Tag Archives: GF

Canon-Molecular Imprints deal and its impact on shrinking chips (integrated circuits)

There’s quite an interesting April 20, 2014 essay on Nanotechnology Now which provides some insight into the nanoimprinting market. I recommend reading it but for anyone who is not intimately familiar with the scene, here are a few excerpts along with my attempts to decode this insider’s (from Martini Tech) view,

About two months ago, important news shook the small but lively Japanese nanoimprint community: Canon has decided to acquire, making it a wholly-owned subsidiary, Texas-based Molecular Imprints, a strong player in the nanotechnology industry and one of the main makers of nanoimprint devices such as the Imprio 450 and other models.

So, Canon, a Japanese company, has made a move into the nanoimpriting sector by purchasing Molecular Imprints, a US company based in Texas, outright.

This next part concerns the expiration of Moore’s Law (i.e., every 18 months computer chips get smaller and faster) and is why the major chip makers are searching for new solutions as per the fifth paragraph in this excerpt,

Molecular Imprints` devices are aimed at the IC [integrated circuits, aka chips, I think] patterning market and not just at the relatively smaller applications market to which nanoimprint is usually confined: patterning of bio culture substrates, thin film applications for the solar industry, anti-reflection films for smartphone and LED TV screens, patterning of surfaces for microfluidics among others.

While each one of the markets listed above has the potential of explosive growth in the medium-long term future, at the moment none of them is worth more than a few percentage points, at best, of the IC patterning market.

The mainstream technology behind IC patterning is still optical stepper lithography and the situation is not likely to change in the near term future.

However, optical lithography has its limitations, the main challenge to its 40-year dominance not coming only from technological and engineering issues, but mostly from economical ones.

While from a strictly technological point of view it may still be possible for the major players in the chip industry (Intel, GF, TSMC, Nvidia among others) to go ahead with optical steppers and reach the 5nm node using multi-patterning and immersion, the cost increases associated with each die shrink are becoming staggeringly high.

A top-of-the-notch stepper in the early 90s could have been bought for a few millions of dollars, now the price has increased to some tens of millions for the top machines

The essay describes the market impact this acquisition may have for Canon,

Molecular Imprints has been a company on the forefront of commercialization of nanoimprint-based solutions for IC manufacturing, but so far their solutions have yet to become a viable alternative HVM IC manufacturing market.

The main stumbling blocks for IC patterning using nanoimprint technology are: the occurrence of defects on the mask that inevitably replicates them on each substrate and the lack of alignment precision between the mold and the substrate needed to pattern multi-layered structures.

Therefore, applications for nanoimprint have been limited to markets where no non-periodical structure patterning is needed and where one-layered patterning is sufficient.

But the big market where everyone is aiming for is, of course, IC patterning and this is where much of the R&D effort goes.

While logic patterning with nanoimprint may still be years away, simple patterning of NAND structures may be feasible in the near future, and the purchase of Molecular Imprints by Canon is a step in this direction

Patterning of NAND structures may still require multi-layered structures, but the alignment precision needed is considerably lower than logic.

Moreover, NAND requirements for defectivity are more relaxed than for logic due to the inherent redundancy of the design, therefore, NAND manufacturing is the natural first step for nanoimprint in the IC manufacturing market and, if successful, it may open a whole new range of opportunities for the whole sector.

Assuming I’ve read the rest of this essay rightly, here’s my summary: there are a number of techniques being employed to make chips smaller and more efficient. Canon has purchased a company that is versed in a technique that creates NAND (you can find definitions here) structures in the hope that this technique can be commercialized so that Canon becomes dominant in the sector because (1) they got there first and/or because (2) NAND manufacturing becomes a clear leader, crushing competition from other technologies. This could cover short-term goals and, I imagine Canon hopes, long-term goals.

It was a real treat coming across this essay as it’s an insider’s view. So, thank you to the folks at Martini Tech who wrote this. You can find Molecular Imprints here.