Tag Archives: Friends of the Earth

More questions about whether nanoparticles penetrate the skin

The research from the University of Bath about nanoparticles not penetrating the skin has drawn some interest. In addition to the mention here yesterday, in this Oct. 3, 2012 posting, there was this Oct. 2, 2012 posting by Dexter Johnson at the Nanoclast blog on the IEEE [Institute of Electrical and Electronics Engineers] website. I have excerpted the first and last paragraphs of Dexter’s posting as they neatly present the campaign to regulate the use of  nanoparticles in cosmetics and the means by which science progresses, i.e. this study is not definitive,

For at least the last several years, NGO’s like Friends of the Earth (FoE) have been leveraging preliminary studies that indicated that nanoparticles might pass right through our skin to call for a complete moratorium on the use of any nanomaterials in sunscreens and cosmetics.

This latest UK research certainly won’t put this issue to rest. These experiments will need to be repeated and the results duplicated. That’s how science works. We should not be jumping to any conclusions that this research proves nanoparticles are absolutely safe any more than we should be jumping to the conclusion that they are a risk. Science cuts both ways.

Meanwhile a writer in Australia, Sarah Berry, takes a different approach in her Oct. 4, 2012 article for the Australian newspaper, the  Sydney Morning Herald,

“Breakthrough” claims by cosmetic companies aren’t all they’re cracked up to be, according to a new study.

Nanotechnology — the science of super-small particles — has featured in cosmetic formulations since the late ’80s. Brands claim the technology delivers the “deep-penetrating action” of vitamins and other “active ingredients”.

You may think you know what direction Berry is going to pursue but she swerves,

Dr Gregory Crocetti, a nanotechnology campaigner with Friends of the Earth Australia, was scathing of the study. “To conclude that nanoparticles do not penetrate human skin based on a short-term study using excised pig skin is highly irresponsible,” he said. “This is yet another example of short-term, in-vitro research that doesn’t reflect real-life conditions like skin flexing, and the fact that penetration enhancers are used in most cosmetics. There is an urgent need for more long-term studies that actually reflect realistic conditions.”

Professor Brian Gulson, from Macquarie University in NSW, was was similarly critical. The geochemist’s own study, from 2010 and in conjunction with CSIRO [Australia’s national science agency, the Commonwealth Scientific and Industrial Research Organization], found that small amounts of zinc particles in sunscreen “can pass through the protective layers of skin exposed to the sun in a real-life environment and be detected in blood and urine”.

Of the latest study he said: “Even though they used a sophisticated method of laser scanning confocal microscopy, their results only reinforced earlier studies [and had] no relevance to ‘real life’, especially to cosmetics, because they used polystyrene nanoparticles, and because they used excised (that is, ‘dead’) pig’s skin.”

I missed the fact that this study was an in vitro test, which is always less convincing than in vivo testing. In my Nov. 29, 2011 posting about some research into nano zinc oxide I mentioned in vitro vs. in vivo testing and Brian Gulson’s research,

I was able to access the study and while I’m not an expert by any means I did note that the study was ‘in vitro’, in this case, the cells were on slides when they were being studied. It’s impossible to draw hard and fast conclusions about what will happen in a body (human or otherwise) since there are other systems at work which are not present on a slide.

… here’s what Brian Gulson had to say about nano zinc oxide concentrations in his work and about a shortcoming in his study (from an Australian Broadcasting Corporation [ABC] Feb. 25, 2010 interviewwith Ashley Hall,

BRIAN GULSON: I guess the critical thing was that we didn’t find large amounts of it getting through the skin. The sunscreens contain 18 to 20 per cent zinc oxide usually and ours was about 20 per zinc. So that’s an awful lot of zinc you’re putting on the skin but we found tiny amounts in the blood of that tracer that we used.

ASHLEY HALL: So is it a significant amount?

BRIAN GULSON: No, no it’s really not.

ASHLEY HALL: But Brian Gulson is warning people who use a lot of sunscreen over an extended period that they could be at risk of having elevated levels of zinc.

BRIAN GULSON: Maybe with young children where you’re applying it seven days a week, it could be an issue but I’m more than happy to continue applying it to my grandchildren.

ASHLEY HALL: This study doesn’t shed any light on the question of whether the nano-particles themselves played a part in the zinc absorption.

BRIAN GULSON: That was the most critical thing. This isotope technique cannot tell whether or not it’s a zinc oxide nano-particle that got through skin or whether it’s just zinc that was dissolved up in contact with the skin and then forms zinc ions or so-called soluble ions. So that’s one major deficiency of our study.

Of course, I have a question about Gulson’s conclusion  that very little of the nano zinc oxide was penetrating the skin based on blood and urine samples taken over the course of the study. Is it possible that after penetrating the skin it was stored in the cells  instead of being eliminated?

It seems it’s not yet time to press the panic button since more research is needed for scientists to refine their understanding of nano zinc oxide and possible health effects from its use.

What I found most interesting in Berry’s article was the advice from the Friends of the Earth,

The contradictory claims about sunscreen can make it hard to know what to do this summer. Friends of the Earth Australia advise people to continue to be sun safe — seeking shade, wearing protective clothing, a hat and sunglasses and using broad spectrum SPF 30+ sunscreen.

This is a huge change in tone for that organization, which until now has been relentless in its anti nanosunscreen stance. Here they advise using a sunscreen and they don’t qualify it as they would usually by saying you should avoid nanosunscreens. I guess after the debacle earlier this year (mentioned in this Feb. 9, 2012 posting titled: Unintended consequences: Australians not using sunscreens to avoid nanoparticles?), they have reconsidered the intensity of their campaign.

For anyone interested in some of the history of the Friends of the Earth’s campaign and the NGO (non governemental organization) which went against the prevailing sentiment against nanosunscreen, I suggest reading Dexter’s posting in full and for those interested in the response from Australian scientists about this latest research, do read Berry’s article.

The Australians want one; the French and the Dutch each have one; a nanomaterials registry

The July 25, 2012 news article by Rachel Carbonell for ABC (Australian Broadcasting Corporation) discusses the current situation in Australia,

The ABC’s revelations that some sunscreen brands are inaccurately promoting themselves as nanotechnology-free have prompted calls for better regulation of nano-materials.

But the push for a mandatory register has suffered a blow, with a Federal Government report labelling it questionable.

The Australian Council of Trade Unions (ACTU) is among those calling for a register, saying the potential risks posed by nano-particles are still unknown.

The Federal Government recently released a study it commissioned to look at the feasibility of a mandatory nanotechnology product register.

The study concluded: “It is clear that some nano-materials behave differently to bulk-form materials and there are associated health, safety and environmental risks.”

“However the challenge presented by nanotechnology can be met through existing regulatory frameworks.

“It is therefore difficult to see a nano-products register delivering a net benefit to the community. The feasibility of a nano-product registry is questionable.”

But groups pushing for a register disagree.

The feasibility report points to the challenge of ensuring safety without stifling innovation, saying nanotechnology is potentially worth $50 billion a year to the Australian economy.

“But the fact that France is already implementing their mandatory register of nano-materials and the Netherlands is following closely, surely demonstrates that it must be possible.” [said Gregory Crocetti from Friends of the Earth]

The discussion presented in Carbonell’s piece is more involved than what I’ve excerpted for this posting so you may want to read her full article.

I  don’t believe I’ve come across that information about nanomaterial registries in France and Holland (Netherlands) before. I’ll see if I can find more about them to confirm their existence and exactly what is being documented.

First lawsuit on risks of nanotechnology?

I got this Dec. 21, 2011 news release this morning,
 

Consumer Safety Groups File First Lawsuit on Risks of Nanotechnology

San Francisco, CA – Concerned by the growing body of scientific reports cautioning against the unregulated use of nanotechnology in consumer products, a coalition of nonprofit consumer safety and environmental groups sued the Food and Drug Administration (FDA) today.  The case is the first lawsuit over the health and environmental risks of nanotechnology and nanomaterials.

Nanotechnology is a powerful platform technology for taking apart and reconstructing nature at the atomic and molecular level.  Just as the size and chemical characteristics of manufactured nanomaterials give them unique properties, those same properties – tiny size, vastly increased surface area to volume ratio, and high reactivity – can also create unique and unpredictable health and environmental risks.

The lawsuit demands FDA respond to a petition the public interest organizations filed with the agency in 2006, nearly six years ago.  The coalition is led by the International Center for Technology Assessment (CTA), on behalf of fellow plaintiffs Friends of the Earth, Food and Water Watch, the Center for Environmental Health, the ETC Group, and the Institute for Agricultural and Trade Policy.

“Nano means more than tiny; it means materials that have the capacity to be fundamentally different.  Yet more and more novel nanomaterials are being sold infused into new consumer products every day, while FDA sits idly by,” said George Kimbrell, ICTA Attorney.  “The agency’s unlawful delay unnecessarily places consumers and the environment at risk.”

The eighty-page petition documents the scientific evidence of nanomaterial risks stemming from their unpredictable toxicity and seemingly unlimited mobility.  The 2006 petition [http://www.icta.org/doc/Nano%20FDA%20petition%20final.pdf] requested FDA take several regulatory actions, including requiring nano-specific product labeling and health and safety testing, and undertaking an analysis of the environmental and health impacts of nanomaterials in products approved by the agency.

Nanomaterials in sunscreens, one of the largest sectors of the nano-consumer product market, were also a focus of the action.  The petitioners called on the agency to regulate nano-sunscreens to account for their novel ingredients rather than assume their safety, and to pull such sunscreens from the market until and unless the agency approves them as new drug products.

“Year after year goes by but we have yet to see the FDA do the bare minimum and require nanosunscreens to be labeled as such. This is a basic consumer right,” said Ian Illuminato of Friends of the Earth.  “We’re well past the 1800s — nobody likes or should be forced to use mystery chemicals anymore.”

Since 2006, numerous studies and reports, including agency publications by the Environmental Protection Agency, the Office of the Inspector General, and the U.S. Government Accountability Office, acknowledge significant data gaps concerning nanomaterials’ potential effects on human health and the environment.  Most troubling are studies using mice that show that nano-titanium dioxide when inhaled and when eaten can cause changes in DNA that affect the brain function and may cause tumors and developmental problems in offspring.  One study found titanium dioxide nanoparticles were found in the placenta, fetal liver and fetal brain.

“It is unacceptable that the FDA continues to allow unregulated and unlabeled nanomaterials to be used in products consumers use every day,” said Wenonah Hauter, executive director of Food & Water Watch. “It is past time for this agency to live up to its mission and protect public health by assessing the health and environmental risks of nanomaterials, and to require labeling so that consumers know where these new materials are being used.”

“The scientific consensus is that nanomaterials require specific testing to account for their novel capacities and potential risks.  The FDA must do such testing as part of a pre-market safety assessment in a broader regulatory initiative to protect public health,” said Steve Suppan of the Institute for Agriculture and Trade Policy.

For more, see generally (http://www.icta.org/about/).

Despite the headline ICTA gave this news release, I found a 2008 news release for another nanotechnology law suit where they were suing the US Environmental Protection Agency,  GROUPS DEMAND EPA STOP SALE OF 200+ POTENTIALLY DANGEROUS NANO-SILVER PRODUCTS; Nanotech Watchdog Launches First-Ever Legal Challenge To EPA Over Unregulated Nanotech Pesticide Pollution.

If I understand this rightly, the ICTA along with its coalition partners is suing the FDA for not responding to its petition, which would have made for a much less compelling headline. I didn’t have much luck accessing the 2006 petition (clicking on the link brought up an error page) but will try again later.

I notice that sunscreens with with nanoscale titanium dioxide are used as an example of the use of dangerous nanomaterials in consumer products. It seems the general consensus is that nanoscale titanium dioxide and/or zinc oxide used in nanosunscreens are relatively safe. You can read more about this on the Cancer Council of Australia or the Environmental Working Group (EWG) websites. From the EWG,

EWG reviewed the scientific literature on hazards and efficacy (UVB and UVA protection) for all active ingredients approved in the U.S. Though no ingredient is without hazard or perfectly effective, on balance our ratings tend to favor mineral sunscreens because of their low capacity to penetrate the skin and the superior UVA protection they offer.

I really wish they would stop using the nanosunscreens as their ‘go to’ concern as I think it damages these groups’ credibility.

Still, the FDA should respond to a petition and six years seems like a long time to wait.

The French and others weigh in on the European nanomaterials definition (included here)

The responses to the announcement of the nanomaterials definition for Europe are coming fast and furious now. A summary from L’Association de Veille et d’Information Civique sur les Enjeux des Nanosciences et des Nanotechnologies (L’Avicenn) is available in an Oct. 20, 2011 news item on Nanowerk (French language version is available here),

Avicenn offers a first insight into the politics hidden behind this supposedly neutral and “scientific” definition, the next obstacles and important meetings, and then concludes on the suspense surrounding the definition that France will finally adopt for the annual mandatory declaration of nanomaterials it is implementing.

In a self-applauding press release, the European Commission announced yesterday that it finally published “a clear definition (of nanomaterials) to ensure that the appropriate chemical safety rules apply”. Nanomaterial is defined as:

  • “a natural, incidental or manufactured material
  • containing particles, in an unbound state or as an aggregate or as an agglomerate
  • and where, for 50% or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm – 100 nm.”

Here’s a list of the responding organizations (from the Oct. 20, 2011 news item on Nanowerk),

After the release of this new definition, the most active “stakeholders” have already formally responded: among them, on the side of CSOs, the European Environmental Bureau (BEE) – the federation of 140+ environmental organisations in 31 countries, Friends of the Earth Australia (FoE Australia), the Center for International Environmental Law (CIEL), the European Consumers’ Organisation (BEUC) or the European consumer voice in standardisation (ANEC); on the industrial side, the European Chemical Industry Council (CEFIC).

I posted European nanomaterials definition not good enough about the response from the European Environmental Bureau yesterday (Oct. 19, 2011). So this may seem mildly repetitive (from English language tranaslation on the Avicenn website),

  • The new 100 nm upper limit

Friends of the Earth Australia, ANEC and BEUC denounce the adoption of the upper limit of 100 nm that they consider too restrictive: these CSOs would have preferred a higher threshold limit, that would have encompassed more materials. They refer to the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR)’s highlight of the lack of scientific basis for this 100nm limit, and to results of toxicology studies on toxicity of submicron particles over 100 nm.
As illustrated by Foe Australia, “if this definition were applied to regulation, it would mean that where 45% of particles are 95nm in size and 55% particles are 105nm in size, substances would not be regulated as nano”at the expense of consumers and workers exposed to these substances and over whom will therefore keep hanging the threat of a risk that is assumed but not evaluated.
In response to EC consultation on its draft definition in 2010, many CSOs [civil society organizations] had argued for a threshold of 300 nm.
FoE Australia alerts to the fact that “some European cosmetics companies and North American bioactive manufacturers are reformulating their products to exploit the novel optical, chemical and biological properties of larger nanomaterials (ie >100nm) while escaping the labelling and safety assessment requirements that were anticipated for materials 1-100nm in size”.

  • 50% threshold

Some organizations – including CIEL and ANEC – applaud the choice of particle number (i.e. the number of particles) rather than mass as a measuring unit for size distribution of a nanomaterial product ; in contrast, CEFIC (which had strongly advocated using weight concentration rather than particle number distribution to determine the cut-off criterion for nanomaterials) is concerned that the adoption of this definition will add unnecessary burden for companies, leading to added costs and less efficient use of resources. The Commission followed by the recommendations of SCENIHR, which had been particularly supported by ANEC in 2010.
The Commission, however, largely raised the proportion of nano-sized materials required to qualify as nanomaterial compared to what was expected: 50% or more of the particles in the number size distribution is 50 times higher than the one that was proposed by DG Environment and supported by civil society (1%) and 333 times greater than that recommended by SCENIHR (0.15%) and supported by DG Sanco.
CSOs have expressed their surprise, incomprehension and hostility to such a high threshold. For example CIEL pinpoints that even the German industry had not been so demanding: it had campaigned for a rate of 10% “only”. However, the Commission provided that “in specific cases and where warranted by concerns for the environment, health, safety or competitiveness the number size distribution threshold of 50 % may be replaced by a threshold between 1 and 50 %”. While CIEL or ClientEarth welcome this opportunity, FoE Australia deplores that it puts a huge burden of proof on to the CSOs to demonstrate not only that certain nanomaterials can cause harm but that certain they do so as a specific proportion of particles in a sample. Showing that some nanomaterials can cause damage in itself is already very difficult by the uncertainties, the gaps in the safety science, the variability of nanomaterials and the lack of information about real life exposure. But making the same demonstration by identifying the fraction of nanoparticles in a sample that cause such harm is even more difficult, actually well beyond current scientific knowledge.

  • The inclusion of aggregate and agglomerate

CIEL appreciates the inclusion of aggregate and agglomerate within the definition. CEFIC believes that this measure will make any European legislation on nanomaterials too restrictive.

The apparent technical nature of these debates and, ultimately, the arbitrary selection of thresholds illustrate the strong political dimension at work behind the decisions made by the EC : granted, the European authorities have had to make a decision based on “sound science” – backed by consultation of scientific experts – but in the end, they mainly had to come up with a trade-off between conflicting interests of stakeholders.

Here’s how they hope the French government will respond to all of this (from the English translation on the Avicenn website),

As far as France is concerned, it is not clear at present whether the decree on the annual declaration of “substances with nanoparticle status” will use the new definition of the European Commission. In its decree, the French government might try to maintain a larger definition than the definition adopted by the Commission. CSOs are turning with hope towards French choice which will be determinant for the future: if the adopted definition is larger than that of the Commission and therefore more in line with the precautionary principle, it could serve as an example and be followed in other countries.

For anyone who may not be familiar with some recent French nanotechnology history, in the Spring of 2010 there were major nanotechnology protests in France during a series of public debates.  You can read more about them in my Jan. 26, 2011 posting, Feb. 26, 2010 posting, and followup March 10 , 2010 posting, which includes details about a French-language podcast with two Québec academics discussing the French protests.

This does clear up one question I had about European Commission (EC) jurisdictions and national jurisdictions. It seems that countries can choose to create their own definitions although I imagine they cannot be at cross-purposes with the EC definition.

On an almost final note, here’s Dexter Johnson (Nanoclast blog for the Institute of Electrical and Electronics Engineers [IEEE]) in his Oct. 19, 2011 posting,

The definition itself…well, I don’t see how it helps to narrow anything, which I understand to be one of the main purposes of definitions. It would seem that the nanoparticles that are given off when your car’s tires roll along the pavement are now up for regulatory policy (“Nanomaterial” means a natural, incidental or manufactured material containing particles…”). And due to the lack of distinction between “hard” and “soft” nanoparticles in the definition, Andrew Maynard points out that “someone needs to check the micelle size distribution in homogenized milk.”

So what is the fallout from this definition? It would seem to be somewhat less than had been anticipated earlier in the year when worries surrounded getting the definition just right because it would immediately dictate policy.

So basically they have created a class of materials that at the moment are not known to be intrinsically hazardous, but if someday they are they now have a separate class for them. While some may see as this as making some sense, it eludes me.

As for me, I think much depends on future implementations. After all, you can have the best system possible but if it’s being run by fools, you have a big problem. That said, I take Dexter’s point about establishing a class of materials ‘just in case there could be a problem’. I really must take another look at the Health Canada nanomaterials definition.

Note: I removed footnotes from the Avicenn material; these can easily be found by viewing either the Oct. 20, 2011 news item on Nanowerk or the material on the Avicenn site.

ETA Oct. 20, 2011 1500 hours: I forgot to include a link to the ANEC response in this Oct. 20, 2011 news item on Nanowerk.

Precautionary principle and the new Swiss synthetic nanomaterial matrix

The precautionary principle appears to be much loved by civil society groups such the ETC Group and Friends of the Earth. They tend to cite it with some frequency as a means of managing scientific research or, as some might suggest, as a means of stopping research. I have to admit I’ve tended to view the precautionary principle as a way of saying ‘don’t do anything unless you can prove it’s safe’, and that is a gross misunderstanding of the principle. The recent announcement from Switzerland about developing a precautionary matrix for synthetic nanomaterials had me revisiting my ideas.

I found this description of the principle in a July 18, 2010 posting about nanosunscreens by Andrew Mayanard on his 2020 Science blog,

The Precautionary Principle is one approach – and a very misunderstood and misused one – to addressing this [risk and uncertainty], and one brought up by FoE and others in the context of sunscreens.  It has many formulations – it’s not a hard and fast principle.  But it is currently described in the European Union in this way:

The precautionary principle should be informed by three specific principles:

  • implementation of the principle should be based on the fullest possible scientific evaluation. As far as possible this evaluation should determine the degree of scientific uncertainty at each stage;
  • any decision to act or not to act pursuant to the precautionary principle must be preceded by a risk evaluation and an evaluation of the potential consequences of inaction;
  • once the results of the scientific evaluation and/or the risk evaluation are available, all the interested parties must be given the opportunity to study of the various options available, while ensuring the greatest possible transparency.

This is a pragmatic principle that looks to using evidence and an evaluation of consequences in making informed decisions in the face of uncertainty.  It certainly does not preclude the development or implementation of a new technology until there is certainty on safety.

The emphasis on the potential consequences of inaction are particularly relevant to today’s world, where we are stuck on a technological tight-rope, and where the consequences of not doing something may be more harmful than taking action. [emphasis mine]  Richard Jones [author Soft Machines and a Professor of Physics and the Pro-Vice Chancellor for Research and Innovation at the University of Sheffield] picked up on this in his suggestion for a more relevant application of the Precautionary Principle to emerging technologies:

  1. what are the benefits that the new technology provides – what are the risks and uncertainties associated with not realising these benefits?
  2. what are the risks and uncertainties attached to any current ways we have of realising these benefits using existing technologies?
  3. what are the risks and uncertainties of the new technology?

This seems a useful place to start from when faced with the reality of having to make the best possible decisions in the face of uncertainty, and where inaction isn’t an option.

But to make decisions – even when there are gaping holes in the data – you need something to go on.

The new Swiss matrix helps to further flesh out the precautionary principle (from the July 29,2011 news item on Nanowerk),

The precautionary matrix provides a structured method to assess the “nanospecific precautionary need” of workers, consumers and the environment arising from the production and use of synthetic nanomaterials.

The matrix is a tool to help trade and industry meet their obligations of care and self-monitoring. It helps them to recognise applications which may entail risk and to take precautionary measures to protect human health and the environment. In the case of new developments, the matrix can contribute to the development of safer products. It enables users to conduct an initial analysis on the basis of currently available knowledge and indicates when further investigations are necessary.

The matrix can be found on this page of the Swiss Federal Office of Public Health (scroll to the right of the page for the guidelines, matrix, FAQs, etc.).

One question keeps popping up. The phrase ‘consequences of inaction’ has me asking how do we define inaction? My suspicion is that a research nanoscientist and a representative from a civil society organization may have two very different answers to that question, i.e., ‘we must continue with the research to solve the problem’ as opposed to ‘we must stop the actions that caused the problem in the first place’.

Canada’s plans for nanosunscreens mentioned at Europe’s Nanotechnology Safety for Success Dialogue and sunscreens in Australia

I posted (April 14, 2011) about the March 29 – 30, 2011 Nanotechnology Safety for Success Dialogue which took place in Brussels (Belgium). I took note of a fierce debate over a nanomaterials definition. (The debate was whether there should be an interim definition or if they should wait until they had enough information to create a finalized definition.

Thankfully a reader has recently redirected my attention to this meeting as I had failed to notice that Canada made a presentation at the meeting. Consequently, I have found more information about Canada’s nanotechnology activities as they pertain to safety through an international organization. (I have searched the Health Canada website and the Canadian federal nanoportal and am unable to locate this presentation on either site.)

The presentation (all 15 slides) was given by Ratna Bose, Ph. D., Manager, Nonprescription Drugs Evaluation Division; Bureau of Gastroenterology, Infection, and Viral Diseases; Therapeutic Products Directorate. There is a Health Portfolio Nanotechnology WG (I imagine this means working group). Here’s how the portfolio is organized and managed (from slide #3),

Chaired by Science Policy Directorate
• Co-ordinates activities and facilitates information sharing on nanotechnology and nanomaterials within HC
• Includes representatives from Directorates regulating nanomaterials
• Each Directorate is responsible for policies and guidances specific to their respective jurisdiction

Here are the products Health Canada regulates (from slide #5),

Health Canada Regulated Products that May Contain Nanotechnology

• Drugs
• Medical devices
• Biotechnology products
• Tissue engineering products
• Vaccines
• Natural Health products
• Food Ingredients, packaging, manufacturing process

I notice that the head states that the products may contain nanotechnology, which seems odd. They might contain nanomaterial(s) and/or be nanotechnology-enabled but they can’t contain nanotechnology in the same way they contain biology. Plus, I thought Agriculture Canada regulated food (I will check this out).

This is what they are proposing for future work (from slide #12),

Regulatory Perspective
Develop standardized risk assessment methods
Develop regulatory, product-specific guidance documents
Build regulatory capacity/expertise

Scientific Perspective
Continue participation in international activities (e.g., ISO, OECD)
Explore collaborative work to develop methodologies to detect, characterize and measure NMs by working with industry as well as domestic and international partners

Awareness Perspective
Develop public engagement and risk communication strategies
Engage industry stakeholders

Under Awareness Perspective they’ve linked public engagement and risk communication together. Is risk communication the only reason they’re planning public engagement?

The slides indicate that there will be a case study developed around nanosunscreens. From slides 13 & 14,

Sunscreens are regulated as drugs in Canada, subject to either the Food and Drug Regulations or the Natural Health Product Regulations depending on the active ingredient and claim.

The Sunburn Protectants Monograph outlines active ingredients and their concentrations, as well as appropriate warnings, directions for use, and claims which are generally considered to be safe and effective.

The nanomaterial based sunscreens are excluded from the Sunburn Protectants monograph.

In order to satisfy the Safety & Effectiveness requirements of the Regulations, safety data are being requested.

I wonder where the safety data is coming from?

Meanwhile, there was a May 23, 2011 post by Dr. Andrew Maynard on the University of Michigan’s Risk Science Blog about a recent nanosunscreen event in Australia. From the posting,

Last week, the Victoria branch of the Australian Education Union (AEU) passed a resolution recommending that “workplaces use only nanoparticle-free sunscreen” and that sunscreens used by members on children are selected from those “highlighted in the Safe Sunshine Guide produced by Friends of the Earth” as being nano-free. The AEU also resolved to provide the Friends of the Earth Safe Sunscreen Guide and Recommendations to all workplaces their members are associated with. Given what is currently known about sunscreens – nano and otherwise, I can’t help wonder whether this is an ill-advised move.

The debate over the safety or otherwise of nanoparticle-containing sunscreens has been going on for over a decade now. Prompted by early concerns over possible penetration through the skin and into the body of the nanosized titanium dioxide and/or zinc oxide particles used in these products – and potential adverse impacts that might result – there has been a wealth of research into whether these small particles can actually get through the skin when applied in a sunscreen. And the overall conclusion is that they cannot. There have been a small number of studies that demonstrate that, under specific conditions, some types of nanoparticle might penetrate through the upper layers of the skin. But the overwhelming majority of studies have failed to find either plausible evidence for significant penetration, or plausible evidence for adverse health impacts [emphasis mine] – a body of evidence that led the Environmental Working Group to make an about-face from questioning the use of nanoparticle-containing sunscreens to endorsing them in 2010.

If you’re interested in the nanosunscreen discussion, I highly recommend Andrew’s writing on the subject, the report by the Environmental Working Group, and the report by the Friends of the Earth for a comprehensive view of the discussion.

As for me, I believe, given the information at hand, that nanosunscreens are relatively safe for most adults and I reserve the right to change my opinion should new information emerge. Meanwhile, I look forward to learning more about Health Canada’s nanotechnology safety efforts and hope that one day the information will be easily accessible on the Health Canada website or the federal nanoportal. Who knows maybe there’ll be a public engagement exercise on the topic of nanosunscreens?

Thoughts on part 3 of (PBS) Nova’s Making Stuff series

Since the title of the programme was Making Stuff Cleaner, my hopes were up. Anyone who reads me with any frequency knows that I’m obsessed with windows, especially the self-cleaning type. Sadly, my hopes for part 3 of (PBS) Nova’s Making Stuff series were frustrated as the focus was largely on cars (with Jay Leno being prominently featured) and petroleum products as they pertain to climate change and energy requirements.

Leno, for anyone who may not know, is a serious car collector and, as one could see, he’s also well informed about the history of the car and alternatives to the car’s current reliance on petroleum products.

As I’m learning to expect, they didn’t talk about the nanotechnology research for several minutes. I didn’t time it for part three but in part one it was roughly 30 minutes before they got to it.

There was a lot of discussion about the various kinds of batteries that are available and new, more environmentally clean batteries being developed, while we got to watch a lot of people driving cars.

The car companies are also working on materials to replace the plastics that are used in car interiors. Fascinatingly, one project involves growing a car part from bacteria. (This reminds of a visual artist who grows clothing from bacteria as mentioned in my Bacteria as couture and transgenic salmon? posting, July 12, 2010.)

It was a very upbeat, positive take on the work being done to find new energy sources and to deal with climate change issues. I think that someone using this programme as a primary source of information might be persuaded we are much closer to replacing our use of petroleum with more environmentally sound practices than is the case. The Friends of the Earth (FoE), civil society group, released a fairly pointed report in November 2010 titled, Nanotechnology, climate and energy: Over-heated promises and hot air?, which suggests otherwise. I’m given to understand that there is good research in this report but anything not supporting their main thesis has been omitted.

The two agendas: Making Stuff Cleaner programme and FOE’s report, curiously enough, mirror each other with their relentless insistence on interpreting the information in a light that highlights their perspective only. Let’s not discount either; let’s refer to both, judiciously.

I did miss part 2 of the series, Making Stuff Smaller and cannot view it on the PBS website since I’m  not living in the right region. Next week, the fourth and final part: Making Stuff Smarter.

ETA Feb.4.11: According my NISE Net newsletter for Feb. 2011, tonight’s episode of tv programme Jeopardy will feature Making Stuff  as a full category. (For anyone not familiar Je0pardy,  it’s a quiz show where contestants choose categories of answers for which they must determine the questions. E.g. The category ‘Whose Bob?’ might feature the clue ‘birds’ to which the contestant would reply, ‘What kind of animal are bobolinks?’)  I’m not sure how including the category ‘Making Stuff’ will work given that there’s one more episode to be broadcast. From the newsletter,

For those of you Jeopardy! fans out there, Making Stuff will be a full category on the program airing Friday, February 4th.

McGill green chemistry breakthrough in Québec Science’s top ten list; cinnamon green chemistry

McGill University researchers, Chao-Jun Li, Audrey Moores and their colleagues, earned their spot in Québec Science’s top 10 list of 2010 with a nanotech catalyst that makes it possible to reduce the use of toxic heavy metals from chemical processes. From the news release,

Catalysts are substances used to facilitate and drive chemical reactions. Although chemists have long been aware of the ecological and economic effects of traditional chemical catalysts and do attempt to reuse their materials, it is generally difficult to separate the catalyzing chemicals from the finished product. The team’s discovery does away with this chemical process altogether.

Li, a professor in the Department of Chemistry and Canada Research Chair in Organic/Green Chemistry, neatly describes the new catalyst as a way to “use a magnet and pull them out!” The technology is known as nanomagnetics and involves nanoparticles of a simple iron magnet. Nanoparticles are sized between 1 and 100 nanometres (a strand of hair is about 80,000 nanometres wide). The catalyst itself is chemically benign and can be efficiently recycled. In terms of practical applications, their method can already be used to generate the reactions that are required for example in pharmaceutical research, and could in the future be used to achieve reactions necessary for research in other industries and fields. The discovery was published in Highlights in Chemical Science in January 18, 2010, in an article authored by Li, Moores, Tieqiang Zeng, Wen-Wen Chen, Ciprian M. Cirtiu, and Gonghua Song.

Li is known as one of the world’s pioneers in Green Chemistry, an entirely new approach to the science that tries to avoid the use of toxic, petrochemical-based solvents in favour of basic substances. More than 97 per cent of all products we use involves one or more chemical reactions. The future of not only the trillion-dollar chemical industry, but also the overall economy and the health of ecosystems and populations around the world rests on our ability to find sustainable solutions to chemical use. With 25 key researchers, 117 graduate students and more than 15 postdoctoral fellows working at ways to reduce the toxicity of chemical processes, McGill is a recognized global leader in the field. The University’s pioneering work in Green Chemistry dates back to the 1960s, when phrases such as “chemicals from renewable resources” and “non-polluting chemicals” were used.

The magazine, Québec Science, is asking its readers to vote by Feb. 25, 2011 for the top discovery of 2010. You can go here to vote (you will need to be able to read French).

Feb. 17, 2010, I featured this McGill team’s 2010 green chemistry (starting in the 3rd paragraph).

Since we’re on the topic of green chemistry, I now have the opportunity to mention a Nov. 29, 2010 news item on Nanowerk about how cinnamon could be used to replace dangerous chemicals used to create nanoparticles (from the news item),

Gold nanoparticles, tiny pieces of gold so small that they can’t be seen by the naked eye, are used in electronics, healthcare products and as pharmaceuticals to fight cancer. Despite their positive uses, the process to make the nanoparticles requires dangerous and extremely toxic chemicals. While the nanotechnology industry is expected to produce large quantities of nanoparticles in the near future, researchers have been worried about the environmental impact of the global nanotechnological revolution.

Now, a study by a University of Missouri research team, led by MU scientist Kattesh Katti, curators’ professor of radiology and physics in the School of Medicine and the College of Arts and Science, senior research scientist at the University of Missouri Research Reactor and director of the Cancer Nanotechnology Platform, has found a method that could replace nearly all of the toxic chemicals required to make gold nanoparticles. The missing ingredient can be found in nearly every kitchen’s spice cabinet – cinnamon.

… The new process uses no electricity and utilizes no toxic agents. …

During the study, the researchers found that active chemicals in cinnamon are released when the nanoparticles are created. When these chemicals, known as phytochemicals, are combined with the gold nanoparticles, they can be used for cancer treatment. The phytochemicals can enter into cancer cells and assist in the destruction or imaging of cancer cells, Katti  said.

“Our gold nanoparticles are not only ecologically and biologically benign, they also are biologically active against cancer cells,” Katti said.

As the list of applications for nanotechnology grows in areas such as electronics, healthcare products and pharmaceuticals, the ecological implications of nanotechnology also grow. When considering the entire process from development to shipping to storage, creating gold nanoparticles with the current process can be incredibly harmful to the environment, Chanda [Nripen Chanda, a research associate scientist] said.

Counterbalancing some of this ‘feel good’ green chemistry news focused on reducing environmental impacts posed by chemical processes is a report debunking some the nanotechnology community’s ‘green’ claims, released Nov. 17, 2010, by the Friends of the Earth (FoE), Nanotechnology, climate and energy: Over-heated promises and hot air? You can view the report here. There’s also a new report, released Dec. 17, 2010,  from the ETC Group, The Big Downturn? Nanogeopolitics. As you can tell from the title, the report is more of an overview (it’s an update of a 2005 report) but it does provide information about green nanotechnology. I hope to have some time in the next month or so to discuss these reports rather than just refer to them.

Nanotechnology and sunscreens: recalibrating positions and the excruciating business of getting it as right as possible

I’ve been waiting for Andrew Maynard’s comments (on his 2020 Science blog) about the Friends of the Earth (FoE) guest bloggers’ (Georgia Miller and Ian Illuminato) response (ETA June 6, 2016: Just how risky can nanoparticles in sunscreens be? Friends of the Earth respond; a 2020 Science blog June 15, 2010 posting) to his posting (Just how risky could nanoparticles in sunscreens be?) where he challenged them to quantify the nanosunscreen risk to consumers.  His reflections on the FoE response and the subsequent discussion are well worth reading. From Andrew’s posting, The safety of nanotechnology-based sunscreens – some reflections,

Getting nanomaterials’ use in context. First, Georgia and Ian, very appropriately in my opinion, brought up the societal context within which new technologies and products are developed and used:

“why not support a discussion about the role of the precautionary principle in the management of uncertain new risks associated with emerging technologies? Why not explore the importance of public choice in the exposure to these risks? Why not contribute to a critical discussion about whose interests are served by the premature commercialisation of products about whose safety we know so little, when there is preliminary evidence of risk and very limited public benefit.”

Andrew again,

… we need to think carefully about how we use scientific knowledge and data – “evidence” – in making decisions.

As he goes on to point out, cherrypicking data isn’t a substantive means of supporting your position over the long run.

Unfortunately it’s a common practice on all sides ranging from policymakers, politicians, civil society groups, consumers, medical institutions, etc. and these days we don’t have the luxury, ignorance about downsides such as pollution and chemical poisoning on a global scale for example, that previous generations enjoyed.

Three of the scientists whose work was cited by FoE as proof that nanosunscreens are dangerous either posted directly or asked Andrew to post comments which clarified the situation with exquisite care,

Despite FoE’s implications that nanoparticles in sunscreens might cause cancer because they are photoactive, Peter Dobson points out that there are nanomaterials used in sunscreens that are designed not to be photoactive. Brian Gulson, who’s work on zinc skin penetration was cited by FoE, points out that his studies only show conclusively that zinc atoms or ions can pass through the skin, not that nanoparticles can pass through. He also notes that the amount of zinc penetration from zinc-based sunscreens is very much lower than the level of zinc people have in their body in the first place. Tilman Butz, who led one of the largest projects on nanoparticle penetration through skin to date, points out that – based on current understanding – the nanoparticles used in sunscreens are too large to penetrate through the skin.

These three comments alone begin to cast the potential risks associated with nanomaterials in sunscreens in a very different light to that presented by FoE. Certainly there are still uncertainties about the possible consequences of using these materials – no-one is denying that. But the weight of evidence suggests that nanomaterials within sunscreens – if engineered and used appropriately – do not present a clear and present threat to human health.

Go to the comments section of the 2020 Science blog for the full text of Peter Dobson’s response, Brian Gulson’s response posted by Andrew on Gulson’s behalf, and Tilman Butz’s response posted by Andrew on Butz’s behalf. (I found these comments very helpful as I had made the mistake of assuming that there was proof that nanoparticles do penetrate the skin barrier [as per my posting of June 23, 2010].)

I want to point out that the stakes are quite high despite the fact that sunscreens are classified as a cosmetic. I’ve heard at least one commentator (Pat Roy Mooney of The ETC Group, Interview at 2009 Elevate Festival at 4:32) scoff because nanotechnology is being used in cosmetics as if it’s frivolous. Given the important role sunscreens play in our health these days, a safe sunscreen has to be high on the list of most people’s priorities but this leads to a question.

Should we stop developing more effective nanotechnology-enabled sunscreens (and by extension, other nanotechnology-enabled products) due to concern that we may cause more harm than good?

Andrew goes on to provide some interesting insight into the issue citing the Precautionary Principle and supplementing his comments with some of Richard Jones’ (author of Soft Machines book and blog and consultant to UK government on various nanotechnology topics) suggestions to refine the Precautionary Principle guidelines,

1. what are the benefits that the new technology provides – what are the risks and uncertainties associated with not realising these benefits?

2. what are the risks and uncertainties attached to any current ways we have of realising these benefits using existing technologies?

3. what are the risks and uncertainties of the new technology?

I strongly suggest that anyone interested in the issues around risk, the precautionary principle, emerging technologies, and the role of research read this posting (as well as its predecessors) and as much of the discussion as you can manage.

One additional thought which was posited in the comments section by Hilary Sutcliffe (you’ll need to scroll the comments as I haven’t figured out how to create a direct link to her comment) has to do with the role that companies have with regard to their research and making it available in the discussion about health, safety, and the environment (HSE),

… we need to be able to access ‘the best available information’ in order to make informed decisions in the face of uncertainty and enable the rounded assessment that Prof Richard Jones suggests. This is indeed essential, but ‘we’ are usually constrained by the lack of one very large chunk of ‘available information’ which is the HSE testing the companies themselves have done which leads them to judge the material or product they have developed is safe.

Further in the comment she goes on to discuss a project (What’s fair to share?) that her organization (MATTER) is planning where they want to discuss how companies can share their HSE data without giving away intellectual property and/or competitive advantages.

Finally, I want to paraphrase something I said elsewhere. While I am critical of the tactics used by the Friends of the Earth in this instance, there is no doubt in my mind that the organization and other civil society groups serve a very important role in raising much needed discussion about nanotechnology risks.

Examining communication strategies for nanotechnology and for the BP oil spill

This won’t be a very long posting as it’s really a pointer to a couple commentaries by Dietram Scheufele (nanosunscreens) and Matthew Nisbet (BP oil spill).

First up Scheufele ( last mentioned here in a posting about Google influencing online searches for information nanotechnology; note: you can find out more about that in an interview with Elizabeth Baum) highlights in his June 17, 2010 posting, a public education/advertising campaign that the US Friends of the Earth (FOE) organization recently kicked off,

The timing is impeccable, of course, keeping alive a news wave started last week by a push from NY Senator Sen. Chuck Schumer to have the Food and Drug Administration looking into a possible link between retinyl palmitate in sun screens and skin cancer in humans.

It’s an interesting observation which suggests a great deal of thought goes into developing campaigns by nongovernmental organizations (aka civil society groups) and by extension other interests such as companies, politicians, governments, etc. You can follow links and read more at Dietram Scheufele’s nanopublic blog.

Here’s another observation about strategy this time by Matthew Nisbett in a his June 14, 2010 posting where he comments on why he thinks the environmental groups are being relatively muted in their response to the BP oil spill in the Gulf of Mexico and how they have responded,

In my own comments quoted in the article [by Josh Gerstein on Politico], I note that environmental groups appear to have adopted a smart strategy, letting the heavy news attention and general emphasis on public accountability do the communication work for them. If environmental groups were to become more open in their criticism of the Administration or too visible in news coverage, they risk alienating the White House and may be criticized by the media and the public for being politically opportunistic. Below are additional thoughts on the article and recent trends:

* As I emphasized to Gerstein, the sound bite of the crisis so far has been James Carville’s “who’s your daddy” comment, a frame device delivered with deep emotion that instantly conveys the emphasis on public accountability that has come to dominate news narratives.

Links and the full posting  are at Nisbett’s blog, Framing Science.

In coming to conclusions and positions of my own, I find it’s helpful to understand the mechanics (yes, there’s luck but there’s also a lot of planning)  behind the messages I receive.