Tag Archives: Frank Wilczek

Formation of a time (temporal) crystal

It’s a crystal arranged in time according to a March 8, 2017 University of Texas at Austin news release (also on EurekAlert), Note: Links have been removed,

Salt, snowflakes and diamonds are all crystals, meaning their atoms are arranged in 3-D patterns that repeat. Today scientists are reporting in the journal Nature on the creation of a phase of matter, dubbed a time crystal, in which atoms move in a pattern that repeats in time rather than in space.

The atoms in a time crystal never settle down into what’s known as thermal equilibrium, a state in which they all have the same amount of heat. It’s one of the first examples of a broad new class of matter, called nonequilibrium phases, that have been predicted but until now have remained out of reach. Like explorers stepping onto an uncharted continent, physicists are eager to explore this exotic new realm.

“This opens the door to a whole new world of nonequilibrium phases,” says Andrew Potter, an assistant professor of physics at The University of Texas at Austin. “We’ve taken these theoretical ideas that we’ve been poking around for the last couple of years and actually built it in the laboratory. Hopefully, this is just the first example of these, with many more to come.”

Some of these nonequilibrium phases of matter may prove useful for storing or transferring information in quantum computers.

Potter is part of the team led by researchers at the University of Maryland who successfully created the first time crystal from ions, or electrically charged atoms, of the element ytterbium. By applying just the right electrical field, the researchers levitated 10 of these ions above a surface like a magician’s assistant. Next, they whacked the atoms with a laser pulse, causing them to flip head over heels. Then they hit them again and again in a regular rhythm. That set up a pattern of flips that repeated in time.

Crucially, Potter noted, the pattern of atom flips repeated only half as fast as the laser pulses. This would be like pounding on a bunch of piano keys twice a second and notes coming out only once a second. This weird quantum behavior was a signature that he and his colleagues predicted, and helped confirm that the result was indeed a time crystal.

The team also consists of researchers at the National Institute of Standards and Technology, the University of California, Berkeley and Harvard University, in addition to the University of Maryland and UT Austin.

Frank Wilczek, a Nobel Prize-winning physicist at the Massachusetts Institute of Technology, was teaching a class about crystals in 2012 when he wondered whether a phase of matter could be created such that its atoms move in a pattern that repeats in time, rather than just in space.

Potter and his colleague Norman Yao at UC Berkeley created a recipe for building such a time crystal and developed ways to confirm that, once you had built such a crystal, it was in fact the real deal. That theoretical work was announced publically last August and then published in January in the journal Physical Review Letters.

A team led by Chris Monroe of the University of Maryland in College Park built a time crystal, and Potter and Yao helped confirm that it indeed had the properties they predicted. The team announced that breakthrough—constructing a working time crystal—last September and is publishing the full, peer-reviewed description today in Nature.

A team led by Mikhail Lukin at Harvard University created a second time crystal a month after the first team, in that case, from a diamond.

Here’s a link to and a citation for the paper,

Observation of a discrete time crystal by J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano, I.-D. Potirniche, A. C. Potter, A. Vishwanath, N. Y. Yao, & C. Monroe. Nature 543, 217–220 (09 March 2017) doi:10.1038/nature21413 Published online 08 March 2017

This paper is behind a paywall.

Space-time crystals and everlasting clocks

Apparently, a space-time crystal could be useful for such things as studying the many-body problem in physics.  Since I hadn’t realized the many-body problem existed and have no idea how this might affect me or anyone else, I will have to take the utility of a space-time crystal on trust.As for the possibility of an everlasting clock, how will I ever know the truth since I’m not everlasting?

The Sept. 24, 2012 news item on Nanowerk about a new development makes the space-time crystal sound quite fascinating,

Imagine a clock that will keep perfect time forever, even after the heat-death of the universe. This is the “wow” factor behind a device known as a “space-time crystal,” a four-dimensional crystal that has periodic structure in time as well as space. However, there are also practical and important scientific reasons for constructing a space-time crystal. With such a 4D crystal, scientists would have a new and more effective means by which to study how complex physical properties and behaviors emerge from the collective interactions of large numbers of individual particles, the so-called many-body problem of physics. A space-time crystal could also be used to study phenomena in the quantum world, such as entanglement, in which an action on one particle impacts another particle even if the two particles are separated by vast distances. [emphasis mine]

While I’m most interested in the possibility of studying entanglement, it seems to me the scientists are guessing since the verb ‘could’ is being used where they used ‘would’ previously for studying the many body problem.

The Sept. 24, 2012 news release by Lynn Yarris for the Lawrence Berkeley National Laboratory  (Berkeley Lab), which originated the news item, provides detail on the latest space-time crystal development,

A space-time crystal, however, has only existed as a concept in the minds of theoretical scientists with no serious idea as to how to actually build one – until now. An international team of scientists led by researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) has proposed the experimental design of a space-time crystal based on an electric-field ion trap and the Coulomb repulsion of particles that carry the same electrical charge.

“The electric field of the ion trap holds charged particles in place and Coulomb repulsion causes them to spontaneously form a spatial ring crystal,” says Xiang Zhang, a faculty scientist  with Berkeley Lab’s Materials Sciences Division who led this research. “Under the application of a weak static magnetic field, this ring-shaped ion crystal will begin a rotation that will never stop. The persistent rotation of trapped ions produces temporal order, leading to the formation of a space-time crystal at the lowest quantum energy state.”

Because the space-time crystal is already at its lowest quantum energy state, its temporal order – or timekeeping – will theoretically persist even after the rest of our universe reaches entropy, thermodynamic equilibrium or “heat-death.”

This new development builds on some work done earlier this year at the Massachusetts Institute of Technology (MIT), from the Yarris news release,

The concept of a crystal that has discrete order in time was proposed earlier this year by Frank Wilczek, the Nobel-prize winning physicist at the Massachusetts Institute of Technology. While Wilczek mathematically proved that a time crystal can exist, how to physically realize such a time crystal was unclear. Zhang and his group, who have been working on issues with temporal order in a different system since September 2011, have come up with an experimental design to build a crystal that is discrete both in space and time – a space-time crystal.

Traditional crystals are 3D solid structures made up of atoms or molecules bonded together in an orderly and repeating pattern. Common examples are ice, salt and snowflakes. Crystallization takes place when heat is removed from a molecular system until it reaches its lower energy state. At a certain point of lower energy, continuous spatial symmetry breaks down and the crystal assumes discrete symmetry, meaning that instead of the structure being the same in all directions, it is the same in only a few directions.

“Great progress has been made over the last few decades in exploring the exciting physics of low-dimensional crystalline materials such as two-dimensional graphene, one-dimensional nanotubes, and zero-dimensional buckyballs,” says Tongcang Li, lead author of the PRL paper and a post-doc in Zhang’s research group. “The idea of creating a crystal with dimensions higher than that of conventional 3D crystals is an important conceptual breakthrough in physics and it is very exciting for us to be the first to devise a way to realize a space-time crystal.”

Just as a 3D crystal is configured at the lowest quantum energy state when continuous spatial symmetry is broken into discrete symmetry, so too is symmetry breaking expected to configure the temporal component of the space-time crystal. Under the scheme devised by Zhang and Li and their colleagues, a spatial ring of trapped ions in persistent rotation will periodically reproduce itself in time, forming a temporal analog of an ordinary spatial crystal. With a periodic structure in both space and time, the result is a space-time crystal.

Here’s an image created by team at the Berkeley Lab to represent their work on the space-time crystal,

Imagine a clock that will keep perfect time forever or a device that opens new dimensions into quantum phenomena such as emergence and entanglement. (courtesy of Xiang Zhang group[?] at Berkeley Lab)

For anyone who’s interested in this work, I suggest reading either the news item on Nanowerk or the Berkeley Lab news release in full. I will leave you with Natalie Cole and Everlasting Love,

Dancing the Higgs boson?

Sometimes known as the ‘god’ particle, there’s talk that a major announcement is about to be made about the Higgs boson next week at CERN (European Laboratory for Particle Physics). From the Dec. 6, 2011 posting by Ian Sample on the Guardian science blogs,

Soon after Rolf-Dieter Heuer, the director general at Cern, emailed staff about next Tuesday’s seminar [Dec. 13, 2011] on the most sought-after particle in modern times, rumours hit the physics blogs that the lab might finally have caught sight of the Higgs boson.

I wrote last week that the heads of the two groups that work on the Atlas and CMS detectors at the Large Hadron Collider (LHC) will give the talks. That in itself is telling – usually more junior researchers present updates on the search for the missing particle. [emphasis mine]

Sample provides an explanation of the Higgs boson and why it and its mechanism has such importance,

…  The Higgs mechanism describes an invisible field that, it is argued, split one force into two soon after the birth of the universe. Specifically, it divided an ancient “electroweak” force into the electromagnetic and weak forces we see at work today. The latter is seen in some radioactive decay processes, and is involved in creating sunshine. [emphasis mine]

This is an excerpt from the full explanation, which precedes answers from a number of physicists around the world to a question Sample asked about what gives mass to fundamental particles. Here are a few randomly chosen answers Sample received to his question,

Shelly Glashow, Boston University. Nobel prize in physics, 1979

“They said when the collider goes on
Soon they’d see that elusive boson
Very soon we shall hear
Whether Cern finds it this year
But it’s something I won’t bet very much on.”

Frank Wilczek, MIT. Nobel prize in physics, 2004

“The Higgs mechanism for generating masses is extremely attractive and has no real competition. Beyond that there’s little certainty. A near-minimal implementation of supersymmetry, perhaps augmented with ultra-weakly interacting particles, is the prettiest possibility. So I’d like several Higgs particles, Higgisinos, some ghostly stuff, and a pony.”
[Note: A Higgsino is a supersymmetric partner of a Higgs boson].

Martinus Veltman, Universities of Michigan and Utrecht. Nobel prize in physics, 1999

“You are mistaken about the Higgs search at Cern. The machine runs at half energy so far, and no one expects relevant (for the Higgs particle) results. After the shutdown [in 2013] the machine will gradually go up in energy, and if all goes well (this is non-trivial) then in about half a year the machine energy might reach design value and there might be Higgs-relevant results. So if you are thinking next week then you are mistaken. Of course, we never know what surprises nature has in store for us … It is my opinion that there is no Higgs.”

Philip Anderson, Princeton University. Nobel prize in physics, 1977

“I doubt if the opinions of one who thinks about these problems perhaps every 30 years or so will carry much weight. I’ve been busy. But the last time I thought, I realised a) that the Higgs (-A) mechanism fits the facts too beautifully not to be true, but b) it must be incomplete, because there’s no proper accounting of the vacuum energy.”
[Note: Anderson essentially described the Higgs mechanism in 1962, two years before Higgs and five other physicists published the theory.]

There are more answers in Sample’s posting.

While it’s fascinating to see how widely divergent opinions are about Higgs, I have to confess my understanding of all this is rudimentary. Perhaps the dancers and performers (my Nov. 28, 2011 posting about a dance/performance residency at CERN) will help clarify the matter for me.