Tag Archives: Fountain of Youth

Chemicals that slow biological aging in yeast might help humans too

A March 15, 2016 Concordia University (Montréal, Canada) news release (also on EurekAlert) describes research that may slow the aging process (Note: Links have been removed),

Even though the search for the Fountain of Youth dates back to the ancient Greeks, the quest to live forever continues today. Indeed, it has been said that the ability to slow the aging process would be the most important medical discovery in the modern era.

A new study published in the journal Oncotarget by researchers from Concordia and the Quebec-based biotech company Idunn Technologies may have uncovered an important factor: plant extracts containing the six best groups of anti-aging molecules ever seen.

For the study, the research team combed through Idunn Technologies’ extensive biological library, conducting more than 10,000 trials to screen for plant extracts that would increase the chronological lifespan of yeast.

Why yeast? Cellularly speaking, aging progresses similarly in both yeast and humans. It’s the best cellular model to understand how the anti-aging process takes place.

“In total, we found six new groups of molecules that decelerate the chronological aging of yeast,” says Vladimir Titorenko, the study’s senior author and a professor in the Department of Biology at Concordia. He carried out the study with a group of Concordia students and Éric Simard, the founder of Idunn Technologies, which is named for the goddess of rejuvenation in Norse mythology.

This has important implications not only for slowing the aging process, but also for preventing certain diseases associated with aging, including cancer.

“Rather than focus on curing the individual disease, interventions on the molecular processes of aging can simultaneously delay the onset and progression of most age-related disorders. This kind of intervention is predicted to have a much larger effect on healthy aging and life expectancy than can be attained by treating individual diseases,” says Simard, who notes that these new molecules will soon be available in commercial products.

“These results also provide new insights into mechanisms through which chemicals extracted from certain plants can slow biological aging,” says Titorenko.

One of these groups of molecules is the most potent longevity-extending pharmacological intervention yet described in scientific literature: a specific extract of willow bark.

Willow bark was commonly used during the time of Hippocrates, when people were advised to chew on it to relieve pain and fever. The study showed that it increases the average and maximum chronological lifespan of yeast by 475 per cent and 369 per cent, respectively. This represents a much greater effect than rapamycin and metformin, the two best drugs known for their anti-aging effects.

“These six extracts have been recognized as non-toxic by Health Canada, and already exhibit recognized health benefits in humans,” says Simard.

“But first, more research must be done. That’s why Idunn Technologies is collaborating with four other universities for six research programs, to go beyond yeast, and work with an animal model of aging, as well as two cancer models.”

A rather interesting image was included with the news release,

The Fountain of Youth, a 1546 painting by Lucas Cranach the Elder. Courtesy: Concordia University

The Fountain of Youth, a 1546 painting by Lucas Cranach the Elder. Courtesy: Concordia University

There’s also this,

An extract of willow bark has shown to be one of the most potent longevity-extending pharmacological interventions yet described in scientific literature. Courtesy: Concordia University

An extract of willow bark has shown to be one of the most potent longevity-extending pharmacological interventions yet described in scientific literature. Courtesy: Concordia University

Here’s a link to and a citation for the paper,

Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes by Vicky Lutchman, Younes Medkour, Eugenie Samson, Anthony Arlia-Ciommo, Pamela Dakik, Berly Cortes, Rachel Feldman, Sadaf Mohtashami, Mélissa McAuley, Marisa Chancharoen, Belise Rukundo, Éric Simard, Vladimir I. Titorenko. DOI: 10.18632/oncotarget.7665 Published: February 24, 2016

This appears to be an open access paper.

You can find out more about Idunn Technologies here but you will need French language reading skills as the English language version of the site is not yet available.

Ponce de León, new therapies against aging, and Spain

ScienceDaily published an intriguing Oct. 3, 2012 news item about anti-aging research in Spain,

A team of Spanish scientists has developed an intelligent nanodevice that lays the foundations for the future development of new therapies against aging. The device consists of nanoparticles that can selectively release drugs in aged human cells. Its potential future use ranges from the treatment of diseases involving tissue or cellular degeneration such as cancer, Alzheimer’s or Parkinson’s, among others, to accelerated aging disorders (progeria).

“The nanodevice that we have developed consists of mesoporous nanoparticles with a galactooligosaccharide outer surface that prevents the release of the load and that only selectively opens in degenerative phase cells or senescent cells. The proof of concept demonstrates for the first time that selected chemicals can be released in these cells and not in others,” says Ramón Martínez Máñez, researcher at the IDN Centre — Universitat Politècnica de València and CIBER-BBN member.

The researchers have evaluated the utility of the new nanodevices in primary cell cultures derived of patients with accelerated aging syndrome dyskeratosis congenita (DC). Such cultures show a high percentage of senescence characterized by elevated levels of beta-galactosidase activity, an enzyme characteristic of senescent state. “The aging cells overexpress this enzyme so we have designed nanoparticles that open when detected and release their contents in order to eliminate senescent cells, prevent deterioration or even reactivate for their rejuvenation,” explains Murguía [José Ramón Murguía, a researcher at the Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC) and also a CIBER-BBN member]. “There are a number of diseases associated with premature aging of tissues, many of which affect very young patients and for whom there is no therapeutic alternative, as in the case of DC or aplastic anemia. Other diseases affect adults, as idiopathic pulmonary fibrosis or liver cirrhosis. These nanoparticles represent a unique opportunity to selectively deliver therapeutic compounds to affected tissues and rescue their viability and functionality” explains Rosario Perona, researcher at the Instituto de Investigaciones Biomédicas (CSIC/UAM) and CIBERER member.

While this team is discussing therapeutic applications in the news item, they do note there are cosmetic applications.

Nicholas Wade in a Nov. 2, 2011 article for the New York Times explores some research in the US on senescent cells, aging, and possible therapies,

Senescent cells accumulate in aging tissues, like arthritic knees, cataracts and the plaque that may line elderly arteries. The cells secrete agents that stimulate the immune system and cause low-level inflammation. Until now, there has been no way to tell if the presence of the cells is good, bad or indifferent.

The answer turns out to be that the cells hasten aging in the tissues in which they accumulate. In a delicate feat of genetic engineering, a research team led by Darren J. Baker and Jan M. van Deursen at the Mayo Clinic in Rochester, Minn., has generated a strain of mouse in which all the senescent cells can be purged by giving the mice a drug that forces the cells to self-destruct.

Aging research is a relatively young field because until 20 or so years ago the prospect of defeating age seemed hopeless. Then researchers found that the lifespan of laboratory animals could be extended by manipulating certain genes, setting off a hunt for drugs that might influence the corresponding genes in people. This line of research remains promising but has produced few tangible results so far. The discovery that senescent cells seem to be the cause of tissue degeneration opens out a new direction for researchers on aging to explore.

In both mice and people, senescent cells are few in number but have major effects on the body’s tissues. Killing the cells should therefore have large benefits with little downside. The gene-altering approach used on the mice cannot be tried in people, but now that senescent cells appear to be harmful, researchers can devise ways of targeting them.

The purpose of research on aging, she said, is not to let people live a thousand years, as portrayed in science fiction, but to increase health span, the proportion of people’s natural lives that they live in good health.

“People used to see aging as a rusting nail — there’s nothing you can do about it,” Dr. Campisi [Judith Campisi, at the Buck Institute for Research on Aging] said. “But we now know that there are processes that are driving aging, and that those processes can be meddled with.”

It appears that this relatively new understanding of senescent cells has provided the basis for the work in Spain where they have successfully targeted senescent cells in vitro, the next step will be to test the device on animal models. You can find out more about this work in Spain at RUVID, although you will need Spanish language skills.

As for Juan Ponce de León, he was not quite the Fountain of Youth seeker we’ve been led to believe (from the Wikipedia essay; Note: I have removed links and footnotes),

Juan Ponce de León … (1474 – July 1521) was a Spanish explorer and conquistador. He became the first Governor of Puerto Rico by appointment of the Spanish crown. He led the first European expedition to Florida, which he named. He is associated with the legend of the Fountain of Youth, reputed to be in Florida.

According to a popular legend, Ponce de León discovered Florida while searching for the Fountain of Youth. Though stories of vitality-restoring waters were known on both sides of the Atlantic long before Ponce de León, the story of his searching for them was not attached to him until after his death. … Most historians hold that the search for gold and the expansion of the Spanish Empire were far more imperative than any potential search for the fountain.