Tag Archives: Fudan University

Vampire nanogenerators: 2017

Researchers have been working on ways to harvest energy from bloodstreams. I last wrote about this type of research in an April 3, 2009 posting about ‘vampire batteries ‘(for use in pacemakers). The latest work according to a Sept. 8, 2017 news item on Nanowerk comes from China,

Men build dams and huge turbines to turn the energy of waterfalls and tides into electricity. To produce hydropower on a much smaller scale, Chinese scientists have now developed a lightweight power generator based on carbon nanotube fibers suitable to convert even the energy of flowing blood in blood vessels into electricity. They describe their innovation in the journal Angewandte Chemie (“A One-Dimensional Fluidic Nanogenerator with a High Power Conversion Efficiency”)

A Sept. 8, 2017 Wiley Publishing news release (also on EurekAlert), which originated the news item, expands on the theme,

For thousands of years, people have used the energy of flowing or falling water for their purposes, first to power mechanical engines such as watermills, then to generate electricity by exploiting height differences in the landscape or sea tides. Using naturally flowing water as a sustainable power source has the advantage that there are (almost) no dependencies on weather or daylight. Even flexible, minute power generators that make use of the flow of biological fluids are conceivable. How such a system could work is explained by a research team from Fudan University in Shanghai, China. Huisheng Peng and his co-workers have developed a fiber with a thickness of less than a millimeter that generates electrical power when surrounded by flowing saline solution—in a thin tube or even in a blood vessel.

The construction principle of the fiber is quite simple. An ordered array of carbon nanotubes was continuously wrapped around a polymeric core. Carbon nanotubes are well known to be electroactive and mechanically stable; they can be spun and aligned in sheets. In the as-prepared electroactive threads, the carbon nanotube sheets coated the fiber core with a thickness of less than half a micron. For power generation, the thread or “fiber-shaped fluidic nanogenerator” (FFNG), as the authors call it, was connected to electrodes and immersed into flowing water or simply repeatedly dipped into a saline solution. “The electricity was derived from the relative movement between the FFNG and the solution,” the scientists explained. According to the theory, an electrical double layer is created around the fiber, and then the flowing solution distorts the symmetrical charge distribution, generating an electricity gradient along the long axis.

The power output efficiency of this system was high. Compared with other types of miniature energy-harvesting devices, the FFNG was reported to show a superior power conversion efficiency of more than 20%. Other advantages are elasticity, tunability, lightweight, and one-dimensionality, thus offering prospects of exciting technological applications. The FFNG can be made stretchable just by spinning the sheets around an elastic fiber substrate. If woven into fabrics, wearable electronics become thus a very interesting option for FFNG application. Another exciting application is the harvesting of electrical energy from the bloodstream for medical applications. First tests with frog nerves proved to be successful.

Here’s a link to and a citation for the paper,

A One-Dimensional Fluidic Nanogenerator with a High Power Conversion Efficiency by Yifan Xu, Dr. Peining Chen, Jing Zhang, Songlin Xie, Dr. Fang Wan, Jue Deng, Dr. Xunliang Cheng, Yajie Hu, Meng Liao, Dr. Bingjie Wang, Dr. Xuemei Sun, and Prof. Dr. Huisheng Peng. Angewandte Chemie International Edition DOI: 10.1002/anie.201706620 Version of Record online: 7 SEP 2017

© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Brain stuff: quantum entanglement and a multi-dimensional universe

I have two brain news bits, one about neural networks and quantum entanglement and another about how the brain operates in* more than three dimensions.

Quantum entanglement and neural networks

A June 13, 2017 news item on phys.org describes how machine learning can be used to solve problems in physics (Note: Links have been removed),

Machine learning, the field that’s driving a revolution in artificial intelligence, has cemented its role in modern technology. Its tools and techniques have led to rapid improvements in everything from self-driving cars and speech recognition to the digital mastery of an ancient board game.

Now, physicists are beginning to use machine learning tools to tackle a different kind of problem, one at the heart of quantum physics. In a paper published recently in Physical Review X, researchers from JQI [Joint Quantum Institute] and the Condensed Matter Theory Center (CMTC) at the University of Maryland showed that certain neural networks—abstract webs that pass information from node to node like neurons in the brain—can succinctly describe wide swathes of quantum systems.

An artist’s rendering of a neural network with two layers. At the top is a real quantum system, like atoms in an optical lattice. Below is a network of hidden neurons that capture their interactions (Credit: E. Edwards/JQI)

A June 12, 2017 JQI news release by Chris Cesare, which originated the news item, describes how neural networks can represent quantum entanglement,

Dongling Deng, a JQI Postdoctoral Fellow who is a member of CMTC and the paper’s first author, says that researchers who use computers to study quantum systems might benefit from the simple descriptions that neural networks provide. “If we want to numerically tackle some quantum problem,” Deng says, “we first need to find an efficient representation.”

On paper and, more importantly, on computers, physicists have many ways of representing quantum systems. Typically these representations comprise lists of numbers describing the likelihood that a system will be found in different quantum states. But it becomes difficult to extract properties or predictions from a digital description as the number of quantum particles grows, and the prevailing wisdom has been that entanglement—an exotic quantum connection between particles—plays a key role in thwarting simple representations.

The neural networks used by Deng and his collaborators—CMTC Director and JQI Fellow Sankar Das Sarma and Fudan University physicist and former JQI Postdoctoral Fellow Xiaopeng Li—can efficiently represent quantum systems that harbor lots of entanglement, a surprising improvement over prior methods.

What’s more, the new results go beyond mere representation. “This research is unique in that it does not just provide an efficient representation of highly entangled quantum states,” Das Sarma says. “It is a new way of solving intractable, interacting quantum many-body problems that uses machine learning tools to find exact solutions.”

Neural networks and their accompanying learning techniques powered AlphaGo, the computer program that beat some of the world’s best Go players last year (link is external) (and the top player this year (link is external)). The news excited Deng, an avid fan of the board game. Last year, around the same time as AlphaGo’s triumphs, a paper appeared that introduced the idea of using neural networks to represent quantum states (link is external), although it gave no indication of exactly how wide the tool’s reach might be. “We immediately recognized that this should be a very important paper,” Deng says, “so we put all our energy and time into studying the problem more.”

The result was a more complete account of the capabilities of certain neural networks to represent quantum states. In particular, the team studied neural networks that use two distinct groups of neurons. The first group, called the visible neurons, represents real quantum particles, like atoms in an optical lattice or ions in a chain. To account for interactions between particles, the researchers employed a second group of neurons—the hidden neurons—which link up with visible neurons. These links capture the physical interactions between real particles, and as long as the number of connections stays relatively small, the neural network description remains simple.

Specifying a number for each connection and mathematically forgetting the hidden neurons can produce a compact representation of many interesting quantum states, including states with topological characteristics and some with surprising amounts of entanglement.

Beyond its potential as a tool in numerical simulations, the new framework allowed Deng and collaborators to prove some mathematical facts about the families of quantum states represented by neural networks. For instance, neural networks with only short-range interactions—those in which each hidden neuron is only connected to a small cluster of visible neurons—have a strict limit on their total entanglement. This technical result, known as an area law, is a research pursuit of many condensed matter physicists.

These neural networks can’t capture everything, though. “They are a very restricted regime,” Deng says, adding that they don’t offer an efficient universal representation. If they did, they could be used to simulate a quantum computer with an ordinary computer, something physicists and computer scientists think is very unlikely. Still, the collection of states that they do represent efficiently, and the overlap of that collection with other representation methods, is an open problem that Deng says is ripe for further exploration.

Here’s a link to and a citation for the paper,

Quantum Entanglement in Neural Network States by Dong-Ling Deng, Xiaopeng Li, and S. Das Sarma. Phys. Rev. X 7, 021021 – Published 11 May 2017

This paper is open access.

Blue Brain and the multidimensional universe

Blue Brain is a Swiss government brain research initiative which officially came to life in 2006 although the initial agreement between the École Politechnique Fédérale de Lausanne (EPFL) and IBM was signed in 2005 (according to the project’s Timeline page). Moving on, the project’s latest research reveals something astounding (from a June 12, 2017 Frontiers Publishing press release on EurekAlert),

For most people, it is a stretch of the imagination to understand the world in four dimensions but a new study has discovered structures in the brain with up to eleven dimensions – ground-breaking work that is beginning to reveal the brain’s deepest architectural secrets.

Using algebraic topology in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.

The research, published today in Frontiers in Computational Neuroscience, shows that these structures arise when a group of neurons forms a clique: each neuron connects to every other neuron in the group in a very specific way that generates a precise geometric object. The more neurons there are in a clique, the higher the dimension of the geometric object.

“We found a world that we had never imagined,” says neuroscientist Henry Markram, director of Blue Brain Project and professor at the EPFL in Lausanne, Switzerland, “there are tens of millions of these objects even in a small speck of the brain, up through seven dimensions. In some networks, we even found structures with up to eleven dimensions.”

Markram suggests this may explain why it has been so hard to understand the brain. “The mathematics usually applied to study networks cannot detect the high-dimensional structures and spaces that we now see clearly.”

If 4D worlds stretch our imagination, worlds with 5, 6 or more dimensions are too complex for most of us to comprehend. This is where algebraic topology comes in: a branch of mathematics that can describe systems with any number of dimensions. The mathematicians who brought algebraic topology to the study of brain networks in the Blue Brain Project were Kathryn Hess from EPFL and Ran Levi from Aberdeen University.

“Algebraic topology is like a telescope and microscope at the same time. It can zoom into networks to find hidden structures – the trees in the forest – and see the empty spaces – the clearings – all at the same time,” explains Hess.

In 2015, Blue Brain published the first digital copy of a piece of the neocortex – the most evolved part of the brain and the seat of our sensations, actions, and consciousness. In this latest research, using algebraic topology, multiple tests were performed on the virtual brain tissue to show that the multi-dimensional brain structures discovered could never be produced by chance. Experiments were then performed on real brain tissue in the Blue Brain’s wet lab in Lausanne confirming that the earlier discoveries in the virtual tissue are biologically relevant and also suggesting that the brain constantly rewires during development to build a network with as many high-dimensional structures as possible.

When the researchers presented the virtual brain tissue with a stimulus, cliques of progressively higher dimensions assembled momentarily to enclose high-dimensional holes, that the researchers refer to as cavities. “The appearance of high-dimensional cavities when the brain is processing information means that the neurons in the network react to stimuli in an extremely organized manner,” says Levi. “It is as if the brain reacts to a stimulus by building then razing a tower of multi-dimensional blocks, starting with rods (1D), then planks (2D), then cubes (3D), and then more complex geometries with 4D, 5D, etc. The progression of activity through the brain resembles a multi-dimensional sandcastle that materializes out of the sand and then disintegrates.”

The big question these researchers are asking now is whether the intricacy of tasks we can perform depends on the complexity of the multi-dimensional “sandcastles” the brain can build. Neuroscience has also been struggling to find where the brain stores its memories. “They may be ‘hiding’ in high-dimensional cavities,” Markram speculates.

###

About Blue Brain

The aim of the Blue Brain Project, a Swiss brain initiative founded and directed by Professor Henry Markram, is to build accurate, biologically detailed digital reconstructions and simulations of the rodent brain, and ultimately, the human brain. The supercomputer-based reconstructions and simulations built by Blue Brain offer a radically new approach for understanding the multilevel structure and function of the brain. http://bluebrain.epfl.ch

About Frontiers

Frontiers is a leading community-driven open-access publisher. By taking publishing entirely online, we drive innovation with new technologies to make peer review more efficient and transparent. We provide impact metrics for articles and researchers, and merge open access publishing with a research network platform – Loop – to catalyse research dissemination, and popularize research to the public, including children. Our goal is to increase the reach and impact of research articles and their authors. Frontiers has received the ALPSP Gold Award for Innovation in Publishing in 2014. http://www.frontiersin.org.

Here’s a link to and a citation for the paper,

Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function by Michael W. Reimann, Max Nolte, Martina Scolamiero, Katharine Turner, Rodrigo Perin, Giuseppe Chindemi, Paweł Dłotko, Ran Levi, Kathryn Hess, and Henry Markram. Front. Comput. Neurosci., 12 June 2017 | https://doi.org/10.3389/fncom.2017.00048

This paper is open access.

*Feb. 3, 2021: ‘on’ changed to ‘in’

Self-healing lithium-ion batteries for textiles

It’s easy to forget how hard we are on our textiles. We rip them, step on them, agitate them in water, splatter them with mud, and more. So, what happens when we integrate batteries and electronics into them? An Oct. 20, 2016 news item on phys.org describes one of the latest ‘textile batter technologies’,

Electronics that can be embedded in clothing are a growing trend. However, power sources remain a problem. In the journal Angewandte Chemie, scientists have now introduced thin, flexible, lithium ion batteries with self-healing properties that can be safely worn on the body. Even after completely breaking apart, the battery can grow back together without significant impact on its electrochemical properties.

wiley_selfhealinglithiumionbattery

© Wiley-VCH

An Oct. 20, 2016 Wiley Angewandte Chemie International Edition press release (also on EurekAlert), which originated the news item, describes some of the problems associated with lithium-ion batteries and this new technology designed to address them,

Existing lithium ion batteries for wearable electronics can be bent and rolled up without any problems, but can break when they are twisted too far or accidentally stepped on—which can happen often when being worn. This damage not only causes the battery to fail, it can also cause a safety problem: Flammable, toxic, or corrosive gases or liquids may leak out.

A team led by Yonggang Wang and Huisheng Peng has now developed a new family of lithium ion batteries that can overcome such accidents thanks to their amazing self-healing powers. In order for a complicated object like a battery to be made self-healing, all of its individual components must also be self-healing. The scientists from Fudan University (Shanghai, China), the Samsung Advanced Institute of Technology (South Korea), and the Samsung R&D Institute China, have now been able to accomplish this.

The electrodes in these batteries consist of layers of parallel carbon nanotubes. Between the layers, the scientists embedded the necessary lithium compounds in nanoparticle form (LiMn2O4 for one electrode, LiTi2(PO4)3 for the other). In contrast to conventional lithium ion batteries, the lithium compounds cannot leak out of the electrodes, either while in use or after a break. The thin layer electrodes are each fixed on a substrate of self-healing polymer. Between the electrodes is a novel, solvent-free electrolyte made from a cellulose-based gel with an aqueous lithium sulfate solution embedded in it. This gel electrolyte also serves as a separation layer between the electrodes.

After a break, it is only necessary to press the broken ends together for a few seconds for them to grow back together. Both the self-healing polymer and the carbon nanotubes “stick” back together perfectly. The parallel arrangement of the nanotubes allows them to come together much better than layers of disordered carbon nanotubes. The electrolyte also poses no problems. Whereas conventional electrolytes decompose immediately upon exposure to air, the new gel is stable. Free of organic solvents, it is neither flammable nor toxic, making it safe for this application.

The capacity and charging/discharging properties of a battery “armband” placed around a doll’s elbow were maintained, even after repeated break/self-healing cycles.

Here’s a link to and a citation for the paper,

A Self-Healing Aqueous Lithium-Ion Battery by Yang Zhao, Ye Zhang, Hao Sun, Xiaoli Dong, Jingyu Cao, Lie Wang, Yifan Xu, Jing Ren, Yunil Hwang, Dr. In Hyuk Son, Dr. Xianliang Huang, Prof. Yonggang Wang, and Prof. Huisheng Peng. Angewandte Chemie International Edition DOI: 10.1002/anie.201607951 Version of Record online: 12 OCT 2016

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

A new lens (made from nanobeads) for seeing subwavelength images at visible frequencies

The image which illustrates the research is quite intriguing but I don’t think it makes much sense until you read about the research. From an Aug. 12, 2016 news item on ScienceDaily,

Nanobeads are all around us- and are, some might argue, used too frequently in everything from sun-screen to white paint, but a new ground-breaking application is revealing hidden worlds.

A paper in Science Advances provides proof of a new concept, using new solid 3D superlenses to break through the scale of things previously visible through a microscope.

Illustrating the strength of the new superlens, the scientists describe seeing for the first time, the actual information on the surface of a Blue Ray DVD. That shiny surface is not as smooth as we think. Current microscopes cannot see the grooves containing the data- but now even the data itself is revealed.

Now the image,

(a) Conceptual drawing of nanoparticle-based metamaterial solid immersion lens (mSIL) (b) Lab made mSIL (c) SEM image of 60 nm sized imaging sample (d) corresponding superlens imaging of the 60 nm samples by the developed mSIL. Courtesy: Bangor University

(a) Conceptual drawing of nanoparticle-based metamaterial solid immersion lens (mSIL) (b) Lab made mSIL (c) SEM image of 60 nm sized imaging sample (d) corresponding superlens imaging of the 60 nm samples by the developed mSIL. Credit: ©BangorUniversity Fudan University

An Aug. 13, 2016 Bangor University press release (also on EurekAlert with an Aug. 12, 2016 publication date), which originated the news item, describes the work in more detail,

Led by Dr Zengbo Wang at Bangor University UK and Prof Limin Wu at Fudan University, China, the team created minute droplet-like lens structures on the surface to be examined. These act as an additional lens to magnify the surface features previously invisible to a normal lens.

Made of millions of nanobeads, the spheres break up the light beam. Each bead refracts the light, acting as individual torch-like minute beam. It is the very small size of each beam of light which illuminate the surface, extending the resolving ability of the microscope to record-breaking levels. The new superlens adds 5x magnification on top of existing microscopes.

Extending the limit of classical microscope’s resolution has been the ‘El Dorado’ or ‘Holy Grail’ of microscopy for over a century. Physical laws of light make it impossible to view objects smaller than 200 nm – the smallest size of bacteria, using a normal microscope alone. However, superlenses have been the new goal since the turn of the millennium, with various labs and teams researching different models and materials.

“We’ve used high-index titanium dioxide (TiO2) nanoparticles as the building element of the lens. These nanoparticles are able to bend light to a higher degree than water. To explain, when putting a spoon into a cup of this material, if it were possible, you’d see a larger bend where you spoon enters the material than you would looking at the same spoon in a glass of water,” Dr Wang says.

Nanoparticles splitting single incident beam into multiple=Nanoparticles splitting single incident beam into multiple beams which provides optical super-resolution in imaging.“Each sphere bends the light to a high magnitude and splits the light beam, creating millions of individual beams of light. It is these tiny light beams which enable us to view previously unseen detail.”

Wang believes that the results will be easily replicable and that other labs will soon be adopting the technology and using it for themselves.

The advantages of the technology is that the material, titanium dioxide, is cheap and readily available, and rather than buying a new microscope, the lenses are applied to the material to be viewed, rather than to the microscope.

“We have already viewed details to a far greater level than was previously possible. The next challenge is to adapt the technology for use in biology and medicine. This would not require the current use of a combination of dyes and stains and laser light- which change the samples being viewed. The new lens will be used to see germs and viruses not previously visible.”

Here’s a link to and a citation for the paper,

Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies by Wen Fan, Bing Yan, Zengbo Wang, and Limin Wu. Science Advances  12 Aug 2016: Vol. 2, no. 8, e1600901 DOI: 10.1126/sciadv.1600901

This paper is open access.

Shape memory in a supercapacitor fibre for ‘smart’ textiles (wearable tech: 1 of 3)

Wearable technology seems to be quite trendy for a grouping not usually seen: consumers, fashion designers, medical personnel, manufacturers, and scientists.

The first in this informal series concerns a fibre with memory shape. From a Nov. 19, 2015 news item on Nanowerk (Note: A link has been removed),

Wearing your mobile phone display on your jacket sleeve or an EKG probe in your sports kit are not off in some distant imagined future. Wearable “electronic textiles” are on the way. In the journal Angewandte Chemie (“A Shape-Memory Supercapacitor Fiber”), Chinese researchers have now introduced a new type of fiber-shaped supercapacitor for energy-storage textiles. Thanks to their shape memory, these textiles could potentially adapt to different body types: shapes formed by stretching and bending remain “frozen”, but can be returned to their original form or reshaped as desired.

A Nov. 19, 2015 Wiley Publishers press release, which originated the news item, provides context and detail about the work,

Any electronic components designed to be integrated into textiles must be stretchable and bendable. This is also true of the supercapacitors that are frequently used for data preservation in static storage systems (SRAM). SRAM is a type of storage that holds a small amount of data that is rapidly retrievable. It is often used for caches in processors or local storage on chips in devices whose data must be stored for long periods without a constant power supply. Some time ago, a team headed by Huisheng Peng at Fudan University developed stretchable, pliable fiber-shaped supercapacitors for integration into electronic textiles. Peng and his co-workers have now made further progress: supercapacitor fibers with shape memory.

Any electronic components designed to be integrated into textiles must be stretchable and bendable. This is also true of the supercapacitors that are frequently used for data preservation in static storage systems (SRAM). SRAM is a type of storage that holds a small amount of data that is rapidly retrievable. It is often used for caches in processors or local storage on chips in devices whose data must be stored for long periods without a constant power supply.
Some time ago, a team headed by Huisheng Peng at Fudan University developed stretchable, pliable fiber-shaped supercapacitors for integration into electronic textiles. Peng and his co-workers have now made further progress: supercapacitor fibers with shape memory.

The fibers are made using a core of polyurethane fiber with shape memory. This fiber is wrapped with a thin layer of parallel carbon nanotubes like a sheet of paper. This is followed by a coating of electrolyte gel, a second sheet of carbon nanotubes, and a final layer of electrolyte gel. The two layers of carbon nanotubes act as electrodes for the supercapacitor. Above a certain temperature, the fibers produced in this process can be bent as desired and stretched to twice their original length. The new shape can be “frozen” by cooling. Reheating allows the fibers to return to their original shape and size, after which they can be reshaped again. The electrochemical performance is fully maintained through all shape changes.

Weaving the fibers into tissues results in “smart” textiles that could be tailored to fit the bodies of different people. This could be used to make precisely fitted but reusable electronic monitoring systems for patients in hospitals, for example. The perfect fit should render them both more comfortable and more reliable.

Here’s a link to and a citation for the paper,

A Shape-Memory Supercapacitor Fiber by Jue Deng, Ye Zhang, Yang Zhao, Peining Chen, Dr. Xunliang Cheng, & Prof. Dr. Huisheng Peng. Angewandte Chemie International Edition  DOI: 10.1002/anie.201508293  First published: 3 November 2015

This paper is behind a paywall.

Wearable solar panels with perovskite

There was a bit of a flutter online in late July 2014 about solar cell research and perovskite, a material that could replace silicon therefore making solar cells more affordable, which hopefully would lead to greater adoption of the technology. Happily, the publishers of the study seem to have reissued their news release (h/t Aug. 11, 2014 news item on Nanwerk).

From the Wiley online press release Nr. 29/2014,

Textile solar cells are an ideal power source for small electronic devices incorporated into clothing. In the journal Angewandte Chemie, Chinese scientists have now introduced novel solar cells in the form of fibers that can be woven into a textile. The flexible, coaxial cells are based on a perovskite material and carbon nanotubes; they stand out due to their excellent energy conversion efficiency of 3.3 % and their low production cost.

The dilemma for solar cells: they are either inexpensive and inefficient, or they have a reasonable efficiency and are very expensive. One solution may come from solar cells made of perovskite materials, which are less expensive than silicon and do not require any expensive additives. Perovskites are materials with a special crystal structure that is like that of perovskite, a calcium titanate. These structures are often semiconductors and absorb light relatively efficiently. Most importantly, they can move electrons excited by light for long distances within the crystal lattice before they return to their energetic ground state and take up a solid position – a property that is very important in solar cells.

A team led by Hisheng Peng at Fudan University in Shanghai has now developed perovskite solar cells in the form of flexible fibers that can be woven into electronic textiles. Their production process is relatively simple and inexpensive because it uses a solution-based process to build up the layers.

The anode is a fine stainless steel wire coated with a compact n-semiconducting titanium dioxide layer. A layer of porous nanocrystalline titanium dioxide is deposited on top of this. This provides a large surface area for the subsequent deposition of the perovskite material CH3NH3PbI3. This is followed by a layer made of a special organic material. Finally a transparent layer of aligned carbon nanotubes is continuously wound over the whole thing to act as the cathode. The resulting fiber is so fine and flexible that it can be woven into textiles.

The perovskite layer absorbs light, that excites electrons and sets them free, causing a charge separation between the electrons and the formally positively charged “holes” The electrons enter the conducting band of the compact titanium dioxide layer and move to the anode. The “holes” are captured by the organic layer. The large surface area and the high electrical conductivity of the carbon nanotube cathode aid in the rapid conduction of the charges with high photoelectric currents. The fiber solar cell can attain an energy conversion efficiency of 3.3 %, exceeding that of all previous coaxial fiber solar cells made with either dyes or polymers.

Here’s an image used in the press release illustrating the new fiber,

[downloaded from http://www.wiley-vch.de/vch/journals/2002/press/201429press.pdf]

[downloaded from http://www.wiley-vch.de/vch/journals/2002/press/201429press.pdf]

Here’s a link to and a citation for the paper,

Integrating Perovskite Solar Cells into a Flexible Fiber by Longbin Qiu, Jue Deng, Xin Lu, Zhibin Yang, and Prof. Huisheng Peng. Angewandte Chemie International Edition DOI: 10.1002/anie.201404973 Article first published online: 22 JUL 2014

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

I found a second item about perovskite and solar cells in a May 16, 2014 article by Vicki Marshall for Chemistry World which discussed some research in the UK (Note: Links have been removed),

A lead-free and non-toxic alternative to current perovskite solar-cell technology has been reported by researchers in the UK: tin halide perovskite solar cells. They are also cheaper to manufacture than the silicon solar cells currently dominating the market.

Nakita Noel, part of Henry Snaith’s research team at the University of Oxford, describes how perovskite materials have caused a bit of a whirlwind since they came out in 2009: ‘Everybody that’s working in the solar community is looking to beat silicon.’ Despite the high efficiency of conventional crystalline silicon solar cells (around 20%), high production and installation costs decrease their economic feasibility and widespread use.

The challenge to find a cheaper alternative led to the development of perovskite-based solar cells, as organic–inorganic metal trihalide perovskites have both abundant and cheap starting materials. However, the presence of lead in some semiconductors could create toxicology issues in the future. As Noel puts it ‘every conference you present at somebody is bound to put up their hand and ask “What about the lead – isn’t this toxic?”’

Brian Hardin, co-founder of PLANT PV, US, and an expert in new materials for photovoltaic cells, says the study ‘should be considered a seminal work on alternative perovskites and is extremely valuable to the field as they look to better understand how changes in chemistry affect solar cell performance and stability.’

Here’s a link to and a citation for the UK researchers’ paper,

Lead-free organic–inorganic tin halide perovskites for photovoltaic applications by Nakita K. Noel, Samuel D. Stranks, Antonio Abate, Christian Wehrenfennig, Simone Guarnera, Amir-Abbas Haghighirad, Aditya Sadhana, Giles E. Eperon, Sandeep K. Pathak, Michael B. Johnston, Annamaria Petrozza, Laura M. Herza, and Henry J. Snaith. Energy Environ. Sci., 2014, Advance Article DOI: 10.1039/C4EE01076K First published online 01 May 2014

This article was open access until June 27, 2014 but now it is behind a paywall.

I notice there’s no mention of lead in the materials describing the research paper from the Chinese scientists. Perhaps they were working with lead-free materials.

Prussian blue nanocubes and ultralightweight iron oxide materials

The research itself concerns the synthesis of ultralight iron oxide frameworks but really caught my attention was the image used to illustrate the work and the term ‘Prussian blue nanocubes’,

[downloaded from http://www.wiley-vch.de/util/hottopics/mesoporous/]

[downloaded from http://www.wiley-vch.de/util/hottopics/mesoporous/]

I believed the image is meant to indicate an ultralight iron anvil resting on the head of a rose-like blossom (I was mostly wrong) as you’ll see in this Feb. 25, 2014 news item on Nanowerk (Note: A link has been removed),

Adsorption, catalysis, or substrates for tissue growth: porous materials have many potential applications. In the journal Angewandte Chemie (“Ultralight Mesoporous Magnetic Frameworks by Interfacial Assembly of Prussian Blue Nanocubes”), a team of Chinese and Australian researchers has now introduced a method for the synthesis of ultralight three-dimensional (3D) iron oxide frameworks with two different types of nanoscopic pores and tunable surface properties. This superparamagnetic material can be cut into arbitrary shapes and is suitable for applications such as multiphase catalysis and the removal of heavy metal ions and oil from water.

Materials with hierarchically organized pore systems—meaning that the walls of macropores with diameters in the micrometer range contain mesopores of just a few nanometers—are high on the wish lists of materials researchers. The advantages of these materials include their high surface area and the easy accessibility of the small pores through the larger ones. The great desirability of these materials is matched by the degree of difficulty in producing them on an industrial scale.

Scientists at Fudan University (China) and Monash University (Australia) have now successfully produced an ultralight iron oxide framework with 250 µm and 18 nm pores in a process that can be used on an industrial scale. A team led by Gengfeng Zheng and Dongyuan Zhao used highly porous polyurethane sponges as a “matrix”, which were soaked with yellow potassium hexacyanoferrate (K4[Fe(CN)6]). Subsequent hydrolysis resulted in cubic nanocrystals of Prussian blue (iron hexacyanoferrate), a dark blue pigment, which were deposited all over the surfaces of the sponge. The polyurethane sponge was then fully burned away through pyroloysis and the Prussian blue was converted to iron oxide. The result is a 3D framework of iron oxide cubes that are in turn made of iron oxide nanoparticles and contain mesopores. The material is so light that the researchers were able to balance a 240 cm3 piece on an oleander blossom.

As for Prussian blue, it’s a term I associate with portraits and landscapes. Actually, Prussian blue is a little more than that (from the Prussian blue entry on wiktionary.org),

Prussian blue (plural Prussian blues)

(inorganic chemistry) An insoluble dark, bright blue pigment, ferric ferrocyanide (equivalent to ferrous ferricyanide), used in painting and dyeing, and as an antidote for certain kinds of heavy metal poisoning.
A moderate to rich blue colour, tinted with deep greenish blue.

Here’s a sample of the colour from the wiktionary entry,

[downloaded from http://en.wiktionary.org/wiki/Prussian_blue]

[downloaded from http://en.wiktionary.org/wiki/Prussian_blue]

Prussian Blue was also the name for a short-lived white nationalist band (from the Prussian Blue essay on Wikipedia; Note: Links have been removed),

Prussian Blue was an American white nationalist pop pre-teen duo formed in early 2003 by April Gaede, mother of Lynx Vaughan Gaede[1] and Lamb Lennon Gaede,[2] sororal twins born on June 30, 1992, in Bakersfield, California.[3] The twins referred to the Holocaust as a myth[4] and their group was described as racist and white supremacist in nature.[5][6]

Lynx and Lamb were about 14 when they decided that they wanted to cease touring. In 2011, in an interview with The Daily, the twins renounced their previous politics.[7] Lamb was quoted saying, “I’m not a white nationalist anymore. My sister and I are pretty liberal now.”

Getting back to the research at hand, here’s a link to and a citation for the research into ultralight iron oxide frameworks,

Ultralight Mesoporous Magnetic Frameworks by Interfacial Assembly of Prussian Blue Nanocubes by Biao Kong, Jing Tang, Zhangxiong Wu, Jing Wei, Hao Wu, Yongcheng Wang, Prof. Gengfeng Zheng, & Prof. Dongyuan Zhao. Angewandte Chemie International Edition Article first published online: 12 FEB 2014 DOI: 10.1002/anie.201308625

Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

I really wasn’t expecting to trip across information about a holocaust-denying pre-teen pop duo (who’ve since renounced those views) in a post regarding research on iron oxide and Prussian blue nanocubes that was published in a German chemistry journal. I’m not sure this can be called ironic but it certainly has that quality.

Lighting your way onto the internet with LiFi

Chinese researchers have found a way to use lightbulbs instead of WiFi to access the internet, according to an Oct. 17, 2013 news item on Nanowerk,

Successful experiments by Chinese scientists have indicated the possibility of the country’s netizens getting online through signals sent by lightbulbs (LiFi), instead of WiFi.

Four computers under a one-watt LED lightbulb may connect to the Internet under the principle that light can be used as a carrier instead of traditional radio frequencies, as in WiFi, said Chi Nan, an information technology professor with Shanghai’s Fudan University, on Thursday [Oct. 17, 2013].

The Oct. 17, 2013 news release on Xinhua News (China’s official press agency), which originated the news item, describes the possibilities of ‘LiFi’,

A lightbulb with embedded microchips can produce data rates as fast as 150 megabits per second, which is speedier than the average broadband connection in China, said Chi, who leads a LiFi research team including scientists from the Shanghai Institute of Technical Physics of the Chinese Academy of Sciences.

With LiFi cost-effective as well as efficient, netizens should be excited to view 10 sample LiFi kits that will be on display at the China International Industry Fair that will kick off on Nov. 5 [2013] in Shanghai.

The current wireless signal transmission equipment is expensive and low in efficiency, said Chi.

“As for cell phones, millions of base stations have been established around the world to strengthen the signal but most of the energy is consumed on their cooling systems,” she explained. “The energy utilization rate is only 5 percent.”

Compared with base stations, the number of lightbulbs that can be used is practically limitless. Meanwhile, Chinese people are replacing the old-fashioned incandescent bulbs with LED lightbulbs at a fast pace.

“Wherever there is an LED lightbulb, there is an Internet signal,” said Chi. “Turn off the light and there is no signal.”

However, there is still a long way to go to make LiFi a commercial success.

“If the light is blocked, then the signal will be cut off,” said Chi.

More importantly, according to the scientist, the development of a series of key related pieces of technology, including light communication controls as well as microchip design and manufacturing, is still in an experimental period.

The term LiFi was coined by Harald Haas from the University of Edinburgh in the UK and refers to a type of visible light communication technology that delivers a networked, mobile, high-speed communication solution in a similar manner as WiFi.

I was not able to find any academic papers about Chi’s work with LiFi but there is her academic page here. As for the fair where Chi’s work will be displayed. CIIF 2013 – The 15th China International Industry Fair 2013 is being held in Shanghai from Nov. 5 – 9, 2013.