Tag Archives: femtosecond laser writing

5D data storage is forever

Combine nanostructured glass and femtosecond laser writing with five-dimensional digital data and you can wave goodbye to any anxieties about losing information. Researchers at Southampton University (UK) made the announcement in a Feb. 15, 2016 news item on ScienceDaily,

Scientists at the University of Southampton have made a major step forward in the development of digital data storage that is capable of surviving for billions of years.

Using nanostructured glass, scientists from the University’s Optoelectronics Research Centre (ORC) have developed the recording and retrieval processes of five dimensional (5D) digital data by femtosecond laser writing.

A Feb. 15, 2016 University of Southampton press release (also on EurekAlert), which originated the news item, offers more detail,

The storage allows unprecedented properties including 360 TB [Terabyte]/disc data capacity, thermal stability up to 1,000°C and virtually unlimited lifetime at room temperature (13.8 billion years at 190°C ) opening a new era of eternal data archiving. As a very stable and safe form of portable memory, the technology could be highly useful for organisations with big archives, such as national archives, museums and libraries, to preserve their information and records.

The technology was first experimentally demonstrated in 2013 when a 300 kb [kilobit] digital copy of a text file was successfully recorded in 5D.

Now, major documents from human history such as [the] Universal Declaration of Human Rights (UDHR), Newton’s Opticks, Magna Carta and Kings [sic] James Bible, have been saved as digital copies that could survive the human race. A copy of the UDHR encoded to 5D data storage was recently presented to UNESCO by the ORC at the International Year of Light (IYL) closing ceremony in Mexico.

The documents were recorded using ultrafast laser, producing extremely short and intense pulses of light. The file is written in three layers of nanostructured dots separated by five micrometres (one millionth of a metre).

The self-assembled nanostructures change the way light travels through glass, modifying polarisation of light that can then be read by combination of optical microscope and a polariser, similar to that found in Polaroid sunglasses.

Coined as the ‘Superman memory crystal’, as the glass memory has been compared to the “memory crystals” used in the Superman films, the data is recorded via self-assembled nanostructures created in fused quartz. The information encoding is realised in five dimensions: the size and orientation in addition to the three dimensional position of these nanostructures.

Professor Peter Kazansky, from the ORC, says: “It is thrilling to think that we have created the technology to preserve documents and information and store it in space for future generations. This technology can secure the last evidence of our civilisation: all we’ve learnt will not be forgotten.”

The researchers will present their research at the photonics industry’s renowned SPIE—The International Society for Optical Engineering Conference in San Francisco, USA this week. The invited paper, ‘5D Data Storage by Ultrafast Laser Writing in Glass’ will be presented on Wednesday 17 February [2016].

The team are now looking for industry partners to further develop and commercialise this ground-breaking new technology.

I have written a number of pieces about digitization, data storage, and memory such as this Jan. 30, 2014 post titled, Does digitizing material mean it’s safe? A tale of Canada’s Fisheries and Oceans scientific libraries. If you scroll down about 50% of the way, you’ll find some material that provides an overview.

Universal Declaration of Human Rights recorded into 5D optical data

Universal Declaration of Human Rights recorded into 5D optical data

 

Femtosecond laser writing and lenses

I’m highlighting this because I found a great new word in this Dec. 16, 2011 news item on Nanowerk,

Whether it’s right under our nose or far away, when we observe an object we see it—provided we have healthy eyes and normal vision or suitable glasses—in focus. For this to work, muscles deform the lenses of our eyes and adjust them to a suitable focal distance. For miniaturized technical devices, microscale lenses with a similar adaptable focus could be an advantage.

In this case scientist Hong Bo Bun and a team from Jilin University (China) have devised a new technique for creating microlenses. From the news item (here’s the new word),

The Chinese researchers have now met this challenge: They used a laser to “write” the desired micrometer-sized lens shape out of a solution of bovine serum albumin, a protein. Methylene blue acts as a photosensitizer, which captures the light energy like an antenna and triggers a crosslinking reaction of the protein molecules. Driven by a computer, the laser cuts out the desired three-dimensional form voxel by voxel. A voxel is a three-dimensional pixel, a tiny segment of volume. The irradiation used is in femtosecond pulses, which lasts on the order of 10-13 seconds. The crosslinking reaction only takes place in the locations that are irradiated. After the reaction, the protein molecules that have not reacted can simply be rinsed away. What stays behind is a cross-linked, aqueous protein gel in the shapes of micrometer-sized lenses.

You can get more details from the news item on Nanowerk or (provided you can get past the paywall) from the article in the journal Angewandte Chemie (“Dynamically Tunable Protein Microlenses”) .