infinity Two Fusion Power Plant of the Journal of Plasma Physics.

Bull Run, eh?

This is not directly related to fusion energy, so, you might want to skip this section.

Caption: Type One Energy employees at the Bull Run [emphasis mine] Fossil Plant, soon to be home to the prototype Infinity One. Credit: Type One Energy

I wonder if anyone argued for a change of name given how charged the US history associated with ‘Bull Run’ is, from the the First Battle of Bull Run Wikipedia entry, Note: Links have been removed,

The First Battle of Bull Run, called the Battle of First Manassas[1] by Confederate forces, was the first major battle of the American Civil War. The battle was fought on July 21, 1861, in Prince William County, Virginia, just north of what is now the city of Manassas and about thirty miles west-southwest of Washington, D.C. The Union Army was slow in positioning themselves, allowing Confederate reinforcements time to arrive by rail. Each side had about 18,000 poorly trained and poorly led troops. The battle was a Confederate victory and was followed by a disorganized post-battle retreat of the Union forces.

A Confederate victory the first time and the second time (Second Battle of Bull Run Wikipedia entry)? For anyone unfamiliar with the history, the US Civil War was fought from 1861 to 1865 between Union and Confederate forces. The Confederate states had seceded from the union (US) and were fighting to retain their slavery-based economy and they lost the war.

Had anyone consulted me I would have advised changing the name from Bull Run to some thing less charged (pun noted) to host your prototype fusion energy pilot plant.

Back to the usual programme.

Type One Energy

Type One Energy issued a March 27, 2025 news release about the special issue of the Journal of Plasma Physics (JPP), Note 1: Some of this redundant; Note 2: Links have been removed,

Type One Energy announced today publication of the world’s first comprehensive, self-consistent, and robust physics basis, with conservative design margins, for a practical fusion pilot power plant. This physics basis is presented in a series of seven peer-reviewed scientific papers in a special issue of the prestigious Journal of Plasma Physics (JPP). They serve as the foundation for the company’s first Infinity Two stellarator fusion power plant project, which Type One Energy is developing for the Tennessee Valley Authority (TVA) utility in the U.S.

The Infinity Two fusion pilot power plant physics design basis realistically considers, for the first time, the complex relationship between competing requirements for plasma performance, power plant startup, construction logistics, reliability, and economics utilizing actual power plant operating experience. This Infinity Two baseline physics solution makes use of the inherently favorable operating characteristics of highly optimized stellarator fusion technology using modular superconducting magnets, as was so successfully proven on the W7-X science machine in Germany.

“Why are we the first private fusion company with an agreement to develop a potential fusion power plant project for an energy utility? Because we have a design anchored in reality,” said Christofer Mowry, CEO of Type One Energy. “The physics basis for Infinity Two is grounded in the knowledge of what is required for application to, and performance in, the demanding environment of reliable electrical generation for the power grid. We have an organization that understands this isn’t about designing a science project.”

Led by Chris Hegna, widely recognized as a leading theorist in modern stellarators, Type One Energy performed high-fidelity computational plasma physics analyses to substantially reduce the risk of meeting Infinity Two power plant functional and performance requirements. This unique and transformational achievement is the result of a global development program led by the Type One Energy plasma physics and stellarator engineering organization, with significant contributions from a broad coalition of scientists from national laboratories and universities around the world. The company made use of a spectrum of high-performance computing facilities, including access to the highest-performance U.S. Department of Energy supercomputers such as the exascale Frontier machine at Oak Ridge National Laboratory (ORNL), to perform its stellarator physics simulations.

“We committed to this ambitious fusion commercialization milestone two years ago and today we delivered,” said John Canik, Chief Science and Engineering Officer for Type One Energy. “The team was able to efficiently develop deep plasma physics insights to inform the design of our Infinity Two stellarator, by taking advantage of our access to high performance computing resources. This enabled the Type One Energy team to demonstrate a realistic, integrated stellarator design that moves far beyond conventional thinking and concepts derived from more limited modeling capabilities.”

The consistent and robust physics solution for Infinity Two results in a deuterium-tritium (D-T) fueled, burning plasma stellarator with 800 MW of fusion power and delivers a nominal 350 MWe to the power grid. It is characterized by fusion plasma with resilient and stable behavior across a broad range of operating conditions, very low heat loss due to turbulent transport, as well as tolerable direct energy losses to the stellarator first wall. The Infinity Two stellarator has sufficient room for both adequately sized island divertors to exhaust helium ash and a blanket which provides appropriate shielding and tritium breeding. Type One Energy has high confidence that this essential physics solution provides a good baseline stellarator configuration for the Infinity Two fusion pilot power plant.

“The articles in this issue [of JPP] represent an important step towards a fusion reactor based on the stellarator concept. Thanks to decades of experiments and theoretical research, much of the latter published in JPP, it has become possible to lay out the physics basis for a stellarator power plant in considerable detail,” said Per Helander, head of Stellarator Theory Division at the Max Planck Institute for Plasma Physics. “JPP is very happy to publish this series of papers from Type One Energy, where this has been accomplished in a way that sets new standards for the fidelity and confidence level in this context.”

Important to successful fusion power plant commercialization, this stellarator configuration has enabled Type One Energy to architect a maintenance solution which supports good power plant Capacity Factors (CF) and associated Levelized Cost of Electricity (LCOE). It also supports favorable regulatory requirements for component manufacturing and power plant construction methods essential to achieving a reasonable Over-Night Cost (ONC) for Infinity Two.

About Type One Energy

Type One Energy Group is mission-driven to provide sustainable, affordable fusion power to the world. Established in 2019 and venture-backed in 2023, the company is led by a team of globally recognized fusion scientists with a strong track record of building state-of-the-art stellarator fusion machines, together with veteran business leaders experienced in scaling companies and commercializing energy technologies. Type One Energy applies proven advanced manufacturing methods, modern computational physics and high-field superconducting magnets to develop its optimized stellarator fusion energy system. Its FusionDirect development program pursues the lowest-risk, shortest-schedule path to a fusion power plant over the coming decade, using a partner-intensive and capital-efficient strategy. Type One Energy is committed to community engagement in the development and deployment of its clean energy technology. For more information, visit www.typeoneenergy.com or follow us on LinkedIn.

While the company is currently headquartered in Knoxville, Tennessee, it was originally a spinoff company from the University of Wisconsin-Madison according to a March 30, 2023 posting on the university’s College of Engineering website,

Type One Energy, a Middleton, Wisconsin-based fusion energy company with roots in the University of Wisconsin-Madison’s College of Engineering, recently announced its first round of seed funding, raising $29 million from investors. The company has also onboarded a new, highly experienced CEO [Christofer Mowry].

Type One, founded in 2019 by a team of globally recognized fusion scientists and business leaders, is hoping to commercialize stellarator technology over the next decade. Stellarators are a type of fusion reactor that uses powerful magnets to confine ultra-hot streams of plasma in order to create the conditions for fusion reactions. Energy from fusion promises to be clean, safe, renewable power. The company is using advanced manufacturing methods, modern computational physics and high-field superconducting magnets to develop its stellarator through an initiative called FusionDirect.

According to the Type One Energy’s About page, there are four offices with the headquarters in Tennessee,

Knoxville (Headquarters)
2410 Cherahala Blvd.
Knoxville, TN 37931

Madison
316 W Washington Ave. Suite 300
Madison, WI 53703

Boston
299 Washington St. Suites C & E
Woburn, MA 01801

Vancouver
1140 West Pender St.
Vancouver, BC V6E 4G1

The mention of an office in Vancouver, Canada piqued my curiosity but before getting to that, I’m going to include some informative excerpts about nuclear energy (both fission and fusion) from this August 31, 2023 article written by Tina Tosukhowong on behalf of TDK Ventures, which was posted on Medium,

Fusion power is the key to the energy transformation that humanity needs to drive decarbonization, clean, and baseload energy production that is inherently fail-safe, with no risk of long-lived radioactive waste, while also delivering on ever-growing energy-consumption demands at the global scale. Fusion is hard and requires exceptional conditions for sustained reaction (which is part of what makes it so safe), which has long served as a deterrent for technical maturation and industrial viability. …

The current reality of our world is monumental fossil-fuel dependence. This, coupled with unprecedented levels of energy demand has resulted in the over 136,700 TWh (that’s 10¹²) of energy consumed via fossil fuels annually [1]. Chief repercussion among the many consequences of this dependence is the now very looming threat of climate catastrophe, which will soon be irreversible if global temperature rise is not abated and held to within 1.5 °C of pre-industrial levels. To do so, the nearly 40 gigatons of CO2 emissions generated each year must be steadily reduced and eventually mitigated entirely [2]. A fundamental shift in how power is generated globally is the only way forward. Humanity needs an energy transformation — the right energy transformation.

Alternative energy-generation techniques, such as wind, solar, geothermal, and hydroelectric approaches have all made excellent strides, and indeed in just the United States electricity generated by renewable methods doubled from 10 to 20% of total between 2010 and 2020 [3–4]. These numbers are incredibly encouraging and give significant credence in the journey to net-zero emission energy generation. However, while these standard renewable approaches should be championed, wind and solar are intermittent and require a large amount of land to deploy, while geothermal and hydroelectric are not available in every geography.

By far the most viable candidates for continuous clean energy generation to replace coal-fired power plants are nuclear-driven technologies, i.e. nuclear fission or nuclear fusion. Nuclear fission has been a proven effective method ever since it was first demonstrated almost 80 years ago underneath the University of Chicago football Stadium by Nobel Laureate Enrico Fermi [5]. Heavier atomic elements, in most cases Uranium-235, are exposed to and bombarded by neutrons. This causes the Uranium to split resulting in two slightly less-heavy elements (like Barium and Krypton). This in turn causes energy to be released and more neutrons to be ejected and bombard other nearby Uranium-235, at which point the process cascades into a chain reaction. The released energy (heat) is utilized in the same way coal is burned in a traditional power plant, being subsequently used to generate electricity usually via the creation of steam to drive a turbine [6]. While already having reached viable commercial maturity, fission carries inherent and nontrivial safety concerns. An unhampered chain reaction can quickly lead to meltdown with disastrous consequences, and, even when properly managed, the end reaction does generate radioactive waste whose half-life can last hundreds of thousands of years.

Figure 1. Breakdown of a nuclear fission reaction [6]. Incident neutron bombards a fissile heavy element, splitting it and release energy and more nuclei setting off a chain reaction.

Especially given modernization efforts and meteoric gains in safety (thanks to advents in material science like ceramic coatings), fission will continue to be a critical piece to better, greener energy transformation. However, in extending our vision to an even brighter future with no such concerns — carbon emissions or safety — nuclear fusion is humanity’s silver bullet. Instead of breaking down atoms leading to a chain reaction, fusion is the combining of atoms (usually isotopes of Hydrogen) into heavier elements which also results in energy release / heat generation [7]. Like fission, fusion can be designed to be a continuous energy source that can serve as a permanent backbone to the power grid. It is extremely energy dense, with 1 kg of fusion fuel producing the same amount of energy as 1,000,000 kg of coal, and it is inherently fail-safe with no long-term radioactive waste.

As a concept, if fusion is a silver bullet to answer humanity’s energy transformation needs, then why haven’t we done so already? The appeal seems so obvious, what’s the hold up? Simply put, nuclear fusion is hard for the very same reason the process is inherently safe. Atoms in the process must have enough energy to overcome electrostatic repulsive forces between the two positive charges of their nuclei to fuse. The key figure of merit to evaluate fusion is the so-called “Lawson Triple Product.” Essentially, this means in order to generate energy by fusion more than the rate of energy oss to the environment, the nuclei must be very close together (as represented by n — the plasma density), kept at a high enough temperature (as represented by T — temperature), and for long enough time to sustain fusion (as represented by τ — the confinement time). The triple product required to achieve fusion “ignition” (the state where the rate of energy production is higher than the rate of loss) depends on the fuel type and occurs within a plasma state. A deuterium and tritium (D-T) system has the lowest Lawson Triple product requirement, where fusion can achieve a viable threshold for ignition when the density of the fuel atoms, n, multiplied by the fuel temperature, T, multiplied by the confinement time, τ, is greater than 5×10²¹ (nTτ > 5×10²¹ keV-s/m³) [8–9]. For context, the temperature alone in this scenario must be higher than 100-million degrees Celsius.

Figure 2. (Left) Conceptual illustration of a fusion reaction with Deuterium (²H) and Tritium (³H) forming an Alpha particle (⁴He) and free neutron along with energy released as heat (Right). To initiate fusion, repelling electrostatic charge must be overcome via conditions meeting the minimum Lawson Triple Product threshold

Tosukhowong’s August 31, 2023 article provides a good overview keeping in mind that it is slanted to justify TDK’s investment in Type One Energy.

Why a Vancouver, Canada office?

As for Type One Energy’s Vancouver (British Columbia, Canada) connection, I was reminded of General Fusion, a local fusion energy company while speculating about the connection. First speculative question: could Type One Energy’s presence in Canada allow it to access Canadian government funds for its research? Second speculative question: do they want to have access to people who might hesitate to move to the US or might want to move out of the US but would move to Canada?

The US is currently in an unstable state as suggested in this April 3, 2025 opinion piece by Les Leyne for vancouverisawsome.com

Les Leyne: Trump’s incoherence makes responding to tariff wall tricky

Trump’s announcement was so incoherent that much of the rest of the world had to scramble to grasp even the basic details

B.C. officials were guarded Wednesday [April 2, 2025] about the impact on Canada of the tariff wall U.S. President Donald Trump erected around the U.S., but it appears it could have been worse.

Trump’s announcement was so incoherent that much of the rest of the world had to scramble to grasp even the basic details. So cabinet ministers begged for more time to check the impacts.

“It’s still very uncertain,” said Housing Minister Ravi Kahlon, who chairs the “war room” committee responsible for countering tariff threats. “It’s hard to make sense from President Trump’s speech.” [emphasis mine]

Kahlon said the challenge is that tariff policies change hour by hour, “and anything can happen.”

On April 2, 2025 US President Donald Trump announced tariffs (then paused some of the tariffs on April 9, 2025) and some of the targets seemed a bit odd, from an April 2, 2025 article by Alex Galbraith for salon.com, Note: Links have been removed,

“Trade war with penguins”: Trump places 10% tariff on uninhabited Antarctic islands

Planned tariffs shared by the White House included a 10% duty on imports from the barren Heard and McDonald Islands

For once in his life, Donald Trump underpromised and over-delivered. 

The president announced a 10% duty on all imports on Wednesday [April 2, 2025], along with a raft of reciprocal tariffs on U.S. trading partners. An extensive graphic released by the White House showed how far Trump was willing to take his tit-for-tat trade war, including a shocking levy of 10% on all imports from the Heard and McDonald Islands. 

If you haven’t heard of this powerhouse of global trade and territory of Australia, you aren’t alone. Few have outside of Antarctic researchers and seals. These extremely remote islands about 1,000 miles north of Antarctica consist mostly of barren tundra. They’re also entirely uninhabited. 

The news that we were starting a trade war with penguins spread quickly after Trump’s announcement. …

U.S. stock futures crumbled following the news of Trump’s widespread tariffs. Dow futures fell by nearly 1,000 points while NASDAQ and S&P futures fell by 3 to 4%. American companies’ stock values rapidly tumbled after the announcement, with large retail importers seeing significant losses. …

No word from the penguins about the ‘pause’. I’m assuming Donald Trump’s next book will be titled, “The art of negotiating trade deals with penguins.” Can’t wait to read it.

(Perhaps someone should tell him there are no penguins in the Arctic so he can’t bypass Canadians or Greenlanders to make a deal.)

Now for the local story.

General Fusion

There’ve been two recent developments at General Fusion. Most recently, an April 2, 2025 General Fusion news release announces a new hire, Note: Links have been removed,

Bob Smith is joining General Fusion as a strategic advisor. Smith brings more than 35 years of experience developing, scaling, and launching world-changing technologies, including spearheading new products and innovation in the aerospace industry at United Space Alliance, Sandia Labs, and Honeywell before serving as CEO of Blue Origin. He joins General Fusion as the company’s Lawson Machine 26 (LM26) fusion demonstration begins operations and progresses toward transformative technical milestones on the path to commercialization.

“I’ve been watching the fusion energy industry closely for my entire career. Fusion is the last energy source humanity will ever need, and I believe its impact as a zero-carbon energy source will transform the global energy supply at the time needed to fight the worst consequences of climate change,” said Smith. “I am thrilled to work with General Fusion. Their novel approach has inherent and distinctive benefits for the generation of commercially competitive fusion power. It’s exciting to join at a time when the team is about to demonstrate the fundamental physics behind their system and move to scaling up to a pilot plant.”

The LM26 program marks a significant step towards commercialization, as the company’s unique Magnetized Target Fusion (MTF) approach makes the path to powering the grid with fusion energy more straightforward than other technologies—because it practically addresses barriers to fusion commercialization, such as neutron material degradation, sustainable fuel production, and efficient energy extraction. As a strategic advisor, Smith will leverage his experience advancing game-changing technologies to help guide General Fusion’s technology development and strategic growth.

“Bob’s insights and experience will be invaluable as we execute the LM26 program and look beyond it to propel our practical technology to powering the grid by the mid-2030s,” said Greg Twinney, CEO, General Fusion. “We are grateful for his commitment of his in-demand time and expertise to our mission and look forward to working together to make fusion power a reality!”

About Bob Smith:

Bob is an experienced business leader in the aerospace and defense industry with extensive technical and operational expertise across the sector. He worked at and managed federal labs, led developments at a large government contractor, grew businesses at a Fortune 100 multinational, and scaled up a launch and space systems startup. Bob also has extensive international experience and has worked with suppliers and OEMs in all the major aerospace regions, including establishing new sites and factories in Europe, India, China, and Puerto Rico.

Bob’s prior leadership roles include Chairman and Chief Executive Officer of Blue Origin, President of Mechanical Systems & Components at Honeywell Aerospace, Chief Technology Officer at Honeywell Aerospace, Chairman of NTESS (Sandia Labs), and Executive Director of Space Shuttle Upgrades at United Space Alliance.

Bob holds a Bachelor of Science degree in aerospace engineering from Texas A&M, a Master of Science degree in engineering/applied mathematics from Brown University, a doctorate from the University of Texas in aerospace engineering, and a business degree from MIT’s Sloan School of Management. Bob is also a Fellow of the Royal Aeronautical Society, a Fellow of the American Institute of Aeronautics and Astronautics, and an Academician in the International Academy of Astronautics.

Quick Facts:  

  • Fusion energy is the ultimate clean energy solution—it is the energy source that powers the sun and stars. Fusion is the process by which two light nuclei merge to form a heavier one, producing a massive amount of energy.
  • General Fusion’s Magnetized Target Fusion (MTF) technology is designed to scale for cost-efficient power plants. It uses mechanical compression to create fusion conditions in short pulses, eliminating the need for expensive lasers or superconducting magnets. An MTF power plant is designed to produce its own fuel and inherently includes a method to extract the energy and put it to work.
  • Lawson Machine 26 (LM26) is a world-first Magnetized Target Fusion demonstration. Launched, designed, and assembled in just 16 months, the machine is now forming magnetized plasmas regularly at 50 per cent commercial scale. It is advancing towards a series of results that will demonstrate MTF in a commercially relevant way: 10 million degrees Celsius (1 keV), 100 million degrees Celsius (10 keV), and scientific breakeven equivalent (100% Lawson).

About General Fusion
General Fusion is pursuing a fast and practical approach to commercial fusion energy and is headquartered in Richmond, Canada. The company was established in 2002 and is funded by a global syndicate of leading energy venture capital firms, industry leaders, and technology pioneers. Learn more at www.generalfusion.com.

Bob Smith and Blue Origin: things did not go well

Sometimes you end up in a job and things do not work out well and that seems to have been the case at Blue Origin according to a September 25, 2023 article by Eric Berger for Ars Tecnica,

After six years of running Blue Origin, Bob Smith announced in a company-wide email on Monday that he will be “stepping aside” as chief executive of the space company founded by Jeff Bezos.

“It has been my privilege to be part of this great team, and I am confident that Blue Origin’s greatest achievements are still ahead of us,” Smith wrote in an email. “We’ve rapidly scaled this company from its prototyping and research roots to a large, prominent space business.”

Shortly after Smith’s email, a Blue Origin spokesperson said the company’s new chief executive will be Dave Limp, who stepped down as Amazon’s vice president of devices and services last month.

To put things politely, Smith has had a rocky tenure as Blue Origin’s chief executive. After being personally vetted and hired by Bezos, Smith took over from Rob Meyerson in 2017. The Honeywell engineer was given a mandate to transform Blue Origin into a large and profitable space business.

He did succeed in growing Blue Origin. The company had about 1,500 employees when Smith arrived, and the company now employs nearly 11,000 people. But he has been significantly late on a number of key programs, including the BE-4 rocket engine and the New Glenn rocket.

As a space reporter, I have spoken with dozens of current and former Blue Origin employees, and virtually none of them have had anything positive to say about Smith’s tenure as chief executive. I asked one current employee about the hiring of Limp on Monday afternoon, and their response was, “Anything is better than Bob.”

Although it is very far from an exact barometer, Smith has received consistently low ratings on Glassdoor for his performance as chief executive of Blue Origin. And two years ago, a group of current and former Blue Origin employees wrote a blistering letter about the company under Smith. “In our experience, Blue Origin’s culture sits on a foundation that ignores the plight of our planet, turns a blind eye to sexism, is not sufficiently attuned to safety concerns, and silences those who seek to correct wrongs,” the essay authors wrote.

With any corporate culture, there will be growing pains, of course. But Smith brought a traditional aerospace mindset into a company that had hitherto been guided by a new space vision, leading to a high turnover rate. And Blue Origin remains significantly underwater, financially. It is likely that Bezos is still providing about $2 billion a year to support the company’s cash needs.

Crucially, as Blue Origin meandered under Smith’s tenure, SpaceX soared, launching hundreds of rockets and thousands of satellites. Smith, clearly, was not the leader Blue Origin needed to make the company more competitive with SpaceX in launch and other spaceflight activities. It became something of a parlor game in the space industry to guess when Bezos would finally get around to firing Smith.

On the technical front, a March 27, 2025 General Fusion news release announces “Peer-reviewed publication confirms General Fusion achieved plasma energy confinement time required for its LM26 large-scale fusion machine,” Note: Links have been removed,

New results published in Nuclear Fusion confirm General Fusion successfully created magnetized plasmas that achieved energy confinement times exceeding 10 milliseconds. The published energy confinement time results were achieved on General Fusion’s PI3 plasma injector — the world’s largest and most powerful plasma injector of its kind. Commissioned in 2017, PI3 formed approximately 20,000 plasmas in a machine of 50 per cent commercial scale. The plasma injector is now integrated into General Fusion’s Lawson Machine 26 (LM26) — a world-first Magnetized Target Fusion demonstration tracking toward game-changing technical milestones that will advance the company’s ultimate mission: generating zero-carbon fusion energy for the grid in the next decade.

The 10-millisecond energy confinement time is the duration required to compress plasmas in LM26 to achieve key temperature thresholds of 1 keV, 10 keV, and, ultimately, scientific breakeven equivalent (100% Lawson). These results were imperative to de-risking LM26. The demonstration machine is now forming plasmas regularly, and the company is optimizing its plasma performance in preparation for compressing plasmas to create fusion and heating from compression.    

Key Findings: 

  • The plasma injector now integrated into General Fusion’s LM26 achieved energy confinement times exceeding 10 milliseconds, the pre-compression confinement time required for LM26’s targeted technical milestones. These results were achieved without requiring active magnetic stabilization or auxiliary heating. This means the results were achieved without superconducting magnets, demonstrating the company’s cost-effective approach.  
  • The plasma’s energy confinement time improved when the plasma injector vessel was coated with natural lithium. A key differentiator in General Fusion’s commercial approach is its use of a liquid lithium wall to compress plasmas during compression. In addition to the confinement time advantages shown in this paper, the liquid lithium wall will also protect a commercial MTF machine from neutron damage, enable the machine to breed its own fuel, and provide an efficient method for extracting energy from the machine.
  • The maximum energy confinement time achieved by PI3 was approximately 12 milliseconds. The machine’s maximum plasma density was approximately 6×1019 m-3, and maximum plasma temperatures exceeded 400 eV. These strong pre-compression results support LM26’s transformative targets.

Quotes:  

“LM26 is designed to achieve a series of results that will demonstrate MTF in a commercially relevant way. Following LM26’s results, our unique approach makes the path to powering the grid with fusion energy more straightforward than other technologies because we have front-loaded the work to address the barriers to commercialization.”  

Dr. Michel Laberge
Founder and Chief Science Officer

“For over 16 years, I have worked hand in hand with Michel to advance General Fusion’s practical technology. This company is entrepreneurial at its core. We pride ourselves on building real machines that get results that matter, and I’m thrilled to have the achievements recognized in Nuclear Fusion.”

Mike Donaldson
Senior Vice President, Technology Development

Here’s a link to and a citation for the paper,

Thermal energy confinement time of spherical tokamak plasmas in PI3 by A. Tancetti, C. Ribeiro, S.J. Howard, S. Coop, C.P. McNally, M. Reynolds, P. Kholodov, F. Braglia, R. Zindler, C. Macdonald. Nuclear Fusion, Volume 65, Number 3DOI: 10.1088/1741-4326/adb8fb Published 28 February 2025 • © 2025 The Author(s). Published by IOP Publishing Ltd on behalf of the IAEA [International Atomic Energy Agency]

This paper is open access.

For anyone curious about General Fusion, I have a brief overview and history of the company and their particular approach to fusion energy in my February 6, 2024 posting (scroll down to ‘The Canadians’).

China’s ex-UK ambassador clashes with ‘AI godfather’ on panel at AI Action Summit in France (February 10 – 11, 2025)

The Artificial Intelligence (AI) Action Summit held from February 10 – 11, 2025 in Paris seems to have been pretty exciting, President Emanuel Macron announced a 09B euros investment in the French AI sector on February 10, 2025 (I have more in my February 13, 2025 posting [scroll down to the ‘What makes Canadian (and Greenlandic) minerals and water so important?’ subhead]). I also have this snippet, which suggests Macron is eager to provide an alternative to US domination in the field of AI, from a February 10, 2025 posting on CCGTN (China Global Television Network),

French President Emmanuel Macron announced on Sunday night [February 10, 2025] that France is set to receive a total investment of 109 billion euros (approximately $112 billion) in artificial intelligence over the coming years.

Speaking in a televised interview on public broadcaster France 2, Macron described the investment as “the equivalent for France of what the United States announced with ‘Stargate’.”

He noted that the funding will come from the United Arab Emirates, major American and Canadian investment funds [emphases mine], as well as French companies.

Prime Minister Justin Trudeau attended the AI Action Summit on Tuesday, February 11, 2025 according to a Canadian Broadcasting Corporation (CBC) news online article by Ashley Burke and Olivia Stefanovich,

Prime Minister Justin Trudeau warned U.S. Vice-President J.D. Vance that punishing tariffs on Canadian steel and aluminum will hurt his home state of Ohio, a senior Canadian official said. 

The two leaders met on the sidelines of an international summit in Paris Tuesday [February 11, 2025], as the Trump administration moves forward with its threat to impose 25 per cent tariffs on all steel and aluminum imports, including from its biggest supplier, Canada, effective March 12.

Speaking to reporters on Wednesday [February 12, 2025] as he departed from Brussels, Trudeau characterized the meeting as a brief chat that took place as the pair met.

“It was just a quick greeting exchange,” Trudeau said. “I highlighted that $2.2 billion worth of steel and aluminum exports from Canada go directly into the Ohio economy, often to go into manufacturing there.

“He nodded, and noted it, but it wasn’t a longer exchange than that.”

Vance didn’t respond to Canadian media’s questions about the tariffs while arriving at the summit on Tuesday [February 11, 2025].

Additional insight can be gained from a February 10, 2025 PBS (US Public Broadcasting Service) posting of an AP (Associated Press) article with contributions from Kelvin Chan and Angela Charlton in Paris, Ken Moritsugu in Beijing, and Aijaz Hussain in New Delhi,

JD Vance stepped onto the world stage this week for the first time as U.S. vice president, using a high-stakes AI summit in Paris and a security conference in Munich to amplify Donald Trump’s aggressive new approach to diplomacy.

The 40-year-old vice president, who was just 18 months into his tenure as a senator before joining Trump’s ticket, is expected, while in Paris, to push back on European efforts to tighten AI oversight while advocating for a more open, innovation-driven approach.

The AI summit has drawn world leaders, top tech executives, and policymakers to discuss artificial intelligence’s impact on global security, economics, and governance. High-profile attendees include Chinese Vice Premier Zhang Guoqing, signaling Beijing’s deep interest in shaping global AI standards.

Macron also called on “simplifying” rules in France and the European Union to allow AI advances, citing sectors like healthcare, mobility, energy, and “resynchronize with the rest of the world.”

“We are most of the time too slow,” he said.

The summit underscores a three-way race for AI supremacy: Europe striving to regulate and invest, China expanding access through state-backed tech giants, and the U.S. under Trump prioritizing a hands-off approach.

Vance has signaled he will use the Paris summit as a venue for candid discussions with world leaders on AI and geopolitics.

“I think there’s a lot that some of the leaders who are present at the AI summit could do to, frankly — bring the Russia-Ukraine conflict to a close, help us diplomatically there — and so we’re going to be focused on those meetings in France,” Vance told Breitbart News.

Vance is expected to meet separately Tuesday with Indian Prime Minister Narendra Modi and European Commission President Ursula von der Leyen, according to a person familiar with planning who spoke on the condition of anonymity.

Modi is co-hosting the summit with Macron in an effort to prevent the sector from becoming a U.S.-China battle.

Indian Foreign Secretary Vikram Misri stressed the need for equitable access to AI to avoid “perpetuating a digital divide that is already existing across the world.”

But the U.S.-China rivalry overshadowed broader international talks.

The U.S.-China rivalry didn’t entirely overshadow the talks. At least one Chinese former diplomat chose to make her presence felt by chastising a Canadian academic according to a February 11, 2025 article by Matthew Broersma for silicon.co.uk

A representative of China at this week’s AI Action Summit in Paris stressed the importance of collaboration on artificial intelligence, while engaging in a testy exchange with Yoshua Bengio, a Canadian academic considered one of the “Godfathers” of AI.

Fu Ying, a former Chinese government official and now an academic at Tsinghua University in Beijing, said the name of China’s official AI Development and Safety Network was intended to emphasise the importance of collaboration to manage the risks around AI.

She also said tensions between the US and China were impeding the ability to develop AI safely.

… Fu Ying, a former vice minister of foreign affairs in China and the country’s former UK ambassador, took veiled jabs at Prof Bengio, who was also a member of the panel.

Zoe Kleinman’s February 10, 2025 article for the British Broadcasting Corporation (BBC) news online website also notes the encounter,

A former Chinese official poked fun at a major international AI safety report led by “AI Godfather” professor Yoshua Bengio and co-authored by 96 global experts – in front of him.

Fu Ying, former vice minister of foreign affairs and once China’s UK ambassador, is now an academic at Tsinghua University in Beijing.

The pair were speaking at a panel discussion ahead of a two-day global AI summit starting in Paris on Monday [February 10, 2025].

The aim of the summit is to unite world leaders, tech executives, and academics to examine AI’s impact on society, governance, and the environment.

Fu Ying began by thanking Canada’s Prof Bengio for the “very, very long” document, adding that the Chinese translation stretched to around 400 pages and she hadn’t finished reading it.

She also had a dig at the title of the AI Safety Institute – of which Prof Bengio is a member.

China now has its own equivalent; but they decided to call it The AI Development and Safety Network, she said, because there are lots of institutes already but this wording emphasised the importance of collaboration.

The AI Action Summit is welcoming guests from 80 countries, with OpenAI chief executive Sam Altman, Microsoft president Brad Smith and Google chief executive Sundar Pichai among the big names in US tech attending.

Elon Musk is not on the guest list but it is currently unknown whether he will decide to join them. [As of February 13, 2025, Mr. Musk did not attend the summit, which ended February 11, 2025.]

A key focus is regulating AI in an increasingly fractured world. The summit comes weeks after a seismic industry shift as China’s DeepSeek unveiled a powerful, low-cost AI model, challenging US dominance.

The pair’s heated exchanges were a symbol of global political jostling in the powerful AI arms race, but Fu Ying also expressed regret about the negative impact of current hostilities between the US and China on the progress of AI safety.

She gave a carefully-crafted glimpse behind the curtain of China’s AI scene, describing an “explosive period” of innovation since the country first published its AI development plan in 2017, five years before ChatGPT became a viral sensation in the west.

She added that “when the pace [of development] is rapid, risky stuff occurs” but did not elaborate on what might have taken place.

“The Chinese move faster [than the west] but it’s full of problems,” she said.

Fu Ying argued that building AI tools on foundations which are open source, meaning everyone can see how they work and therefore contribute to improving them, was the most effective way to make sure the tech did not cause harm.

Most of the US tech giants do not share the tech which drives their products.

Open source offers humans “better opportunities to detect and solve problems”, she said, adding that “the lack of transparency among the giants makes people nervous”.

But Prof Bengio disagreed.

His view was that open source also left the tech wide open for criminals to misuse.

He did however concede that “from a safety point of view”, it was easier to spot issues with the viral Chinese AI assistant DeepSeek, which was built using open source architecture, than ChatGPT, whose code has not been shared by its creator OpenAI.

Fro anyone curious about Professor Bengio’s AI safety report, I have more information in a September 29, 2025 Université de Montréal (UdeM) press release,

The first international report on the safety of artificial intelligence, led by Université de Montréal computer-science professor Yoshua Bengio, was released today and promises to serve as a guide for policymakers worldwide. 

Announced in November 2023 at the AI Safety Summit at Bletchley Park, England, and inspired by the workings of the United Nations Intergovernmental Panel on Climate Change, the report consolidates leading international expertise on AI and its risks. 

Supported by the United Kingdom’s Department for Science, Innovation and Technology, Bengio, founder and scientific director of the UdeM-affiliated Mila – Quebec AI Institute, led a team of 96 international experts in drafting the report.

The experts were drawn from 30 countries, the U.N., the European Union and the OECD [Organisation for Economic Cooperation and Development]. Their report will help inform discussions next month at the AI Action Summit in Paris, France and serve as a global handbook on AI safety to help support policymakers.

Towards a common understanding

The most advanced AI systems in the world now have the ability to write increasingly sophisticated computer programs, identify cyber vulnerabilities, and perform on a par with human PhD-level experts on tests in biology, chemistry, and physics. 

In what is identified as a key development for policymakers to monitor, the AI Safety Report published today warns that AI systems are also increasingly capable of acting as AI agents, autonomously planning and acting in pursuit of a goal. 

As policymakers worldwide grapple with the rapid and unpredictable advancements in AI, the report contributes to bridging the gap by offering a scientific understanding of emerging risks to guide decision-making.  

The document sets out the first comprehensive, independent, and shared scientific understanding of advanced AI systems and their risks, highlighting how quickly the technology has evolved.  

Several areas require urgent research attention, according to the report, including how rapidly capabilities will advance, how general-purpose AI models work internally, and how they can be designed to behave reliably. 

Three distinct categories of AI risks are identified: 

  • Malicious use risks: these include cyberattacks, the creation of AI-generated child-sexual-abuse material, and even the development of biological weapons; 
  • System malfunctions: these include bias, reliability issues, and the potential loss of control over advanced general-purpose AI systems; 
  • Systemic risks: these stem from the widespread adoption of AI, include workforce disruption, privacy concerns, and environmental impacts.  

The report places particular emphasis on the urgency of increasing transparency and understanding in AI decision-making as the systems become more sophisticated and the technology continues to develop at a rapid pace. 

While there are still many challenges in mitigating the risks of general-purpose AI, the report highlights promising areas for future research and concludes that progress can be made.   

Ultimately, it emphasizes that while AI capabilities could advance at varying speeds, their development and potential risks are not a foregone conclusion. The outcomes depend on the choices that societies and governments make today and in the future. 

“The capabilities of general-purpose AI have increased rapidly in recent years and months,” said Bengio. “While this holds great potential for society, AI also presents significant risks that must be carefully managed by governments worldwide.  

“This report by independent experts aims to facilitate constructive and evidence-based discussion around these risks and serves as a common basis for policymakers around the world to understand general-purpose AI capabilities, risks and possible mitigations.” 

The report is more formally known as the International AI Safety Report 2025 and can be found on the gov.uk website.

There have been two previous AI Safety Summits that I’m aware of and you can read about them in my May 21, 2024 posting about the one in Korea and in my November 2, 2023 posting about the first summit at Bletchley Park in the UK.

You can find the Canadian Artificial Intelligence Safety Institute (or AI Safety Institute) here and my coverage of DeepSeek’s release and the panic in the US artificial intelligence and the business communities that ensued in my January 29, 2025 posting.

New digital technologies could unlock greater potential for microbes and fungi and some thoughts on civil society groups

Not sure how this escaped my notice for so long: an August 7, 2024 news item on phys.org presents an intriguing proposition,

Microbes and fungi have long been nature’s helpers in producing fine food, drinks and medicine, but new digital technologies could unlock far greater potential for the European biotech sector.

An August 6, 2024 article by Anthony King for Horizon; The EU Research & *Innovation magazine, which originated the news item, explores the matter further, Note: A link has been removed,

Beer may not be the answer to all of life’s problems, but the science behind it could help decarbonise industrial processes and clean up the environment.

Biotechnology, which uses living organisms to create different products or processes, remains important in today’s production of food and drink. But it is also increasingly used for a wide range of industrial products, including medicines, where it combines ancient principles with cutting-edge technology.

Ancient wisdom, modern processes

‘We’ve used biotechnology for thousands of years to make cheese, to make beer, to make wine,’ said Michael O’Donohue, an expert in microbial enzymes and industrial biotechnology at France’s National Research Institute for Agriculture, Food and Environment (INRAE).

Little workhorses

Biotech has already transformed our lives, far beyond improving the taste of beer. Modern advances started with the use of fungi in the early 20th century to make life-saving antibiotics. Today, biotech remains crucial for making medicines.

As O’Donohue explained, ‘the workhorses of biotechnology at an industrial level are mainly yeast and filamentous fungi.’ 

But because yeasts can be unpredictable in what compound, and how much, they produce, Bioindustry 4.0 [EU-funded project], which runs until December 2026, will use digital technology to improve the consistency of biotech outcomes.

An upside of biotechnology is that it can offer a cleaner alternative to traditional chemical manufacture.

Playing catch-up

Biotech is a major global industry worth €720 billion in 2021, but Europe currently lags behind the US. The European Commission describes biotechnology as “one of the most promising technological areas of this century” and has taken steps to boost it in Europe.

‘The US is the big player. They take 60% of the cake,’ said O’Donohue. ‘We’ve identified several weaknesses in Europe for biotech. We’ve got a fragmented landscape, which makes it quite tricky, if you are developing biotechnology, to know what is available and where.’

Nevertheless, O’Donohue said, the potential is there. ‘Europe was the birthplace of modern biotechnology. We have a lot of infrastructure. We have a lot of expertise.’

Building the market

The concept has already been put to work, assisting young European companies such as Calidris Bio, a Belgian start-up that aims to manufacture high-quality protein using fewer resources. 

‘We want to bring it to the market as an ingredient to replace fishmeal and soy that at the moment is not grown sustainably,’ said Lieve Hoflack, a co-founder of Calidris Bio. 

But producing the protein is just half the battle. A new product must be tested for safety, taste and nutritional value. 

‘With IBISBA, we found a place with the right equipment, the right expertise and also the right mindset to bring our process to the next step,’ said Hoflack.

The European Commission has said it aims to boost biotechnology to combat climate change and resource scarcity. It is working towards an EU Biotech Act and aims to promote regulatory sandboxes to test novel approaches in a controlled environment for a limited amount of time, under regulatory supervision.

IBISBA describes itself as “a pan-European distributed research infrastructure dedicated to industrial biotechnology” on its About webpage.

Civil society groups and their protests

As interesting as King’s August 6, 2024 article is, it doesn’t mention the campaigns against biotechnology, which had a dampening effect on research in many countries. Here’s more about the history of these efforts in an October 9, 2023 article on the Genetic Literacy Project website, Note: Links have been removed,

ETC Group: ‘Extreme’ biotechnology critic campaigns against synthetic biology and other forms of ‘extreme genetic engineering’

screen shot at pm

The ETC group, an international NGO based in Canada, claims it monitors the “impact of emerging technologies” that impact biodiversity, agriculture and human rights. It promotes imposing an extreme version of the ‘precautionary principle’ to all technologies, claiming that many modern innovations, including genetic engineering of crops and medicines, are too risky to implement, and even basic research should be suspended indefinitely.

ETC Group works with other radical environmental groups such as Friends of he Earth, campaigning against nearly every application of genetic engineering, including biotechnology-based disease research, synthetic biology, and most aggressively gene drives, which it refers to as “extreme genetic engineering” an claims it will result in the “end of Nature.” ETC Group calls has criticized increased corporate involvement in food and agriculture, what it calls threats to biodiversity and farmers’ rights, and what it sees as insufficient government regulation.

“The speed with which those developments are scaling up is often presented in terms of carefully crafted speculative conservation and health benefits while the overwhelming military interest driving these developments, while not hidden, has been very much downplayed,” ETC Group co-executive director Jim Thomas has said, citing the military’s interest in synthetic biology.

ETC Group staff members are often quoted by major media outlets criticizing various applications of genetic engineering. The organization has used Freedom of Information Acts (FOIA) to obtain emails and background information on university and government research, which they provide to journalists.

Obviously, the article was not written as a love letter. While I find the tone a bit harsh, I have seen how at least one civil society group has distorted research results to prove its point. More about that later.

ETC history

From the October 9, 2023 article for the Genetic Literacy Project, Note: A link has been removed,

Originally formed in the late 1970s as Rural Advancement Foundation International (RAFI), the group changed its name to the ETC Group in 2001. Its official name is the Action Group on Erosion, Technology and Concentration.

ETC Group is a registered CSO in Canada and The Netherlands. Friends of ETC Group is a private non-profit organization under section 501(c)3 in the United States.

The group claims to be the “first civil society organization (nationally or internationally) to draw attention to the socioeconomic and scientific issues related to the conservation and use of plant genetic resources, intellectual property and biotechnology.”

According to the group’s website, “In the late 1970s, we were the first CSO to recognize the trend toward life patenting and the first to organize against national plant patenting laws (plant breeders’ rights).” In the 1990s, the ETC Group says its work “expanded to encompass social and environmental concerns related to biotechnology, biopiracy, human genomics and, in the late 1990s, to nanotechnology.” [emphases mine]

Distortions

By the time I started this blog in May/June 2008, the biotechnology protests were winding down. One of the new focal points for civil society groups was nanotechnology and that’s where I observed the distortions.

A Friends of the Earth (FOE) report

My first observation dates as far back as this August 20, 2009 posting, Note: Links have been removed,

In a bit of interesting timing given that it’s on the heels of the publication of a study about two tragic deaths which are being attributed to exposure to nanoparticles, the Friends of the Earth (FOE) organization has released a report titled Nano-Sunscreens: Not Worth the Risk.The media release can be found on Azonano or Nanowerk News.

I have read the report (very quickly) and noted that they do not cite or mention the recently released report on the same topic by the Environmental Working Group (EWG) which stated that after an extensive review of the literature, there was no evidence that the titanium dioxide or zinc oxide nanoparticles used in sunscreens were dangerous. (posting here).

Shortly after the EWG report’s release, a new study (which I mentioned here … if you are inclined, do read the comments as some additional points about reading research critically are brought out)  suggested concerns based on the work of researchers in Japan.  The new study from Japan is cited in the Friends of the Earth report.

While the overall tone of the FOE report is fairly mild (they suggest precaution) they cite only a few studies supporting their concern [emphasis mine] and they damage their credibility (in my book) by ignoring a report from a well respected group that reluctantly admitted that there is no real cause for concern about nanoparticles in sunscreens based on the current evidence.

Zinc dioxide nanoparticles in sunscreens

About a year later in a July 20, 2010 posting I featured some issues with how Friends of the Earth (Georgia Miller, Australian representative, and Ian Illuminato, North American representative) guest blogging on another blog known as “2020 Science” distorted research findings from a study on zinc oxide nanoparticles in sunscreens. Dr. Andrew Maynard, the blog owner, made some critical observations about their posting. In addition, the researcher for the study, along with two other scientists, noted distortions in the Miller and Illumanito critique.

Two Chinese workers, nanoparticles and death

This excerpt from a July 26, 2011 posting is my critique of an article by Alex Roslin in a local newspaper, which relied almost exclusively on a report from the Friends of the Earth,

It’s good to see articles about nanotechnology. The recent, Tiny nanoparticles could be a big problem, article written by Alex Roslin for the Georgia Straight (July 21, 2011 online or July 21-28, 2011 paper edition) is the first I’ve seen on that topic in that particular newspaper. Unfortunately, there are  some curious bits of information included in the article, which render it, in my opinion, difficult to trust.

I do agree with Roslin that nanoparticles/nanomaterials could constitute a danger and there are a number of studies which indicate that, at the least, extreme caution in a number of cases should be taken if we choose to proceed with developing nanotechnology-enabled products.

One of my difficulties with the article is the information that has been left out. (Perhaps Roslin didn’t have time to properly research?) At the time (2009) I did read with much concern the reports Roslin mentions about the Chinese workers who were injured and/or died after working with nanomaterials. As Roslin points out,

“Nanotech already appears to be affecting people’s health. In 2009, two Chinese factory workers died and another five were seriously injured in a plant that made paint containing nanoparticles.

The seven young female workers developed lung disease and rashes on their face and arms. Nanoparticles were found deep in the workers’ lungs.

“These cases arouse concern that long-term exposure to some nanoparticles without protective measures may be related to serious damage to human lungs,” wrote Chinese medical researchers in a 2009 study on the incident in the European Respiratory Journal.”

Left undescribed by Roslin are the working conditions; the affected people were working in an unventilated room. From the European Respiratory Journal article (ERJ
September 1, 2009 vol. 34 no. 3 559-567, free access), Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma,

“A survey of the patients’ workplace was conducted. It measures ∼70 m2, has one door, no windows and one machine which is used to air spray materials, heat and dry boards. This machine has three atomising spray nozzles and one gas exhauster (a ventilation unit), which broke 5 months before the occurrence of the disease. The paste material used is an ivory white soft coating mixture of polyacrylic ester.

Eight workers (seven female and one male) were divided into two equal groups each working 8–12 h shifts. Using a spoon, the workers took the above coating material (room temperature) to the open-bottom pan of the machine, which automatically air-sprayed the coating material at the pressure of 100–120 Kpa onto polystyrene (PS) boards (organic glass), which can then be used in the printing and decorating industry. The PS board was heated and dried at 75–100°C, and the smoke produced in the process was cleared by the gas exhauster. In total, 6 kg of coating material was typically used each day. The PS board sizes varied from 0.5–1 m2 and ∼5,000 m2 were handled each workday. The workers had several tasks in the process including loading the soft coating material in the machine, as well as clipping, heating and handling the PS board. Each worker participated in all parts of this process.

Accumulated dust particles were found at the intake of the gas exhauster. During the 5 months preceding illness the door of the workspace was kept closed due to cold outdoor temperatures. The workers were all peasants near the factory, and had no knowledge of industrial hygiene and possible toxicity from the materials they worked with. The only personal protective equipment used on an occasional basis was cotton gauze masks. According to the patients, there were often some flocculi produced during air spraying, which caused itching on their faces and arms. It is estimated that the airflow or turnover rates of indoor air would be very slow, or quiescent due to the lack of windows and the closed door.” [emphases mine]

Here’s the full text from the researchers’ conclusion,

“In conclusion, these cases arouse concern that long-term exposure to some nanoparticles without protective measures may be related to serious damage to human lungs. It is impossible to remove nanoparticles that have penetrated the cell and lodged in the cytoplasm and caryoplasm of pulmonary epithelial cells, or that have aggregated around the red blood cell membrane. Effective protective methods appear to be extremely important in terms of protecting exposed workers from illness caused by nanoparticles.”

There is no question that serious issues about occupational health and safety with regards to nanomaterials were raised. But, we work with dangerous and hazardous materials all the time; precautions are necessary whether you’re working with hydrochloric acid or engineered nanoparticles. (There are naturally occurring nanoparticles too.)

In general, I found the tenor of the article more alarmist than informational and I’m sorry about that as I would like to see more information being shared and, ultimately, public discussion in Canada about nanotechnology and other emerging technologies.

Unintended consequences

After years of concerted effort the Friends of the Earth saw this result in Australia,

Friends of the Earth (FoE) Australia has waged a campaign against the use of nanosunscreens. It seems to have been somewhat successful but in a way that I imagine is upsetting. From the Feb. 9, 2012 news item on physorg.com,

The Cancer Council of Australia reports that we have one of the highest rates of skin cancer in the world, with over 440,000 people receiving medical treatment for skin cancers each year, and over 1,700 people dying of all types of skin cancer annually.

The survey of public attitudes towards sunscreens with nanoparticles, commissioned by the Australian Department of Industry, Innovation, Science, Research and Tertiary Education and conducted last month, showed that about 17% of people in Australia were so worried about the issue, they would rather risk skin cancer by going without sunscreen than use a product containing nanoparticles. [emphasis mine] [please see correction at the end of this posting]

*’17%’ corrected to ‘13%’ on Sept. 22, 2016.

Unexpected outcomes

Here’s what happened, eventually, to the EWG and its work on sunscreens, from a June 23, 2020 posting “Sunscreens 2020 and the Environmental Working Group (EWG),”

There must be some sweet satisfaction or perhaps it’s better described as relief for the Environmental Working Group (EWG) now that sunscreens with metallic (zinc oxide and/or titanium dioxide) nanoparticles are gaining wide acceptance. (More about the history and politics EWG and metallic nanoparticles at the end of this posting.)

This acceptance has happened alongside growing concerns about oxybenzone, a sunscreen ingredient that EWG has long warned against. Oxybenzone has been banned from use in Hawaii due to environmental concerns (see my July 6, 2018 posting; scroll down about 40% of the way for specifics about Hawaii). Also, it is one of the common sunscreen ingredients for which the US Food and Drug Administration (FDA) is completing a safety review.

Today, zinc oxide and titanium dioxide metallic nanoparticles are being called minerals, as in, “mineral-based” sunscreens. They are categorized as physical sunscreens as opposed to chemical sunscreens.

A few thoughts on civil societies, business, and technological progress

The description of how sunscreens and other products with engineered nanoparticles were presented in misleading reports and articles is unfortunately not unusual where many civil society groups are concerned. (i found that very disillusioning.)

As for business and industry group, they use the same tactics.

Whether the topic is cigarette smoking, genetically modified organisms, engineered nanoparticles in sunscreens, etc. I keep reminding myself it’s best to consult more than one source and to remember that things change. All we’ve got to work with is the information at hand.

In the end, civil society groups provide an important function as do business and industrial groups. Trusting everything they say, is not a good idea. Something to remember when looking up organizations such as the Genetic Literacy Project and reading people like me.

Regenerate damaged skin, cartilage, and bone with help from silkworms?

A July 24, 2024 news item on phys.org highlights research into regenerating bone and skin, Note: A link has been removed,

Researchers are exploring new nature-based solutions to stimulate skin and bone repair.

In the cities of Trento and Rovereto in northern Italy and Bangkok in Thailand, scientists are busy rearing silkworms in nurseries. They’re hoping that the caterpillars’ silk can regenerate human tissue. For such a delicate medical procedure, only thoroughbreds will do.

“By changing the silkworm, you can change the chemistry,” said Professor Antonella Motta, a researcher in bioengineering at the University of Trento in Italy. That could, in turn, affect clinical outcomes. “This means the quality control should be very strict.”

Silk has been used in surgical sutures for hundreds of years and is now emerging as a promising nature-based option for triggering human tissue to self-regenerate. Researchers are also studying crab, shrimp and mussel shells and squid skin and bone for methods of restoring skin, bone and cartilage. This is particularly relevant as populations age.

A July 23, 2024 article by Gareth Willmer for Horizon Magazine, the EU (European Union) research & innovation magazine, which originated the news item, provides more details,

‘Tissue engineering is a new strategy to solve problems caused by pathologies or trauma to the organs, as an alternative to transplants or artificial device implantations,’ said Motta, noting that these interventions can often fail or expire. ‘The idea is to use the natural ability of our bodies to rebuild the tissue.’

The research forms part of the five-year EU-funded SHIFT [Shaping Innovative Designs for Sustainable Tissue Engineering Products] project that Motta coordinates, which includes universities in Europe, as well as partners in Asia and Australia. Running until 2026, the research team aim to scale up methods for regenerating skin, bone and cartilage using bio-based polymers and to get them ready for clinical trials. The goal is to make them capable of repairing larger wounds and tissue damage.

The research builds on work carried out under the earlier REMIX [Regenerative Medicine Innovation Crossing – Research and Innovation Staff Exchange in Regenerative Medicine] project, also funded by the EU, which made important advances in understanding the different ways in which these biomaterials could be used. 

Building a scaffold

Silk, for instance, can be used to form a “scaffold” in damaged tissue that then activates cells to form new tissue and blood vessels. The process could be used to treat conditions such as diabetic ulcers and lower back pain caused by spinal disc degeneration. The SHIFT team have been exploring minimally invasive procedures for treatment, such as hydrogels that can be applied directly to the skin, or injected into bone or cartilage.

The approaches using both silkworms and some of the marine organisms have great potential, said Motta. 

‘We have three or four systems with different materials that are really promising,’ she said. By the end of SHIFT, the goal is to have two or three prototypes that can be developed together with start-up and spin-off companies created in collaboration with the project. 

One of the principles of the SHIFT team has been been exploring how best to harness the concept of a circular economy. For example, they are looking into how waste products from the textile and food industries can be reused in these treatments.

Yet with complicated interactions at a microscale, and the need to prevent the body from rejecting foreign materials, such tissue engineering is a big challenge. 

‘The complexity is high because the nature of biology is not easy,’ said Motta. ‘We cannot change the language of the cells, but instead have to learn to speak the same language as them.’

But she firmly believes the nature-based rather than synthetic approach is the way to go and thinks treatments harnessing SHIFT’s methods could become available in the early 2030s. 

‘I believe in this approach,’ said Motta. ‘Bone designed by nature is the best bone we can have.’

Skin care

Another EU-funded project known as SkinTERM [Skin Tissue Engineering and Regenerative Medicine: From skin repair to regeneration], which runs for almost five years until mid-2025, is also looking at novel ways to get tissue to self-regenerate, focusing on skin. To treat burns and other surface wounds today, a thin layer of skin is sometimes grafted from another part of the body. This can cause the appearance of disfiguring scars and the patient’s mobility may be impacted when the tissue contracts as it heals. Current skin-grafting methods can also be painful.

The SkinTERM team are therefore investigating how inducing the healing process in the networks of cells surrounding a wound might enable skin to repair itself. 

‘We could do much better if we move towards regeneration,’ said Dr Willeke Daamen, who coordinates SkinTERM as a researcher in soft tissue regeneration at Radboud University in Nijmegen, the Netherlands. ‘The ultimate goal would be to get the same situation before and after being wounded.’

Researchers are studying a particular mammal – the spiny mouse – which has a remarkable ability to heal without scarring. It is able to self-repair damage to other tissues like the heart and spinal cord too. This is also true of early foetal skin.

The team are examining these systems to learn more about how they work and the processes occurring in the area around cells, known as the extracellular matrix. They hope to identify factors that might have a role in the regenerative process, and test how it might be induced in humans. 

Kick-start

‘We’ve been trying to learn from those systems on how to kick-start such processes,’ said Daamen. ‘We’ve made progress in what kinds of compounds seem at least in part to be responsible for a regenerative response.’

Many lines of research are being carried out among a new generation of multidisciplinary scientists being trained in this area, and a lot has already been achieved, said Daamen.

They have managed to create scaffolds using different components related to skin regeneration, such as the proteins collagen and elastin. They have also collected a vast amount of data on genes and proteins with potential roles in regeneration. Their role will be further tested by using them on scar-prone cells cultured on collagen scaffolds.

‘The mechanisms are complex,’ said Dr Bouke Boekema, a senior researcher at the Association of Dutch Burn Centres in Beverwijk, the Netherlands, and vice-coordinator of SkinTERM. 

‘If you find a mechanism, the idea is that maybe you can tune it so that you can stimulate it. But there’s not necessarily one magic bullet.’

By the end of the project next year, Boekema hopes the research could result in some medical biomaterial options to test for clinical use. ‘It would be nice if several prototypes were available for testing to see if they improve outcomes in patients.’

Research in this article was funded by the Marie Skłodowska-Curie Actions (MSCA). The views of the interviewees don’t necessarily reflect those of the European Commission. If you liked this article, please consider sharing it on social media.

Interesting. Over these last few months, I’ve been stumbling across more than my usual number of regenerative medicine stories.

Hardware policies best way to manage AI safety?

Regulation of artificial intelligence (AI) has become very topical in the last couple of years. There was an AI safety summit in November 2023 at Bletchley Park in the UK (see my November 2, 2023 posting for more about that international meeting).

A very software approach?

This year (2024) has seen a rise in legislative and proposed legislative activity. I have some articles on a few of these activities. China was the first to enact regulations of any kind on AI according to Matt Sheehan’s February 27, 2024 paper for the Carnegie Endowment for International Peace,

In 2021 and 2022, China became the first country to implement detailed, binding regulations on some of the most common applications of artificial intelligence (AI). These rules formed the foundation of China’s emerging AI governance regime, an evolving policy architecture that will affect everything from frontier AI research to the functioning of the world’s second-largest economy, from large language models in Africa to autonomous vehicles in Europe.

The Chinese Communist Party (CCP) and the Chinese government started that process with the 2021 rules on recommendation algorithms, an omnipresent use of the technology that is often overlooked in international AI governance discourse. Those rules imposed new obligations on companies to intervene in content recommendations, granted new rights to users being recommended content, and offered protections to gig workers subject to algorithmic scheduling. The Chinese party-state quickly followed up with a new regulation on “deep synthesis,” the use of AI to generate synthetic media such as deepfakes. Those rules required AI providers to watermark AI-generated content and ensure that content does not violate people’s “likeness rights” or harm the “nation’s image.” Together, these two regulations also created and amended China’s algorithm registry, a regulatory tool that would evolve into a cornerstone of the country’s AI governance regime.

The UK has adopted a more generalized approach focused on encouraging innovation according to Valeria Gallo’s and Suchitra Nair’s February 21, 2024 article for Deloitte (a British professional services firm also considered one of the big four accounting firms worldwide),

At a glance

The UK Government has adopted a cross-sector and outcome-based framework for regulating AI, underpinned by five core principles. These are safety, security and robustness, appropriate transparency and explainability, fairness, accountability and governance, and contestability and redress.

Regulators will implement the framework in their sectors/domains by applying existing laws and issuing supplementary regulatory guidance. Selected regulators will publish their AI annual strategic plans by 30th April [2024], providing businesses with much-needed direction.

Voluntary safety and transparency measures for developers of highly capable AI models and systems will also supplement the framework and the activities of individual regulators.

The framework will not be codified into law for now, but the Government anticipates the need for targeted legislative interventions in the future. These interventions will address gaps in the current regulatory framework, particularly regarding the risks posed by complex General Purpose AI and the key players involved in its development.

Organisations must prepare for increased AI regulatory activity over the next year, including guidelines, information gathering, and enforcement. International firms will inevitably have to navigate regulatory divergence.

While most of the focus appears to be on the software (e.g., General Purpose AI), the UK framework does not preclude hardware.

The European Union (EU) is preparing to pass its own AI regulation act through the European Parliament in 2024 according to a December 19, 2023 “EU AI Act: first regulation on artificial intelligence” article update, Note: Links have been removed,

As part of its digital strategy, the EU wants to regulate artificial intelligence (AI) to ensure better conditions for the development and use of this innovative technology. AI can create many benefits, such as better healthcare; safer and cleaner transport; more efficient manufacturing; and cheaper and more sustainable energy.

In April 2021, the European Commission proposed the first EU regulatory framework for AI. It says that AI systems that can be used in different applications are analysed and classified according to the risk they pose to users. The different risk levels will mean more or less regulation.

The agreed text is expected to be finally adopted in April 2024. It will be fully applicable 24 months after entry into force, but some parts will be applicable sooner:

*The ban of AI systems posing unacceptable risks will apply six months after the entry into force

*Codes of practice will apply nine months after entry into force

*Rules on general-purpose AI systems that need to comply with transparency requirements will apply 12 months after the entry into force

High-risk systems will have more time to comply with the requirements as the obligations concerning them will become applicable 36 months after the entry into force.

This EU initiative, like the UK framework, seems largely focused on AI software and according to the Wikipedia entry “Regulation of artificial intelligence,”

… The AI Act is expected to come into effect in late 2025 or early 2026.[109

I do have a few postings about Canadian regulatory efforts, which also seem to be focused on software but don’t preclude hardware. While the January 20, 2024 posting is titled “Canada’s voluntary code of conduct relating to advanced generative AI (artificial intelligence) systems,” information about legislative efforts is also included although you might find my May 1, 2023 posting titled “Canada, AI regulation, and the second reading of the Digital Charter Implementation Act, 2022 (Bill C-27)” offers more comprehensive information about Canada’s legislative progress or lack thereof.

The US is always to be considered in these matters and I have a November 2023 ‘briefing’ by Müge Fazlioglu on the International Association of Privacy Professionals (IAPP) website where she provides a quick overview of the international scene before diving deeper into US AI governance policy through the Barack Obama, Donald Trump, and Joe Biden administrations. There’s also this January 29, 2024 US White House “Fact Sheet: Biden-⁠Harris Administration Announces Key AI Actions Following President Biden’s Landmark Executive Order.”

What about AI and hardware?

A February 15, 2024 news item on ScienceDaily suggests that regulating hardware may be the most effective way of regulating AI,

Chips and datacentres — the ‘compute’ power driving the AI revolution — may be the most effective targets for risk-reducing AI policies as they have to be physically possessed, according to a new report.

A global registry tracking the flow of chips destined for AI supercomputers is one of the policy options highlighted by a major new report calling for regulation of “compute” — the hardware that underpins all AI — to help prevent artificial intelligence misuse and disasters.

Other technical proposals floated by the report include “compute caps” — built-in limits to the number of chips each AI chip can connect with — and distributing a “start switch” for AI training across multiple parties to allow for a digital veto of risky AI before it feeds on data.

The experts point out that powerful computing chips required to drive generative AI models are constructed via highly concentrated supply chains, dominated by just a handful of companies — making the hardware itself a strong intervention point for risk-reducing AI policies.

The report, published 14 February [2024], is authored by nineteen experts and co-led by three University of Cambridge institutes — the Leverhulme Centre for the Future of Intelligence (LCFI), the Centre for the Study of Existential Risk (CSER) and the Bennett Institute for Public Policy — along with OpenAI and the Centre for the Governance of AI.

A February 14, 2024 University of Cambridge press release by Fred Lewsey (also on EurekAlert), which originated the news item, provides more information about the ‘hardware approach to AI regulation’,

“Artificial intelligence has made startling progress in the last decade, much of which has been enabled by the sharp increase in computing power applied to training algorithms,” said Haydn Belfield, a co-lead author of the report from Cambridge’s LCFI. 

“Governments are rightly concerned about the potential consequences of AI, and looking at how to regulate the technology, but data and algorithms are intangible and difficult to control.

“AI supercomputers consist of tens of thousands of networked AI chips hosted in giant data centres often the size of several football fields, consuming dozens of megawatts of power,” said Belfield.

“Computing hardware is visible, quantifiable, and its physical nature means restrictions can be imposed in a way that might soon be nearly impossible with more virtual elements of AI.”

The computing power behind AI has grown exponentially since the “deep learning era” kicked off in earnest, with the amount of “compute” used to train the largest AI models doubling around every six months since 2010. The biggest AI models now use 350 million times more compute than thirteen years ago.

Government efforts across the world over the past year – including the US Executive Order on AI, EU AI Act, China’s Generative AI Regulation, and the UK’s AI Safety Institute – have begun to focus on compute when considering AI governance.

Outside of China, the cloud compute market is dominated by three companies, termed “hyperscalers”: Amazon, Microsoft, and Google. “Monitoring the hardware would greatly help competition authorities in keeping in check the market power of the biggest tech companies, and so opening the space for more innovation and new entrants,” said co-author Prof Diane Coyle from Cambridge’s Bennett Institute. 

The report provides “sketches” of possible directions for compute governance, highlighting the analogy between AI training and uranium enrichment. “International regulation of nuclear supplies focuses on a vital input that has to go through a lengthy, difficult and expensive process,” said Belfield. “A focus on compute would allow AI regulation to do the same.”

Policy ideas are divided into three camps: increasing the global visibility of AI computing; allocating compute resources for the greatest benefit to society; enforcing restrictions on computing power.

For example, a regularly-audited international AI chip registry requiring chip producers, sellers, and resellers to report all transfers would provide precise information on the amount of compute possessed by nations and corporations at any one time.

The report even suggests a unique identifier could be added to each chip to prevent industrial espionage and “chip smuggling”.

“Governments already track many economic transactions, so it makes sense to increase monitoring of a commodity as rare and powerful as an advanced AI chip,” said Belfield. However, the team point out that such approaches could lead to a black market in untraceable “ghost chips”.

Other suggestions to increase visibility – and accountability – include reporting of large-scale AI training by cloud computing providers, and privacy-preserving “workload monitoring” to help prevent an arms race if massive compute investments are made without enough transparency.  

“Users of compute will engage in a mixture of beneficial, benign and harmful activities, and determined groups will find ways to circumvent restrictions,” said Belfield. “Regulators will need to create checks and balances that thwart malicious or misguided uses of AI computing.”

These might include physical limits on chip-to-chip networking, or cryptographic technology that allows for remote disabling of AI chips in extreme circumstances. One suggested approach would require the consent of multiple parties to unlock AI compute for particularly risky training runs, a mechanism familiar from nuclear weapons.

AI risk mitigation policies might see compute prioritised for research most likely to benefit society – from green energy to health and education. This could even take the form of major international AI “megaprojects” that tackle global issues by pooling compute resources.

The report’s authors are clear that their policy suggestions are “exploratory” rather than fully fledged proposals and that they all carry potential downsides, from risks of proprietary data leaks to negative economic impacts and the hampering of positive AI development.

They offer five considerations for regulating AI through compute, including the exclusion of small-scale and non-AI computing, regular revisiting of compute thresholds, and a focus on privacy preservation.

Added Belfield: “Trying to govern AI models as they are deployed could prove futile, like chasing shadows. Those seeking to establish AI regulation should look upstream to compute, the source of the power driving the AI revolution. If compute remains ungoverned it poses severe risks to society.”

You can find the report, “Computing Power and the Governance of Artificial Intelligence” on the University of Cambridge’s Centre for the Study of Existential Risk.

Authors include: Girish Sastry, Lennart Heim, Haydn Belfield, Markus Anderljung, Miles Brundage, Julian Hazell, Cullen O’Keefe, Gillian K. Hadfield, Richard Ngo, Konstantin Pilz, George Gor, Emma Bluemke, Sarah Shoker, Janet Egan, Robert F. Trager, Shahar Avin, Adrian Weller, Yoshua Bengio, and Diane Coyle.

The authors are associated with these companies/agencies: OpenAI, Centre for the Governance of AI (GovAI), Leverhulme Centre for the Future of Intelligence at the Uni. of Cambridge, Oxford Internet Institute, Institute for Law & AI, University of Toronto Vector Institute for AI, Georgetown University, ILINA Program, Harvard Kennedy School (of Government), *AI Governance Institute,* Uni. of Oxford, Centre for the Study of Existential Risk at Uni. of Cambridge, Uni. of Cambridge, Uni. of Montreal / Mila, Bennett Institute for Public Policy at the Uni. of Cambridge.

“The ILINIA program is dedicated to providing an outstanding platform for Africans to learn and work on questions around maximizing wellbeing and responding to global catastrophic risks” according to the organization’s homepage.

*As for the AI Governance Institute, I believe that should be the Centre for the Governance of AI at Oxford University since the associated academic is Robert F. Trager from the University of Oxford.

As the months (years?) fly by, I guess we’ll find out if this hardware approach gains any traction where AI regulation is concerned.

Portable and non-invasive (?) mind-reading AI (artificial intelligence) turns thoughts into text and some thoughts about the near future

First, here’s some of the latest research and if by ‘non-invasive,’ you mean that electrodes are not being planted in your brain, then this December 12, 2023 University of Technology Sydney (UTS) press release (also on EurekAlert) highlights non-invasive mind-reading AI via a brain-computer interface (BCI), Note: Links have been removed,

In a world-first, researchers from the GrapheneX-UTS Human-centric Artificial Intelligence Centre at the University of Technology Sydney (UTS) have developed a portable, non-invasive system that can decode silent thoughts and turn them into text. 

The technology could aid communication for people who are unable to speak due to illness or injury, including stroke or paralysis. It could also enable seamless communication between humans and machines, such as the operation of a bionic arm or robot.

The study has been selected as the spotlight paper at the NeurIPS conference, a top-tier annual meeting that showcases world-leading research on artificial intelligence and machine learning, held in New Orleans on 12 December 2023.

The research was led by Distinguished Professor CT Lin, Director of the GrapheneX-UTS HAI Centre, together with first author Yiqun Duan and fellow PhD candidate Jinzhou Zhou from the UTS Faculty of Engineering and IT.

In the study participants silently read passages of text while wearing a cap that recorded electrical brain activity through their scalp using an electroencephalogram (EEG). A demonstration of the technology can be seen in this video [See UTS press release].

The EEG wave is segmented into distinct units that capture specific characteristics and patterns from the human brain. This is done by an AI model called DeWave developed by the researchers. DeWave translates EEG signals into words and sentences by learning from large quantities of EEG data. 

“This research represents a pioneering effort in translating raw EEG waves directly into language, marking a significant breakthrough in the field,” said Distinguished Professor Lin.

“It is the first to incorporate discrete encoding techniques in the brain-to-text translation process, introducing an innovative approach to neural decoding. The integration with large language models is also opening new frontiers in neuroscience and AI,” he said.

Previous technology to translate brain signals to language has either required surgery to implant electrodes in the brain, such as Elon Musk’s Neuralink [emphasis mine], or scanning in an MRI machine, which is large, expensive, and difficult to use in daily life.

These methods also struggle to transform brain signals into word level segments without additional aids such as eye-tracking, which restrict the practical application of these systems. The new technology is able to be used either with or without eye-tracking.

The UTS research was carried out with 29 participants. This means it is likely to be more robust and adaptable than previous decoding technology that has only been tested on one or two individuals, because EEG waves differ between individuals. 

The use of EEG signals received through a cap, rather than from electrodes implanted in the brain, means that the signal is noisier. In terms of EEG translation however, the study reported state-of the art performance, surpassing previous benchmarks.

“The model is more adept at matching verbs than nouns. However, when it comes to nouns, we saw a tendency towards synonymous pairs rather than precise translations, such as ‘the man’ instead of ‘the author’,” said Duan. [emphases mine; synonymous, eh? what about ‘woman’ or ‘child’ instead of the ‘man’?]

“We think this is because when the brain processes these words, semantically similar words might produce similar brain wave patterns. Despite the challenges, our model yields meaningful results, aligning keywords and forming similar sentence structures,” he said.

The translation accuracy score is currently around 40% on BLEU-1. The BLEU score is a number between zero and one that measures the similarity of the machine-translated text to a set of high-quality reference translations. The researchers hope to see this improve to a level that is comparable to traditional language translation or speech recognition programs, which is closer to 90%.

The research follows on from previous brain-computer interface technology developed by UTS in association with the Australian Defence Force [ADF] that uses brainwaves to command a quadruped robot, which is demonstrated in this ADF video [See my June 13, 2023 posting, “Mind-controlled robots based on graphene: an Australian research story” for the story and embedded video].

About one month after the research announcement regarding the University of Technology Sydney’s ‘non-invasive’ brain-computer interface (BCI), I stumbled across an in-depth piece about the field of ‘non-invasive’ mind-reading research.

Neurotechnology and neurorights

Fletcher Reveley’s January 18, 2024 article on salon.com (originally published January 3, 2024 on Undark) shows how quickly the field is developing and raises concerns, Note: Links have been removed,

One afternoon in May 2020, Jerry Tang, a Ph.D. student in computer science at the University of Texas at Austin, sat staring at a cryptic string of words scrawled across his computer screen:

“I am not finished yet to start my career at twenty without having gotten my license I never have to pull out and run back to my parents to take me home.”

The sentence was jumbled and agrammatical. But to Tang, it represented a remarkable feat: A computer pulling a thought, however disjointed, from a person’s mind.

For weeks, ever since the pandemic had shuttered his university and forced his lab work online, Tang had been at home tweaking a semantic decoder — a brain-computer interface, or BCI, that generates text from brain scans. Prior to the university’s closure, study participants had been providing data to train the decoder for months, listening to hours of storytelling podcasts while a functional magnetic resonance imaging (fMRI) machine logged their brain responses. Then, the participants had listened to a new story — one that had not been used to train the algorithm — and those fMRI scans were fed into the decoder, which used GPT1, a predecessor to the ubiquitous AI chatbot ChatGPT, to spit out a text prediction of what it thought the participant had heard. For this snippet, Tang compared it to the original story:

“Although I’m twenty-three years old I don’t have my driver’s license yet and I just jumped out right when I needed to and she says well why don’t you come back to my house and I’ll give you a ride.”

The decoder was not only capturing the gist of the original, but also producing exact matches of specific words — twenty, license. When Tang shared the results with his adviser, a UT Austin neuroscientist named Alexander Huth who had been working towards building such a decoder for nearly a decade, Huth was floored. “Holy shit,” Huth recalled saying. “This is actually working.” By the fall of 2021, the scientists were testing the device with no external stimuli at all — participants simply imagined a story and the decoder spat out a recognizable, albeit somewhat hazy, description of it. “What both of those experiments kind of point to,” said Huth, “is the fact that what we’re able to read out here was really like the thoughts, like the idea.”

The scientists brimmed with excitement over the potentially life-altering medical applications of such a device — restoring communication to people with locked-in syndrome, for instance, whose near full-body paralysis made talking impossible. But just as the potential benefits of the decoder snapped into focus, so too did the thorny ethical questions posed by its use. Huth himself had been one of the three primary test subjects in the experiments, and the privacy implications of the device now seemed visceral: “Oh my god,” he recalled thinking. “We can look inside my brain.”

Huth’s reaction mirrored a longstanding concern in neuroscience and beyond: that machines might someday read people’s minds. And as BCI technology advances at a dizzying clip, that possibility and others like it — that computers of the future could alter human identities, for example, or hinder free will — have begun to seem less remote. “The loss of mental privacy, this is a fight we have to fight today,” said Rafael Yuste, a Columbia University neuroscientist. “That could be irreversible. If we lose our mental privacy, what else is there to lose? That’s it, we lose the essence of who we are.”

Spurred by these concerns, Yuste and several colleagues have launched an international movement advocating for “neurorights” — a set of five principles Yuste argues should be enshrined in law as a bulwark against potential misuse and abuse of neurotechnology. But he may be running out of time.

Reveley’s January 18, 2024 article provides fascinating context and is well worth reading if you have the time.

For my purposes, I’m focusing on ethics, Note: Links have been removed,

… as these and other advances propelled the field forward, and as his own research revealed the discomfiting vulnerability of the brain to external manipulation, Yuste found himself increasingly concerned by the scarce attention being paid to the ethics of these technologies. Even Obama’s multi-billion-dollar BRAIN Initiative, a government program designed to advance brain research, which Yuste had helped launch in 2013 and supported heartily, seemed to mostly ignore the ethical and societal consequences of the research it funded. “There was zero effort on the ethical side,” Yuste recalled.

Yuste was appointed to the rotating advisory group of the BRAIN Initiative in 2015, where he began to voice his concerns. That fall, he joined an informal working group to consider the issue. “We started to meet, and it became very evident to me that the situation was a complete disaster,” Yuste said. “There was no guidelines, no work done.” Yuste said he tried to get the group to generate a set of ethical guidelines for novel BCI technologies, but the effort soon became bogged down in bureaucracy. Frustrated, he stepped down from the committee and, together with a University of Washington bioethicist named Sara Goering, decided to independently pursue the issue. “Our aim here is not to contribute to or feed fear for doomsday scenarios,” the pair wrote in a 2016 article in Cell, “but to ensure that we are reflective and intentional as we prepare ourselves for the neurotechnological future.”

In the fall of 2017, Yuste and Goering called a meeting at the Morningside Campus of Columbia, inviting nearly 30 experts from all over the world in such fields as neurotechnology, artificial intelligence, medical ethics, and the law. By then, several other countries had launched their own versions of the BRAIN Initiative, and representatives from Australia, Canada [emphasis mine], China, Europe, Israel, South Korea, and Japan joined the Morningside gathering, along with veteran neuroethicists and prominent researchers. “We holed ourselves up for three days to study the ethical and societal consequences of neurotechnology,” Yuste said. “And we came to the conclusion that this is a human rights issue. These methods are going to be so powerful, that enable to access and manipulate mental activity, and they have to be regulated from the angle of human rights. That’s when we coined the term ‘neurorights.’”

The Morningside group, as it became known, identified four principal ethical priorities, which were later expanded by Yuste into five clearly defined neurorights: The right to mental privacy, which would ensure that brain data would be kept private and its use, sale, and commercial transfer would be strictly regulated; the right to personal identity, which would set boundaries on technologies that could disrupt one’s sense of self; the right to fair access to mental augmentation, which would ensure equality of access to mental enhancement neurotechnologies; the right of protection from bias in the development of neurotechnology algorithms; and the right to free will, which would protect an individual’s agency from manipulation by external neurotechnologies. The group published their findings in an often-cited paper in Nature.

But while Yuste and the others were focused on the ethical implications of these emerging technologies, the technologies themselves continued to barrel ahead at a feverish speed. In 2014, the first kick of the World Cup was made by a paraplegic man using a mind-controlled robotic exoskeleton. In 2016, a man fist bumped Obama using a robotic arm that allowed him to “feel” the gesture. The following year, scientists showed that electrical stimulation of the hippocampus could improve memory, paving the way for cognitive augmentation technologies. The military, long interested in BCI technologies, built a system that allowed operators to pilot three drones simultaneously, partially with their minds. Meanwhile, a confusing maelstrom of science, science-fiction, hype, innovation, and speculation swept the private sector. By 2020, over $33 billion had been invested in hundreds of neurotech companies — about seven times what the NIH [US National Institutes of Health] had envisioned for the 12-year span of the BRAIN Initiative itself.

Now back to Tang and Huth (from Reveley’s January 18, 2024 article), Note: Links have been removed,

Central to the ethical questions Huth and Tang grappled with was the fact that their decoder, unlike other language decoders developed around the same time, was non-invasive — it didn’t require its users to undergo surgery. Because of that, their technology was free from the strict regulatory oversight that governs the medical domain. (Yuste, for his part, said he believes non-invasive BCIs pose a far greater ethical challenge than invasive systems: “The non-invasive, the commercial, that’s where the battle is going to get fought.”) Huth and Tang’s decoder faced other hurdles to widespread use — namely that fMRI machines are enormous, expensive, and stationary. But perhaps, the researchers thought, there was a way to overcome that hurdle too.

The information measured by fMRI machines — blood oxygenation levels, which indicate where blood is flowing in the brain — can also be measured with another technology, functional Near-Infrared Spectroscopy, or fNIRS. Although lower resolution than fMRI, several expensive, research-grade, wearable fNIRS headsets do approach the resolution required to work with Huth and Tang’s decoder. In fact, the scientists were able to test whether their decoder would work with such devices by simply blurring their fMRI data to simulate the resolution of research-grade fNIRS. The decoded result “doesn’t get that much worse,” Huth said.

And while such research-grade devices are currently cost-prohibitive for the average consumer, more rudimentary fNIRS headsets have already hit the market. Although these devices provide far lower resolution than would be required for Huth and Tang’s decoder to work effectively, the technology is continually improving, and Huth believes it is likely that an affordable, wearable fNIRS device will someday provide high enough resolution to be used with the decoder. In fact, he is currently teaming up with scientists at Washington University to research the development of such a device.

Even comparatively primitive BCI headsets can raise pointed ethical questions when released to the public. Devices that rely on electroencephalography, or EEG, a commonplace method of measuring brain activity by detecting electrical signals, have now become widely available — and in some cases have raised alarm. In 2019, a school in Jinhua, China, drew criticism after trialing EEG headbands that monitored the concentration levels of its pupils. (The students were encouraged to compete to see who concentrated most effectively, and reports were sent to their parents.) Similarly, in 2018 the South China Morning Post reported that dozens of factories and businesses had begun using “brain surveillance devices” to monitor workers’ emotions, in the hopes of increasing productivity and improving safety. The devices “caused some discomfort and resistance in the beginning,” Jin Jia, then a brain scientist at Ningbo University, told the reporter. “After a while, they got used to the device.”

But the primary problem with even low-resolution devices is that scientists are only just beginning to understand how information is actually encoded in brain data. In the future, powerful new decoding algorithms could discover that even raw, low-resolution EEG data contains a wealth of information about a person’s mental state at the time of collection. Consequently, nobody can definitively know what they are giving away when they allow companies to collect information from their brains.

Huth and Tang concluded that brain data, therefore, should be closely guarded, especially in the realm of consumer products. In an article on Medium from last April, Tang wrote that “decoding technology is continually improving, and the information that could be decoded from a brain scan a year from now may be very different from what can be decoded today. It is crucial that companies are transparent about what they intend to do with brain data and take measures to ensure that brain data is carefully protected.” (Yuste said the Neurorights Foundation recently surveyed the user agreements of 30 neurotech companies and found that all of them claim ownership of users’ brain data — and most assert the right to sell that data to third parties. [emphases mine]) Despite these concerns, however, Huth and Tang maintained that the potential benefits of these technologies outweighed their risks, provided the proper guardrails [emphasis mine] were put in place.

It would seem the first guardrails are being set up in South America (from Reveley’s January 18, 2024 article), Note: Links have been removed,

On a hot summer night in 2019, Yuste sat in the courtyard of an adobe hotel in the north of Chile with his close friend, the prominent Chilean doctor and then-senator Guido Girardi, observing the vast, luminous skies of the Atacama Desert and discussing, as they often did, the world of tomorrow. Girardi, who every year organizes the Congreso Futuro, Latin America’s preeminent science and technology event, had long been intrigued by the accelerating advance of technology and its paradigm-shifting impact on society — “living in the world at the speed of light,” as he called it. Yuste had been a frequent speaker at the conference, and the two men shared a conviction that scientists were birthing technologies powerful enough to disrupt the very notion of what it meant to be human.

Around midnight, as Yuste finished his pisco sour, Girardi made an intriguing proposal: What if they worked together to pass an amendment to Chile’s constitution, one that would enshrine protections for mental privacy as an inviolable right of every Chilean? It was an ambitious idea, but Girardi had experience moving bold pieces of legislation through the senate; years earlier he had spearheaded Chile’s famous Food Labeling and Advertising Law, which required companies to affix health warning labels on junk food. (The law has since inspired dozens of countries to pursue similar legislation.) With BCI, here was another chance to be a trailblazer. “I said to Rafael, ‘Well, why don’t we create the first neuro data protection law?’” Girardi recalled. Yuste readily agreed.

… Girardi led the political push, promoting a piece of legislation that would amend Chile’s constitution to protect mental privacy. The effort found surprising purchase across the political spectrum, a remarkable feat in a country famous for its political polarization. In 2021, Chile’s congress unanimously passed the constitutional amendment, which Piñera [Sebastián Piñera] swiftly signed into law. (A second piece of legislation, which would establish a regulatory framework for neurotechnology, is currently under consideration by Chile’s congress.) “There was no divide between the left or right,” recalled Girardi. “This was maybe the only law in Chile that was approved by unanimous vote.” Chile, then, had become the first country in the world to enshrine “neurorights” in its legal code.

Even before the passage of the Chilean constitutional amendment, Yuste had begun meeting regularly with Jared Genser, an international human rights lawyer who had represented such high-profile clients as Desmond Tutu, Liu Xiaobo, and Aung San Suu Kyi. (The New York Times Magazine once referred to Genser as “the extractor” for his work with political prisoners.) Yuste was seeking guidance on how to develop an international legal framework to protect neurorights, and Genser, though he had just a cursory knowledge of neurotechnology, was immediately captivated by the topic. “It’s fair to say he blew my mind in the first hour of discussion,” recalled Genser. Soon thereafter, Yuste, Genser, and a private-sector entrepreneur named Jamie Daves launched the Neurorights Foundation, a nonprofit whose first goal, according to its website, is “to protect the human rights of all people from the potential misuse or abuse of neurotechnology.”

To accomplish this, the organization has sought to engage all levels of society, from the United Nations and regional governing bodies like the Organization of American States, down to national governments, the tech industry, scientists, and the public at large. Such a wide-ranging approach, said Genser, “is perhaps insanity on our part, or grandiosity. But nonetheless, you know, it’s definitely the Wild West as it comes to talking about these issues globally, because so few people know about where things are, where they’re heading, and what is necessary.”

This general lack of knowledge about neurotech, in all strata of society, has largely placed Yuste in the role of global educator — he has met several times with U.N. Secretary-General António Guterres, for example, to discuss the potential dangers of emerging neurotech. And these efforts are starting to yield results. Guterres’s 2021 report, “Our Common Agenda,” which sets forth goals for future international cooperation, urges “updating or clarifying our application of human rights frameworks and standards to address frontier issues,” such as “neuro-technology.” Genser attributes the inclusion of this language in the report to Yuste’s advocacy efforts.

But updating international human rights law is difficult, and even within the Neurorights Foundation there are differences of opinion regarding the most effective approach. For Yuste, the ideal solution would be the creation of a new international agency, akin to the International Atomic Energy Agency — but for neurorights. “My dream would be to have an international convention about neurotechnology, just like we had one about atomic energy and about certain things, with its own treaty,” he said. “And maybe an agency that would essentially supervise the world’s efforts in neurotechnology.”

Genser, however, believes that a new treaty is unnecessary, and that neurorights can be codified most effectively by extending interpretation of existing international human rights law to include them. The International Covenant of Civil and Political Rights, for example, already ensures the general right to privacy, and an updated interpretation of the law could conceivably clarify that that clause extends to mental privacy as well.

There is no need for immediate panic (from Reveley’s January 18, 2024 article),

… while Yuste and the others continue to grapple with the complexities of international and national law, Huth and Tang have found that, for their decoder at least, the greatest privacy guardrails come not from external institutions but rather from something much closer to home — the human mind itself. Following the initial success of their decoder, as the pair read widely about the ethical implications of such a technology, they began to think of ways to assess the boundaries of the decoder’s capabilities. “We wanted to test a couple kind of principles of mental privacy,” said Huth. Simply put, they wanted to know if the decoder could be resisted.

In late 2021, the scientists began to run new experiments. First, they were curious if an algorithm trained on one person could be used on another. They found that it could not — the decoder’s efficacy depended on many hours of individualized training. Next, they tested whether the decoder could be thrown off simply by refusing to cooperate with it. Instead of focusing on the story that was playing through their headphones while inside the fMRI machine, participants were asked to complete other mental tasks, such as naming random animals, or telling a different story in their head. “Both of those rendered it completely unusable,” Huth said. “We didn’t decode the story they were listening to, and we couldn’t decode anything about what they were thinking either.”

Given how quickly this field of research is progressing, it seems like a good idea to increase efforts to establish neurorights (from Reveley’s January 18, 2024 article),

For Yuste, however, technologies like Huth and Tang’s decoder may only mark the beginning of a mind-boggling new chapter in human history, one in which the line between human brains and computers will be radically redrawn — or erased completely. A future is conceivable, he said, where humans and computers fuse permanently, leading to the emergence of technologically augmented cyborgs. “When this tsunami hits us I would say it’s not likely it’s for sure that humans will end up transforming themselves — ourselves — into maybe a hybrid species,” Yuste said. He is now focused on preparing for this future.

In the last several years, Yuste has traveled to multiple countries, meeting with a wide assortment of politicians, supreme court justices, U.N. committee members, and heads of state. And his advocacy is beginning to yield results. In August, Mexico began considering a constitutional reform that would establish the right to mental privacy. Brazil is currently considering a similar proposal, while Spain, Argentina, and Uruguay have also expressed interest, as has the European Union. In September [2023], neurorights were officially incorporated into Mexico’s digital rights charter, while in Chile, a landmark Supreme Court ruling found that Emotiv Inc, a company that makes a wearable EEG headset, violated Chile’s newly minted mental privacy law. That suit was brought by Yuste’s friend and collaborator, Guido Girardi.

“This is something that we should take seriously,” he [Huth] said. “Because even if it’s rudimentary right now, where is that going to be in five years? What was possible five years ago? What’s possible now? Where’s it gonna be in five years? Where’s it gonna be in 10 years? I think the range of reasonable possibilities includes things that are — I don’t want to say like scary enough — but like dystopian enough that I think it’s certainly a time for us to think about this.”

You can find The Neurorights Foundation here and/or read Reveley’s January 18, 2024 article on salon.com or as originally published January 3, 2024 on Undark. Finally, thank you for the article, Fletcher Reveley!

Japan inaugurates world’s biggest experimental operating nuclear fusion reactor

Andrew Paul’s December 4, 2023 article for Popular Science attempts to give readers a sense of the scale and this is one of those times when words are better than pictures, Note: Links have been removed,

Japan and the European Union have officially inaugurated testing at the world’s largest experimental nuclear fusion plant. Located roughly 85 miles north of Tokyo, the six-story, JT-60SA “tokamak” facility heats plasma to 200 million degrees Celsius (around 360 million Fahrenheit) within its circular, magnetically insulated reactor. Although JT-60SA first powered up during a test run back in October [2023], the partner governments’ December 1 announcement marks the official start of operations at the world’s biggest fusion center, reaffirming a “long-standing cooperation in the field of fusion energy.”

The tokamak—an acronym of the Russian-language designation of “toroidal chamber with magnetic coils”—has led researchers’ push towards achieving the “Holy Grail” of sustainable green energy production for decades. …

Speaking at the inauguration event, EU energy commissioner Kadri Simson referred to the JT-60SA as “the most advanced tokamak in the world,” representing “a milestone for fusion history.”

But even if such a revolutionary milestone is crossed, it likely won’t be at JT-60SA. Along with its still-in-construction sibling, the International Thermonuclear Experimental Reactor (ITER) in Europe, the projects are intended solely to demonstrate scalable fusion’s feasibility. Current hopes estimate ITER’s operational start for sometime in 2025, although the undertaking has been fraught with financial, logistical, and construction issues since its groundbreaking back in 2011.

See what I mean about a picture not really conveying the scale,

Until ITER turns on, Japan’s JT-60SA fusion reactor will be the largest in the world.National Institutes for Quantum Science and Technology

Dennis Normile’s October 31, 2023 article for Science magazine describes the facility’s (Japan’s JT-60SA fusion reactor) test run and future implications for the EU’s ITER project,

The long trek toward practical fusion energy passed a milestone last week when the world’s newest and largest fusion reactor fired up. Japan’s JT-60SA uses magnetic fields from superconducting coils to contain a blazingly hot cloud of ionized gas, or plasma, within a doughnut-shaped vacuum vessel, in hope of coaxing hydrogen nuclei to fuse and release energy. The four-story-high machine is designed to hold a plasma heated to 200 million degrees Celsius for about 100 seconds, far longer than previous large tokamaks.

Last week’s achievement “proves to the world that the machine fulfills its basic function,” says Sam Davis, a project manager at Fusion for Energy, an EU organization working with Japan’s National Institutes for Quantum Science and Technology (QST) on JT-60SA and related programs. It will take another 2 years before JT-60SA produces the long-lasting plasmas needed for meaningful physics experiments, says Hiroshi Shirai, leader of the project for QST.

JT-60SA will also help ITER, the mammoth international fusion reactor under construction in France that’s intended to demonstrate how fusion can generate more energy than goes into producing it. ITER will rely on technologies and operating know-how that JT-60SA will test.

Japan got to host JT-60SA and two other small fusion research facilities as a consolation prize for agreeing to let ITER go to France. …

As Normile notes, the ITER project has had a long and rocky road so far.

The Canadians

As it turns out, there’s a company in British Columbia, Canada that is also on the road to fusion energy. Not so imaginatively, it’s called General Fusion but it has a different approach to developing this ‘clean energy’. (See my October 28, 2022 posting, “Overview of fusion energy scene,” which includes information about the international scene and some of the approaches, including General Fusion’s, to developing the technology and my October 11, 2023 posting offers an update to the General Fusion situation.) Since my October 2023 posting, there have been a few developments at General Fusion.

This December 4, 2023 General Fusion news release celebrates a new infusion of cash from the Canadian government and take special note of the first item in the ‘Quick Facts’ of the advantage this technology offers,

Today [December 4, 2023], General Fusion announced that Canada’s Strategic Innovation Fund (SIF) has awarded CA$5 million to support research and development to advance the company’s Magnetized Target Fusion (MTF) demonstration at its Richmond headquarters. Called LM26, this ground-breaking machine will progress major technical milestones required to commercialize zero-carbon fusion power by the early to mid-2030s. The funds are an addition to the existing contribution agreement with SIF, to support the development of General Fusion’s transformational technology.

Fusion energy is the ultimate clean energy solution. It is what powers the sun and stars. It’s the process by which two light nuclei merge to form a heavier one, emitting a massive amount of energy. By 2100, the production and export of the Canadian industry’s fusion energy technology could provide up to $1.26 trillion in economic benefits to Canada. Additionally, fusion could completely offset 600 MT CO2-e emissions, the equivalent of over 160 coal-fired power plants for a single year. When commercialized, a single General Fusion power plant will be designed to provide zero-carbon power to approximately 150,000 Canadian homes, with the ability to be placed close to energy demand at a cost competitive with other energy sources such as coal and natural gas.1

Quotes:

“For more than 20 years, General Fusion has advanced its uniquely practical Magnetized Target Fusion technology and IP at its Canadian headquarters. LM26 will significantly de-risk our commercialization program and puts us on track to bring our game-changing, zero-emissions energy solution to Canada, and the world, in the next decade,” said Greg Twinney, CEO, General Fusion.

“Fusion technology has the potential to completely revolutionize the energy sector by giving us access to an affordable unlimited renewable power source. Since General Fusion is at the forefront of this technology, our decision to keep supporting the company will give us the tools we need to reduce greenhouse gas emissions and reach our climate goals. Our government is proud to invest in this innovative project to drive the creation of hundreds of middle-class jobs and position Canada as a world leader in fusion energy technology,” said The Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry.

“British Columbia has a thriving innovation economy. In August, the B.C. Government announced CA$5 million in provincial support for General Fusion’s homegrown technology, and we’re pleased to see the Federal government has now provided funds to support General Fusion. These investments will help General Fusion as they continue to develop their core technology right here in B.C.,” said Brenda Bailey, B.C. Minister of Jobs, Economic Development and Innovation.

Quick Facts:

*Magnetized Target Fusion uniquely sidesteps challenges to commercialization that other technologies face. The game-changer is a proprietary liquid metal liner in the commercial fusion machine that is mechanically compressed by high-powered pistons. This enables fusion conditions to be created in short pulses rather than creating a sustained reaction. General Fusion’s design does not require large superconducting magnets or an expensive array of lasers.

*LM26 aims to achieve two of the most significant technical milestones required to commercialize fusion energy, targeting fusion conditions of over 100 million degrees Celsius by 2025, and progressing toward scientific breakeven equivalent by 2026.

*LM26’s plasmas will be approximately 50 per cent scale of a commercial fusion machine. It aims to achieve deuterium-tritium breakeven equivalent using deuterium fuel.

*The Canadian government is investing an additional CA$5 million for a total of CA$54.3 million to support the development of General Fusion’s energy technology through the Strategic Innovation Fund program.

*As a result of the government’s ongoing support, General Fusion has advanced its technology, building more than 24 plasma prototypes, filing over 170 patents, and conducting more than 200,000 experiments at its Canadian labs.

This January 11, 2024 General Fusion news release highlights some of the company’s latest research,

General Fusion has published new, peer-reviewed scientific results that validate the company has achieved the smooth, rapid, and symmetric compression of a liquid cavity that is key to the design of a commercial Magnetized Target Fusion power plant. The results, published in one of the foremost scientific journals in fusion, Fusion Engineering and Design [open access paper], validate the performance of General Fusion’s proprietary liquid compression technology for Magnetized Target Fusion and are scalable to a commercial machine.

General Fusion’s Magnetized Target Fusion technology uses mechanical compression of a plasma to achieve fusion conditions. High-speed drivers rapidly power a precisely shaped, symmetrical collapse of a liquid metal cavity that envelopes the plasma. In three years, General Fusion commissioned a prototype of its liquid compression system and completed over 1,000 shots, validating the compression technology. In addition, this scale model of General Fusion’s commercial compression system verified the company’s open-source computational fluid dynamics simulation. The paper confirms General Fusion’s concept for the compression system of a commercial machine.

“General Fusion has proven success scaling individual technologies, creating the pathway to integrate, deploy, and commercialize practical fusion energy,” said Greg Twinney, CEO, General Fusion. “The publication of these results demonstrates General Fusion has the science and engineering capabilities to progress the design of our proprietary liquid compression system to commercialization.”

General Fusion’s approach to compressing plasma to create fusion energy is unique. Its Magnetized Target Fusion technology is designed to address the barriers to commercialization that other fusion technologies still face. The game-changer is the proprietary liquid metal liner in the fusion vessel that is mechanically compressed by high-powered pistons. This allows General Fusion to create fusion conditions in short pulses, rather than creating a sustained reaction, while protecting the machine’s vessel, extracting heat, and re-breeding fuel.

Today [January 11, 2024] at its Canadian labs, General Fusion is building a ground-breaking Magnetized Target Fusion demonstration called Lawson Machine 26 (LM26). Designed to reach fusion conditions of over 100 million degrees Celsius by 2025 and progress towards scientific breakeven equivalent by 2026, LM26 fast-tracks General Fusion’s technical progress to provide commercial fusion energy to the grid by the early to mid-2030s.

Exciting times for us all and I wish good luck to all of the clean energy efforts wherever they are being pursued.