Tag Archives: European Union Horizon 2020

Thinking outside the curriculum: ‘Open schooling’ for science

An anecdote kicks off this October 20, 2023 news item on phys.org,

In a part of Sweden northeast of Stockholm, Nina Berglund likes trying out new ways to teach her science students aged 10 to 12.

Berglund recently invited a physics professor named Staffan Yngve to her class in the municipality of Norrtälje. Yngve brought with him a nail mat on which he proceeded to lie down to demonstrate the forces at work, delighting the students. “Even four months after, my pupils still remember it and speak about the visit using scientific terminology,” said Berglund.

She is a proponent of “open schooling,” an idea that science teaching must go beyond the staples of school labs such as test tubes, Bunsen burners and the periodic table to get students interested.

Amid concerns that Europe is attracting too few people—especially women—into scientific fields, the aim is to bring science to life for pupils.

While it has no formal defining characteristics, open schooling tends to feature activities such as on-site visits, off-site trips and remote learning that are generally exceptions in standard schools.

The story about open schooling in Europe comes from an October 19, 2023 article written by Andrew Dunne for Horizon: The EU Research & Innovation Magazine (also on Horizon science blog), Note: A link has been removed,

‘The big idea is to overcome the barriers we see with science education,’ said Maya Halevy, director of the Bloomfield Science Museum in Jerusalem, Israel.

Halevy led a research project that received EU funding to advance the whole concept. Called Make it Open, or MiO, the project ended in September 2023 after three years.

It helped to establish open schooling “hubs” in 10 European countries ranging from Sweden to Greece, bringing together more than 150 schools.

… at a Spanish educational institution called IES de Ortigueira in the northwestern part of the country, 12-year-olds learnt about physics by designing and building model playgrounds. The models were then displayed in the library, where the students explained their work to visitors.

At the primary school of Makrygialos near Greece’s second-biggest city, Thessaloniki, teacher Thanos Batsilas and his students were part of a living lab that taught environmental science through an activity involving mussel farming.

They accompanied farmers on a boat out to sea to observe how the environment is inextricably linked to the wellbeing of area residents and how climate change is advancing. The underlying point was that mussel farming is a viable way to make a living and can help support the local ecosystem.

Children loved the living-lab activities because they love anything that is out of the box,’ Batsilas said. ‘They embrace it.’

Koulouris [Pavlos Koulouris, faculty member at a school called Ellinogermaniki Agogi] said open schooling has the potential to turn traditional notions of academic achievement on their head.

You can find the Make it Open website here.

Art and 5G at museums in Turin (Italy)

Caption: In the framework of EU-funded project 5GTours, R1 humanoid robot tested at GAM (Turin) its ability to navigate and interact with visitors at the 20th-century collections, accompanying them to explore a selection of the museum’s most representative works, such as Andy Warhol’s “Orange car crash”. The robot has been designed and developed by IIT, while the 5G connection was set up by TIM using Ericsson technology.. Credit: IIT-Istituto Italiano di Tecnologia/GAM

This May 27, 2022 Istituto Italiano di Tecnologia (IIT) press release on EurekAlert offers an intriguing view into the potential for robots in art galleries,

Robotics, 5G and art: during the month of May visitors to the Turin’s art museums, Turin Civic Gallery of Modern and Contemporary Art (GAM) and Turin City Museum of Ancient Art (Palazzo Madama), had the opportunity to be part of various experiments based on 5G-network technology. Interactive technologies and robots were the focus of an innovative enjoyment of the art collections, with a great appreciation from the public.

Visitors to the GAM and to Palazzo Madama were provided with a number of engaging interactive experiences made possible through a significant collaboration between public and private organisations, which have been working together for more than three years to experiment the potential of new 5G technology in the framework of the EU-funded project 5GTours (https://5gtours.eu/).

The demonstrations set up in Turin led to the creation of innovative applications in the tourism and culture sectors that can easily be replicated in any artistic or museum context.

In both venues, visitors had the opportunity to meet R1, the humanoid robot designed by the IIT-Istituto Italiano di Tecnologia (Italian Institute of Technology) in Genova and created to operate in domestic and professional environments, whose autonomous and remote navigation system is well integrated with the bandwidth and latency offered by a 5G connection. R1, the robot – 1 metre 25 cm in height, weighing 50 kg, made 50% from plastic and 50% from carbon fibre and metal – is able to describe the works and answer questions regarding the artist or the period in history to which the work belongs. 5G connectivity is required in order to transmit the considerable quantity of data generated by the robot’s sensors and the algorithms that handle environmental perception, autonomous navigation and dialogue to external processing systems with extremely rapid response times.

At Palazzo Madama R1 humanoid robot led a guided tour of the Ceramics Room, while at GAM it was available to visitors of the twentieth-century collections, accompanying them to explore a selection of the museum’s most representative works. R1 robot explained and responded to questions about six relevant paintings: Felice Casorati’s “Daphne a Pavarolo”, Osvaldo Lucini’s “Uccello 2”, Marc Chagall’s “Dans mon pays”, Alberto Burri’s “Sacco”, Andy Warhol’s “Orange car crash” and Mario Merz’s “Che Fare?”.

Moreover, visitors – with the use of Meta Quest visors also connected to the 5G network – were required to solve a puzzle, putting the paintings in the Guards’ Room back into their frames. With these devices, the works in the hall, which in reality cannot be touched, can be handled and moved virtually. Lastly, the visitors involved had the opportunity to visit the underground spaces of Palazzo Madama with the mini-robot Double 3, which uses the 5G network to move reactively and precisely within the narrow spaces.

At GAM a class of students from a local school were able to remotely connect and manoeuvre the mini-robot Double 3 located in the rooms of the twentieth-century collections at the GAM directly from their classroom. A treasure hunt held in the museum with the participants never leaving the school.

In the Educational Area, a group of youngsters had the opportunity of collaborating in the painting of a virtual work of art on a large technological wall, drawing inspiration from works by Nicola De Maria.

The 5G network solutions created at the GAM and at Palazzo Madama by TIM [Telecom Italia] with Ericsson technology in collaboration with the City of Turin and the Turin Museum Foundation, guarantee constant high-speed transmission and extremely low latency. These solutions, which comply with 3GPP standard, are extremely flexible in terms of setting up and use. In the case of Palazzo Madama, a UNESCO World Heritage Site, tailor-made installations were designed, using apparatus and solutions that perfectly integrate with the museum spaces, while at the same time guaranteeing extremely high performance. At the GAM, the Radio Dot System has been implemented, a new 5G solution from Ericsson that is small enough to be held in the palm of a hand, and that provides network coverage and performance required for busy indoor areas. Thanks to these activities, Turin is ever increasingly playing a role as an open-air laboratory for urban innovation; since 2021 it has been the location of the “House of Emerging Technology – CTE NEXT”, a veritable centre for technology transfer via 5G and for emerging technologies coordinated by the Municipality of Turin and financed by the Ministry for Economic Development.

Through these solutions, Palazzo Madama and the GAM are now unique examples of technology in Italy and a rare example on a European level of museum buildings with full 5G coverage.

The experience was the result of the project financed by the European Union, 5G-TOURS 5G smarT mObility, media and e-health for toURists and citizenS”, the city of Turin – Department and Directorate of Innovation, in collaboration with the Department of Culture – Ericsson, TIM [Telecom Italia], the Turin Museum Foundation and the IIT-Istituto Italiano di Tecnologia (Italian Institute of Technology) of Genova, with the contribution of the international partners Atos and Samsung. The 5G coverage within the two museums was set up by TIM using Ericsson technology, solutions that perfectly integrated with the areas within the two museums structures.

Just in case you missed the link in the press release, you can find more information about this European Union Horizon 2020-funded 5G project, here at 5G TOURS (SmarT mObility, media and e-health for toURists and citizenS). You can find out more about the grant, e.g., this project sunset in July 2022, here.

SEMANTICS, a major graphene project based in Ireland

A Jan. 28, 2015 news item on Nanowerk profiles SEMANTICS, a major graphene project based in Ireland (Note: A link has been removed),

Graphene is the strongest, most impermeable and conductive material known to man. Graphene sheets are just one atom thick, but 200 times stronger than steel. The European Union is investing heavily in the exploitation of graphene’s unique properties through a number of research initiatives such as the SEMANTICS project running at Trinity College Dublin.

A Dec. 16, 2014 European Commission press release, which originated the news item, provides an overview of the graphene enterprise in Europe,

It is no surprise that graphene, a substance with better electrical and thermal conductivity, mechanical strength and optical purity than any other, is being heralded as the ‘wonder material’ of the 21stcentury, as plastics were in the 20thcentury.

Graphene could be used to create ultra-fast electronic transistors, foldable computer displays and light-emitting diodes. It could increase and improve the efficiency of batteries and solar cells, help strengthen aircraft wings and even revolutionise tissue engineering and drug delivery in the health sector.

It is this huge potential which has convinced the European Commission to commit €1 billion to the Future and Emerging Technologies (FET) Graphene Flagship project, the largest-ever research initiative funded in the history of the EU. It has a guaranteed €54 million in funding for the first two years with much more expected over the next decade.

Sustained funding for the full duration of the Graphene Flagship project comes from the EU’s Research Framework Programmes, principally from Horizon 2020 (2014-2020).

The aim of the Graphene Flagship project, likened in scale to NASA’s mission to put a man on the moon in the 1960s, or the Human Genome project in the 1990s, is to take graphene and related two-dimensional materials such as silicene (a single layer of silicon atoms) from a state of raw potential to a point where they can revolutionise multiple industries and create economic growth and new jobs in Europe.

The research effort will cover the entire value chain, from materials production to components and system integration. It will help to develop the strong position Europe already has in the field and provide an opportunity for European initiatives to lead in global efforts to fully exploit graphene’s miraculous properties.

Under the EU plan, 126 academics and industry groups from 17 countries will work on 15 individual but connected projects.

The press release then goes on to describe a new project, SEMANTICS,

… this is not the only support being provided by the EU for research into the phenomenal potential of graphene. The SEMANTICS research project, led by Professor Jonathan Coleman at Trinity College Dublin, is funded by the European Research Council (ERC) and has already achieved some promising results.

The ERC does not assign funding to particular challenges or objectives, but selects the best scientists with the best ideas on the sole criterion of excellence. By providing complementary types of funding, both to individual scientists to work on their own ideas, and to large-scale consortia to coordinate top-down programmes, the EU is helping to progress towards a better knowledge and exploitation of graphene.

“It is no overestimation to state that graphene is one of the most exciting materials of our lifetime,” Prof. Coleman says. “It has the potential to provide answers to the questions that have so far eluded us. Technology, energy and aviation companies worldwide are racing to discover the full potential of graphene. Our research will be an important element in helping to realise that potential.”

With the help of European Research Council (ERC) Starting and Proof of Concept Grants, Prof. Coleman and his team are researching methods for obtaining single-atom layers of graphene and other layered compounds through exfoliation (peeling off) from the multilayers, followed by deposition on a range of surfaces to prepare films displaying specific behaviour.

“We’re working towards making graphene and other single-atom layers available on an economically viable industrial scale, and making it cheaply,” Prof. Coleman continues.

“At CRANN [Centre for Research on Adaptive Nanostructures and Nanodevices at Trinity College Dublin], we are developing nanosheets of graphene and other single-atom materials which can be made in very large quantities,” he adds. “When you put these sheets in plastic, for example, you make the plastic stronger. Not only that – you can massively increase its electrical properties, you can improve its thermal properties and you can make it less permeable to gases. The applications for industry could be endless.”

Prof. Coleman admits that scientists are regularly taken aback by the potential of graphene. “We are continually amazed at what graphene and other single-atom layers can do,” he reveals. “Recently it has been discovered that, when added to glue, graphene can make it more adhesive. Who would have thought that? It’s becoming clear that graphene just makes things a whole lot better,” he concludes.

So far, the project has developed a practical method for producing two-dimensional nanosheets in large quantities. Crucially, these nanosheets are already being used for a range of applications, including the production of reinforced plastics and metals, building super-capacitors and batteries which store energy, making cheap light detectors, and enabling ultra-sensitive position and motion sensors. As the number of application grows, increased demand for these materials is anticipated. In response, the SEMANTICS team has scaled up the production process and is now producing 2D nanosheets at a rate more than 1000 times faster than was possible just a year ago.

I believe that new graphene production process is the ‘blender’ technique featured here in an April 23, 2014 post. There’s also a profile of the ‘blender’ project  in a Dec. 10, 2014 article by Ben Deighton for the European Commission’s Horizon magazine (Horizon 2020 is the European Union’s framework science funding programme). Deighton’s article hosts a video of Jonathan Coleman speaking about nanotechnology, blenders, and more on Dec. 1, 2014 at TEDxBrussels.

The long road to commercializing nanotechnology-enabled products in Europe: the IP Nanoker Project

IP Nanoker, a nanotechnology commercialization project, was a European Union 7th Framework Programme-funded project from 2005 – 2009. So, how does IP Nanoker end up in a June 11, 2014 news item on Nanowerk? The road to commercialization is not only long, it is also winding as this news item points out in an illuminating fashion,

Superior hip, knee and dental implants, a new generation of transparent airplane windows and more durable coatings for automotive engines are just some of the products made possible – and cheaper – by the EU-funded IP NANOKER project. Many of these materials are now heading to market, boosting Europe’s competitiveness and creating jobs.

Launched back in 2005, the four-year project set out to build upon Europe’s expertise and knowledge in nanoceramics and nanocomposites.

Nanocomposites entirely made up of ceramic and metallic nanoscale particles – particles that are usually between 1 and 100 nanometres in size – are a broad new class of engineered materials that combine excellent mechanical performance with critical functionalities such as transparency, biocompatibility, and wear resistance.

These materials offer improvements over conventional materials. For some advanced optical applications – such as windows for aircraft – glass is too brittle. Nanoceramics offer both transparency and toughness, and thanks to IP NANOKER, can now be manufactured at a significantly reduced cost.
Indeed, one of the most important outcomes of IP NANOKER has been the development of new dense nanostructured materials as hard as diamond. The fabrication of these super hard materials require extreme conditions of high temperature and pressure, which is why IP NANOKER project partners developed a customised Spark Plasma Sintering machine.

“This new equipment is the largest in the world (12 metres high, 6 metres wide and 5 metres deep), and features a pressing force up to 400 tonnes and will allow the fabrication of near-net shaped products up to 400mm in diameter”, explains project coordinator Ramon Torrecillas from Spain’s Council for Scientific Research (CSIC).

This is obviously a distilled and simplified version of what occurred but, first, they developed the technology, then they developed a machine that would allow them to manufacture their nanotechnology-enabled materials. It’s unclear as to whether or not the machine was developed during the project years of 2005 – 2009 but the project can trace its impact in other ways (from the March 27, 2014 European Union news release), which originated the news item,

The project promises to have a long-lasting impact. In 2013, some former IP NANOKER partners launched a public-private initiative with the objective of bridging the gap between research and industry and boosting the industrial application of Spark Plasma Sintering in the development of nanostructured multifunctional materials.

Potential new nanomaterial-based products hitting the market soon include ultra-hard cutting and mining tools, tough ceramic armour and mirrors for space telescopes.

“Another positive result arising from IP NANOKER was the launch in 2011 of Nanoker Research, a Spanish spin-off company,” says Prof Torrecillas. “This company was formed by researchers from two of the project partners, CSIC and Cerámica Industrial Montgatina, and currently employs 19 people.”
IP NANOKER was also instrumental in creating the Nanomaterials and Nanotechnology Research Centre (CINN) in Spain, a joint initiative of the CSIC, the University of Oviedo and the Regional Government of Asturias.

As a result of its economic and societal impact, IP NANOKER was selected as project finalist in two European project competitions: Industrial Technologies 2012 and Euronanoforum 2013.
Some three years after its completion, the positive effects of the project are still being felt. Prof Torrecillas is delighted with the results, and argues that only a pan-European project could have achieved such ambitious goals.

“As an industry-led project, IP NANOKER provided a suitable framework for research on top-end applications that require not only costly technologies but also very specific know-how,” he says. “Thus, bringing together the best European experts in materials science, chemistry, physics and engineering and focusing the work of these multidisciplinary teams on specific applications, was the only way to face the project challenges.”

The technology for producing these materials/coatings has yet to be truly commercialized. They face a somewhat tumultuous future as they develop markets for their products and build up manufacturing capabilities almost simultaneously.

They will definitely use ‘push’ strategies, i.e., try to convince car manufacturers, hip implant manufacturers,etc. their materials are a necessity for improved sales of the product (car, hip implant, etc.).

They could also use ‘pull’ strategies with retailers (convince them their sales will improve) and or the general public (this will make your life easier, better, more exciting, safer, etc.). The hope with a pull strategy is that retailers and/or the general public will start demanding these improved products (car, hip implants, etc.) and the manufacturers will be clamouring for your nanotechnology-enabled materials.

Of course, if you manage to create a big demand, then you have the problem of delivering your product, which brings this post back to manufacturing and having to address capacity issues. You will also have competitors, which likely means the technology and/or  the buyers’ ideas about the technology, will evolve, at least in the short term, while the market (as they say) shakes out.

If you want to read more about some of the issues associated with commercializing nanotechnology-enabled products, there’s this Feb. 10, 2014 post titled, ‘Valley of Death’, ‘Manufacturing Middle’, and other concerns in new government report about the future of nanomanufacturing in the US‘ about a report from the US Government Accountability Office (GAO) and a May 23, 2014 post titled, ‘Competition, collaboration, and a smaller budget: the US nano community responds‘, which touches on some commercialization issues, albeit, within a very different context.

One final note, it’s interesting to note that the March 2014 news release about IP Nanoker is on a Horizon 2020 (this replaces the European Union’s 7th Framework Programme) news website. I expect officials want to emphasize the reach and impact these funded projects have over time.