Tag Archives: Franz Danksagmüller

Listening to a protein fold itself

This May 20, 2024 news item on ScienceDaily announces new work on protein folding that can be heard,

By converting their data into sounds, scientists discovered how hydrogen bonds contribute to the lightning-fast gyrations that transform a string of amino acids into a functional, folded protein. Their report, in the Proceedings of the National Academy of Sciences [PNAS], offers an unprecedented view of the sequence of hydrogen-bonding events that occur when a protein morphs from an unfolded to a folded state.

This video (courtesy of the University of Illinois at Urbana-Champaign) is “A sonification and animation of a state machine based on a simple lattice model used by Martin Gruebele to teach concepts of protein-folding dynamics,” Note: Also embedded in April 1, 2022 posting, “Sonifying the protein folding process,”

The latest work is in a May 20, 2024 University of Illinois at Urbana-Champaign news release (also on EurekAlert) by Diana Yates, which originated the news item. It provides more information about the researchers’ work and about the use of data sonification, Note: Links have been removed,

“A protein must fold properly to become an enzyme or signaling molecule or whatever its function may be — all the many things that proteins do in our bodies,” said University of Illinois Urbana-Champaign chemistry professor Martin Gruebele, who led the new research with composer and software developer Carla Scaletti.  

Misfolded proteins contribute to Alzheimer’s disease, Parkinson’s disease, cystic fibrosis and other disorders. To better understand how this process goes awry, scientists must first determine how a string of amino acids shape-shifts into its final form in the watery environment of the cell. The actual transformations occur very fast, “somewhere between 70 nanoseconds and two microseconds,” Gruebele said.

Hydrogen bonds are relatively weak attractions that align atoms located on different amino acids in the protein. A folding protein will form a series of hydrogen bonds internally and with the water molecules that surround it. In the process, the protein wiggles into countless potential intermediate conformations, sometimes hitting a dead-end and backtracking until it stumbles onto a different path.

See video: Protein Sonification: Hairpin in a trap

The researchers wanted to map the time sequence of hydrogen bonds that occur as the protein folds. But their visualizations could not capture these complex events.

“There are literally tens of thousands of these interactions with water molecules during the short passage between the unfolded and folded state,” Gruebele said.

So the researchers turned to data sonification, a method for converting their molecular data into sounds so that they could “hear” the hydrogen bonds forming. To accomplish this, Scaletti wrote a software program that assigned each hydrogen bond a unique pitch. Molecular simulations generated the essential data, showing where and when two atoms were in the right position in space — and close enough to one another — to hydrogen bond. If the correct conditions for bonding occurred, the software program played a pitch corresponding to that bond. Altogether, the program tracked hundreds of thousands of individual hydrogen-bonding events in sequence.

See video: Using sound to explore hydrogen bond dynamics during protein folding [embedded just above this excerpt]

Numerous studies suggest that audio is processed roughly twice as fast as visual data in the human brain, and humans are better able to detect and remember subtle differences in a sequence of sounds than if the same sequence is represented visually, Scaletti said.

“In our auditory system, we’re really very attuned to small differences in frequency,” she said. “We use frequencies and combinations of frequencies to understand speech, for example.”

A protein spends most of its time in the folded state, so the researchers also came up with a “rarity” function to identify when the rare, fleeting moments of folding or unfolding took place.

The resulting sounds gave them insight into the process, revealing how some hydrogen bonds seem to speed up folding while others appear to slow it. They characterized these transitions, calling the fastest “highway,” the slowest “meander,” and the intermediate ones “ambiguous.”

Including the water molecules in the simulations and hydrogen-bonding analysis was essential to understanding the process, Gruebele said.

“Half of the energy from a protein-folding reaction comes from the water and not from the protein,” he said. “We really learned by doing sonification how water molecules settle into the right place on the protein and how they help the protein conformation change so that it finally becomes folded.”

While hydrogen bonds are not the only factor contributing to protein folding, these bonds often stabilize a transition from one folded state to another, Gruebele said. Other hydrogen bonds may temporarily impede proper folding. For example, a protein may get hung up in a repeating loop that involves one or more hydrogen bonds forming, breaking and forming again — until the protein eventually escapes from this cul de sac to continue its journey to its most stable folded state.

“Unlike the visualization, which looks like a total random mess, you actually hear patterns when you listen to this,” Gruebele said. “This is the stuff that was impossible to visualize but it’s easy to hear.”

The National Science Foundation, National Institutes of Health and Symbolic Sound Corporation supported this research.

Gruebele also is a professor in the Beckman Institute for Advanced Science and Technology and an affiliate of the Carl R. Woese Institute for Genomic Biology at the U. of I.

Here’s a link to and a citation for the paper,

Hydrogen bonding heterogeneity correlates with protein folding transition state passage time as revealed by data sonification by Carla Scaletti, Premila P. Samuel Russell, Kurt J. Hebel, Meredith M. Rickard, Mayank Boob, Franz Danksagmüller, Stephen A. Taylor, Taras V. Pogorelov, and Martin Gruebele. PNAS 121 (22) e2319094121 DOI: https://doi.org/10.1073/pnas.2319094121 Published: May 20, 2024

This paper is behind a paywall.

Sonifying the protein folding process

A sonification and animation of a state machine based on a simple lattice model used by Martin Gruebele to teach concepts of protein-folding dynamics. First posted January 25, 2022 on YouTube.

A February 17, 2022 news item on ScienceDaily announces the work featured in the animation above,

Musicians are helping scientists analyze data, teach protein folding and make new discoveries through sound.

A team of researchers at the University of Illinois Urbana-Champaign is using sonification — the use of sound to convey information — to depict biochemical processes and better understand how they happen.

Music professor and composer Stephen Andrew Taylor; chemistry professor and biophysicist Martin Gruebele; and Illinois music and computer science alumna, composer and software designer Carla Scaletti formed the Biophysics Sonification Group, which has been meeting weekly on Zoom since the beginning of the pandemic. The group has experimented with using sonification in Gruebele’s research into the physical mechanisms of protein folding, and its work recently allowed Gruebele to make a new discovery about the ways a protein can fold.

A February 17, 2022 University of Illinois at Urbana-Champaign news release (also on EurekAlert), which originated the news item, describes how the group sonifies and animates the protein folding process (Note: Links have been removed),

Taylor’s musical compositions have long been influenced by science, and recent works represent scientific data and biological processes. Gruebele also is a musician who built his own pipe organ that he plays and uses to compose music. The idea of working together on sonification struck a chord with them, and they’ve been collaborating for several years. Through her company, Symbolic Sound Corp., Scaletti develops a digital audio software and hardware sound design system called Kyma that is used by many musicians and researchers, including Taylor.

Scaletti created an animated visualization paired with sound that illustrated a simplified protein-folding process, and Gruebele and Taylor used it to introduce key concepts of the process to students and gauge whether it helped with their understanding. They found that sonification complemented and reinforced the visualizations and that, even for experts, it helped increase intuition for how proteins fold and misfold over time. The Biophysics Sonification Group – which also includes chemistry professor Taras Pogorelov, former chemistry graduate student (now alumna) Meredith Rickard, composer and pipe organist Franz Danksagmüller of the Lübeck Academy of Music in Germany, and Illinois electrical and computer engineering alumnus Kurt Hebel of Symbolic Sound – described using sonification in teaching in the Journal of Chemical Education.

Gruebele and his research team use supercomputers to run simulations of proteins folding into a specific structure, a process that relies on a complex pattern of many interactions. The simulation reveals the multiple pathways the proteins take as they fold, and also shows when they misfold or get stuck in the wrong shape – something thought to be related to a number of diseases such as Alzheimer’s and Parkinson’s.

The researchers use the simulation data to gain insight into the process. Nearly all data analysis is done visually, Gruebele said, but massive amounts of data generated by the computer simulations – representing hundreds of thousands of variables and millions of moments in time – can be very difficult to visualize.

“In digital audio, everything is a stream of numbers, so actually it’s quite natural to take a stream of numbers and listen to it as if it’s a digital recording,” Scaletti said. “You can hear things that you wouldn’t see if you looked at a list of numbers and you also wouldn’t see if you looked at an animation. There’s so much going on that there could be something that’s hidden, but you could bring it out with sound.”

For example, when the protein folds, it is surrounded by water molecules that are critical to the process. Gruebele said he wants to know when a water molecule touches and solvates a protein, but “there are 50,000 water molecules moving around, and only one or two are doing a critical thing. It’s impossible to see.” However, if a splashy sound occurred every time a water molecule touched a specific amino acid, that would be easy to hear.

Taylor and Scaletti use various audio-mapping techniques to link aspects of proteins to sound parameters such as pitch, timbre, loudness and pan position. For example, Taylor’s work uses different pitches and instruments to represent each unique amino acid, as well as their hydrophobic or hydrophilic qualities.

“I’ve been trying to draw on our instinctive responses to sound as much as possible,” Taylor said. “Beethoven said, ‘The deeper the stream, the deeper the tone.’ We expect an elephant to make a low sound because it’s big, and we expect a sparrow to make a high sound because it’s small. Certain kinds of mappings are built into us. As much as possible, we can take advantage of those and that helps to communicate more effectively.”

The highly developed instincts of musicians help in creating the best tool to use sound to convey information, Taylor said.

“It’s a new way of showing how music and sound can help us understand the world. Musicians have an important role to play,” he said. “It’s helped me become a better musician, in thinking about sound in different ways and thinking how sound can link to the world in different ways, even the world of the very small.”

Here’s a link to and a citation for the paper,

Sonification-Enhanced Lattice Model Animations for Teaching the Protein Folding Reaction by Carla Scaletti, Meredith M. Rickard, Kurt J. Hebel, Taras V. Pogorelov, Stephen A. Taylor, and Martin Gruebele. J. Chem. Educ. 2022, XXXX, XXX, XXX-XXX DOI: https://doi.org/10.1021/acs.jchemed.1c00857 Publication Date:February 16, 2022 © 2022 American Chemical Society and Division of Chemical Education, Inc.

This paper is behind a paywall.

For more about sonification and proteins, there’s my March 31, 2022 posting, Classical music makes protein songs easier listening.