Tag Archives: Global Library of Underwater Biological Sounds (GLUBS)

A fish baying at the moon?

It seems to be GLUBS time again (GLUBS being the Global Library of Underwater Biological Sounds). In fact it’s an altogether acoustical time for the ocean. First, a mystery fish,

That sounds a bit like a trumpet to me. (I last wrote about GLUBS in a March 4, 2022 posting where it was included under the ‘Marine sound libraries’ subhead.)

The latest about GLUBS and aquatic sounds can be found in an April 26, 2023 Rockefeller University news release on EurekAlert, Note 1: I don’t usually include the heads but I quite like this one and even stole part of it for this posting; Note 2: There probably should have been more than one news release; Note 3: For anyone who doesn’t have time to read the entire news release, I have a link immediately following the news release to an informative and brief article about the work,

Do fish bay at the moon? Can their odd songs identify Hawaiian mystery fish? Eavesdropping scientists progress in recording, understanding ocean soundscapes

Using hydrophones to eavesdrop on a reef off the coast of Goa, India, researchers have helped advance a new low-cost way to monitor changes in the world’s murky marine environments.

Reporting their results in the Journal of the Acoustical Society of America (JASA), the scientists recorded the duration and timing of mating and feeding sounds – songs, croaks, trumpets and drums – of 21 of the world’s noise-making ocean species.

With artificial intelligence and other pioneering techniques to discern the calls of marine life, they recorded and identified

Some species within the underwater community work the early shift and ruckus from 3 am to 1.45 pm, others work the late shift and ruckus from 2 pm to 2.45 am, while the plankton predators were “strongly influenced by the moon.”

Also registered: the degree of difference in the abundance of marine life before and after a monsoon.

The paper concludes that hydrophones are a powerful tool and “overall classification performance (89%) is helpful in the real-time monitoring of the fish stocks in the ecosystem.”

The team, including Bishwajit Chakraborty, a leader of the International Quiet Ocean Experiment (IQOE), benefitted from archived recordings of marine species against which they could match what they heard, including:

Also captured was a “buzz” call of unknown origin (https://bit.ly/3GZdRSI), one of the oceans’ countless marine life mysteries.

With a contribution to the International Quiet Ocean Experiment, the research will be discussed at an IQOE meeting in Woods Hole, MA, USA, 26-27 April [2023].

Advancing the Global Library of Underwater Biological Sounds (GLUBS)

That event will be followed April 28-29 by a meeting of partners in the new Global Library of Underwater Biological Sounds (GLUBS), a major legacy of the decade-long IQOE, ending in 2025.

GLUBS, conceived in late 2021 and currently under development, is designed as an open-access online platform to help collate global information and to broaden and standardize scientific and community knowledge of underwater soundscapes and their contributing sources.

It will help build short snippets and snapshots (minutes, hours, days long recordings) of biological, anthropogenic, and geophysical marine sounds into full-scale, tell-tale underwater baseline soundscapes.

Especially notable among many applications of insights from GLUBS information: the ability to detect in hard-to-see underwater environments and habitats how the distribution and behavior of marine life responds to increasing pressure from climate change, fishing, resource development, plastic, anthropogenic noise and other pollutants.

“Passive acoustic monitoring (PAM) is an effective technique for sampling aquatic systems that is particularly useful in deep, dark, turbid, and rapidly changing or remote locations,” says Miles Parsons of the Australian Institute of Marine Science and a leader of GLUBS.

He and colleagues outline two primary targets:

  • Produce and maintain a list of all aquatic species confirmed or anticipated to produce sound underwater;
  • Promote the reporting of sounds from unknown sources

Odd songs of Hawaii’s mystery fish

In this latter pursuit, GLUBS will also help reveal species unknown to science as yet and contribute to their eventual identification.

For example, newly added to the growing global collection of marine sounds are recent recordings from Hawaii, featuring the baffling

now part of an entire YouTube channel (https://bit.ly/3H5Ly54) dedicated to marine life sounds in Hawaii and elsewhere (e.g. this “complete and total mystery from the Florida Keys”: https://bit.ly/41w1Xbc (Annie Innes-Gold, Hawai’i Institute of Marine Biology; processed by Jill Munger, Conservation Metrics, Inc.)

Says Dr. Parsons: “Unidentified sounds can provide valuable information on the richness of the soundscape, the acoustic communities that contribute to it and behavioral interactions among acoustic groups. However, unknown, cryptic and rare sounds are rarely target signals for research and monitoring projects and are, therefore, largely unreported.”

The many uses of underwater sound

Of the roughly 250,000 known marine species, scientists think all fully-aquatic marine mammals (~146, including sub-species) emit sounds, along with at least 100 invertebrates, 1,000 of the world’s ~35,000 known fish species, and likely many thousands more.

GLUBS aims to help delineate essential fish habitat and estimate biomass of a spawning aggregation of a commercially or recreationally important soniferous species.

In one scenario of its many uses, a one-year, calibrated recording can provide a proxy for the timing, location and, under certain circumstances, numbers of ‘calling’ fishes, and how these change throughout a spawning season.

It will also help evaluate the degradation and recovery of a coral reef.

GLUBS researchers envision, for example, collecting recordings from a coral reef that experienced a cyclone or other extreme weather event, followed by widespread bleaching. Throughout its restoration, GLUBS audio data would be matched with and augment a visual census of the fish assemblage at multiple timepoints.

Oil and gas, wind power and other offshore industries will also benefit from GLUBS’ timely information on the possible harms or benefits of their activities.

Other IQOE legacies include

  • Manta (bitbucket.org/CLO-BRP/manta-wiki/wiki/Home), a mechanism created by world experts from academia, industry, and government to help standardize ocean sound recording data, facilitating its comparability, pooling and visualization.
  • OPUS, an Open Portal to Underwater Sound being tested at Alfred Wegener Institute in Bremerhaven, Germany to promote the use of acoustic data collected worldwide, providing easy access to MANTA-processed data, and
  • The first comprehensive database and map of the world’s 200+ known hydrophones recording for ecological purposes 

Marine sounds and COVID-19

The IQOE’s early ambition of humanity’s maritime noise being minimized for a day or week was unexpectedly met in spades when the COVID-19 pandemic began.     

New IQOE research to be considered at the April meeting includes a paper, Impact of the COVID‑19 pandemic on levels of deep‑ocean acoustic noise (https://bit.ly/3KZTaIt) documenting a pandemic-related drop of 1 to 3 dB even in the depths of the abyss. With a 3 dB decrease, sound energy is halved.

Virus control measures led to “sudden and sometimes dramatic reductions in human activity in sectors such as transport, industry, energy, tourism, and construction,” with some of the greatest reductions from March to June 2020 – a drop of up to 13% in container ship traffic and up to 42% in passenger ships.

Other IQOE accomplishments include achieving recognition of ocean sound as an Essential Ocean Variable (EOV) within the Global Ocean Observing System, underlining its helpfulness in monitoring 

  • climate change (the extent and breakup of sea ice; the frequency and intensity of wind, waves and rain)
  • ocean health (biodiversity assessments: monitoring the distribution and abundance of sound-producing species)
  • impacts of human activities on wildlife, and
  • nuclear explosions, foreign/illegal/threatening vessels, human activities in protected areas, and underwater earthquakes that can generate tsunamis

The Partnership for Observation of the Global Ocean (POGO) funded an IQOE Working Group in 2016, which quickly identified the lack of ocean sound as a variable measured by ocean observing systems. This group developed specifications for an Ocean Sound Essential Ocean Variable (EOV) by 2018, which was approved by the Global Ocean Observing System in 2021. IQOE has since developed the Ocean Sound EOV Implementation Plan, reviewed in 2022 and ready for public debut at IQOE’s meeting April 26.

One of IQOE’s originators, Jesse Ausubel of The Rockefeller University’s Programme for the Human Environment, says the programme has drawn attention to the absence of publicly available time series of sound on ecologically important frequencies throughout the global ocean.

“We need to listen more in the blue symphony halls. Animal sounds are behavior, and we need to record and understand the sounds, if we want to know the status of ocean life,” he says.

The program “has provided a platform for the international passive acoustics community to grow stronger and advocate for inclusion of acoustic measurements in national, regional, and global ocean observing systems,” says Prof. Peter Tyack of the University of St. Andrew’s, who, with Steven Simpson, guide the IQOE International Scientific Steering Committee.

“The ocean acoustics and bioacoustics communities had no experience in working together globally, and coverage is certainly not global; there are many gaps. IQOE has begun to help these communities work together globally, and there is still progress to be made in networking and in expanding the deployment of hydrophones, adds Prof. Ausubel.

A description of the project’s history and evaluation to date is available at https://bit.ly/3H7FCbN.

Encouraging greater worldwide use of hydrophones

According to Dr. Parsons, “hydrophones are now being deployed in more locations, more often, by more people, than ever before,” 

To celebrate that, and to mark World Oceans Day, June 8 [2023], GLUBS recently put out a call to hydrophone operators to share marine life recordings made from 7 to 9 June, so far receiving interest from 124 hydrophone operators in 62 organizations from 29 countries and counting. The hydrophones will be retrieved over the following months with the full dataset expected sometime in 2024.

They also plan to make World Oceans Passive Acoustic Monitoring (WOPAM) Day an annual event – a global collaborative study of aquatic soundscapes, salt, brackish or freshwater – the marine world’s answer to the U.S. Audubon Society’s 123-year-old Christmas Bird Count.

Interested researchers with hydrophones [emphasis mine] already planned [sic] to be in the water on June 8 [2023] are invited to contact Miles Parsons (m.parsons@aims.gov.au) or Steve Simpson (s.simpson@bristol.ac.uk).

Becky Ferreira has written April 26, 2023 article for Motherboard that provides more insight into the work being done offshore in Goa and elsewhere,

To better understand the rich reef ecosystems of Goa, a team of researchers at the Indian Council of Scientific and Industrial Research’s National Institute of Oceanography (CSIR-NIO) placed a hydrophone near Grande Island at a depth of about 65 feet. Over the course of several days, the instrument captured hundreds of recordings of the choruses of “soniferous” (sound-making)fish, the high-frequency noises of shrimp, and the rumblings of boats passing near the area.

“Our research, for the longest time, predominantly involved active acoustics systems in understanding habitats (bottom roughness, etc., using multibeam sonar),” said Bishwajit Chakraborty, a marine scientist at CSIR-NIO who co-authored the study, in an email to Motherboard. “By using active sonar systems, we add sound signals to water media which severely affects marine life.” 

Here’s a link to and a citation for the paper mentioned at the beginning of the news release,

Biodiversity assessment using passive acoustic recordings from off-reef location—Unsupervised learning to classify fish vocalization by Vasudev P. Mahale, Kranthikumar Chanda, Bishwajit Chakraborty; Tejas Salkar, G. B. Sreekanth. Journal of the Acoustical Society of America, Volume 153, Issue 3 March 2023 [alternate: J Acoust Soc Am 153, 1534–1553 (2023)] DOI: https://doi.org/10.1121/10.0017248

This paper appears to be open access.

And, one more time,

Interested researchers with hydrophones [emphasis mine] already planned [sic] to be in the water on June 8 [2023] are invited to contact Miles Parsons (m.parsons@aims.gov.au) or Steve Simpson (s.simpson@bristol.ac.uk).

Fishes ‘talk’ and ‘sing’

This posting started out with two items and then, it became more. If you’re interested in marine bioacoustics especially the work that’s been announced in the last four months, read on.

Fish songs

This item is about how fish sounds (songs) signify successful coral reef restoration got coverage on BBC (British Broadcasting Corporation), CBC (Canadian Broadcasting Corporation) and elsewhere. This video is courtesy of the Guardian Newspaper,

Whoops and grunts: ‘bizarre’ fish songs raise hopes for coral reef recovery https://www.theguardian.com/environme…

A December 8, 2021 University of Exeter press release (also on EurekAlert) explains why the sounds give hope (Note: Links have been removed),

Newly discovered fish songs demonstrate reef restoration success

Whoops, croaks, growls, raspberries and foghorns are among the sounds that demonstrate the success of a coral reef restoration project.

Thousands of square metres of coral are being grown on previously destroyed reefs in Indonesia, but previously it was unclear whether these new corals would revive the entire reef ecosystem.

Now a new study, led by researchers from the University of Exeter and the University of Bristol, finds a heathy, diverse soundscape on the restored reefs.

These sounds – many of which have never been recorded before – can be used alongside visual observations to monitor these vital ecosystems.

“Restoration projects can be successful at growing coral, but that’s only part of the ecosystem,” said lead author Dr Tim Lamont, of the University of Exeter and the Mars Coral Reef Restoration Project, which is restoring the reefs in central Indonesia.

“This study provides exciting evidence that restoration really works for the other reef creatures too – by listening to the reefs, we’ve documented the return of a diverse range of animals.”

Professor Steve Simpson, from the University of Bristol, added: “Some of the sounds we recorded are really bizarre, and new to us as scientists.  

“We have a lot still to learn about what they all mean and the animals that are making them. But for now, it’s amazing to be able to hear the ecosystem come back to life.”

The soundscapes of the restored reefs are not identical to those of existing healthy reefs – but the diversity of sounds is similar, suggesting a healthy and functioning ecosystem.

There were significantly more fish sounds recorded on both healthy and restored reefs than on degraded reefs.

This study used acoustic recordings taken in 2018 and 2019 as part of the monitoring programme for the Mars Coral Reef Restoration Project.

The results are positive for the project’s approach, in which hexagonal metal frames called ‘Reef Stars’ are seeded with coral and laid over a large area. The Reef Stars stabilise loose rubble and kickstart rapid coral growth, leading to the revival of the wider ecosystem.  

Mochyudho Prasetya, of the Mars Coral Reef Restoration Project, said: “We have been restoring and monitoring these reefs here in Indonesia for many years. Now it is amazing to see more and more evidence that our work is helping the reefs come back to life.”

Professor David Smith, Chief Marine Scientist for Mars Incorporated, added: “When the soundscape comes back like this, the reef has a better chance of becoming self-sustaining because those sounds attract more animals that maintain and diversify reef populations.”

Asked about the multiple threats facing coral reefs, including climate change and water pollution, Dr Lamont said: “If we don’t address these wider problems, conditions for reefs will get more and more hostile, and eventually restoration will become impossible.

“Our study shows that reef restoration can really work, but it’s only part of a solution that must also include rapid action on climate change and other threats to reefs worldwide.”

The study was partly funded by the Natural Environment Research Council and the Swiss National Science Foundation.

Here’s a link to and a citation for the paper,

The sound of recovery: Coral reef restoration success is detectable in the soundscape by Timothy A. C. Lamont, Ben Williams, Lucille Chapuis, Mochyudho E. Prasetya, Marie J. Seraphim, Harry R. Harding, Eleanor B. May, Noel Janetski, Jamaluddin Jompa, David J. Smith, Andrew N. Radford, Stephen D. Simpson. Journal of Applied Ecology DOI: https://doi.org/10.1111/1365-2664.14089 First published: 07 December 2021

This paper is open access.

You can find the MARS Coral Reef Restoration Project here.

Fish talk

There is one item here. This research from Cornell University also features the sounds fish make. It’s no surprise given the attention being given to sound that the Cornell Lab of Ornithology is involved. In addition to the lab’s main focus, birds, many other animal sounds are gathered too.

A January 27, 2022 Cornell University news release (also on EurekAlert) describes ‘fish talk’,

There’s a whole lot of talking going on beneath the waves. A new study from Cornell University finds that fish are far more likely to communicate with sound than generally thought—and some fish have been doing this for at least 155 million years. These findings were just published in the journal Ichthyology & Herpetology.

“We’ve known for a long time that some fish make sounds,” said lead author Aaron Rice, a researcher at the K. Lisa Yang Center for Conservation Bioacoustics at the Cornell Lab of Ornithology [emphasis mine]. “But fish sounds were always perceived as rare oddities. We wanted to know if these were one-offs or if there was a broader pattern for acoustic communication in fishes.”

The authors looked at a branch of fishes called the ray-finned fishes. These are vertebrates (having a backbone) that comprise 99% of the world’s known species of fishes. They found 175 families that contain two-thirds of fish species that do, or are likely to, communicate with sound. By examining the fish family tree, study authors found that sound was so important, it evolved at least 33 separate times over millions of years.

“Thanks to decades of basic research on the evolutionary relationships of fishes, we can now explore many questions about how different functions and behaviors evolved in the approximately 35,000 known species of fishes,” said co-author William E. Bemis ’76, Cornell professor of ecology and evolutionary biology in the College of Agriculture and Life Sciences. “We’re getting away from a strictly human-centric way of thinking. What we learn could give us some insight on the drivers of sound communication and how it continues to evolve.”

The scientists used three sources of information: existing recordings and scientific papers describing fish sounds; the known anatomy of a fish—whether they have the right tools for making sounds, such as certain bones, an air bladder, and sound-specific muscles; and references in 19th century literature before underwater microphones were invented.
 
“Sound communication is often overlooked within fishes, yet they make up more than half of all living vertebrate species,” said Andrew Bass, co-lead author and the Horace White Professor of Neurobiology and Behavior in the College of Arts and Sciences. “They’ve probably been overlooked because fishes are not easily heard or seen, and the science of underwater acoustic communication has primarily focused on whales and dolphins. But fishes have voices, too!”
 
Listen:

Oyster ToadfishWilliam Tavolga, Macaulay Library

Longspine squirrelfishHoward Winn, Macaulay Library 

Banded drumDonald Batz, Macaulay Library

Midshipman, Andrew Bass, Macaulay Library

What are the fish talking about? Pretty much the same things we all talk about—sex and food. Rice says the fish are either trying to attract a mate, defend a food source or territory, or let others know where they are. Even some of the common names for fish are based on the sounds they make, such as grunts, croakers, hog fish, squeaking catfish, trumpeters, and many more.
 
Rice intends to keep tracking the discovery of sound in fish species and add them to his growing database (see supplemental material, Table S1)—a project he began 20 years ago with study co-authors Ingrid Kaatz ’85, MS ’92, and Philip Lobel, a professor of biology at Boston University. Their collaboration has continued and expanded since Rice came to Cornell.
 
“This introduces sound communication to so many more groups than we ever thought,” said Rice. “Fish do everything. They breathe air, they fly, they eat anything and everything—at this point, nothing would surprise me about fishes and the sounds that they can make.”

The research was partly funded by the National Science Foundation, the U.S. Bureau of Ocean Energy Management, the Tontogany Creek Fund, and the Cornell Lab of Ornithology.

I’ve embedded one of the audio files, Oyster Toadfish (William Tavolga) here,

Here’s a link to and a citation for the paper,

Evolutionary Patterns in Sound Production across Fishes by Aaron N. Rice, Stacy C. Farina, Andrea J. Makowski, Ingrid M. Kaatz, Phillip S. Lobel, William E. Bemis, Andrew H. Bass. Ichthyology & Herpetology, 110(1):1-12 (2022) DOI: https://doi.org/10.1643/i2020172 20 January 2022

This paper is open access.

Marine sound libraries

Thanks to Aly Laube’s March 2, 2022 article on the DailyHive.com, I learned of Kieran Cox’s work at the University of Victoria and FishSounds (Note: Links have been removed),

Fish have conversations and a group of researchers made a website to document them. 

It’s so much fun to peruse and probably the good news you need. Listen to a Bocon toadfish “boop” or this sablefish tick, which is slightly creepier, but still pretty cool. This streaked gurnard can growl, and this grumpy Atlantic cod can grunt.

The technical term for “fishy conversations” is “marine bioacoustics,” which is what Kieran Cox specializes in. They can be used to track, monitor, and learn more about aquatic wildlife.

The doctor of marine biology at the University of Victoria co-authored an article about fish sounds in Reviews in Fish Biology and Fisheries called “A Quantitative Inventory of Global Soniferous Fish Diversity.”

It presents findings from his process, helping create FishSounds.net. He and his team looked over over 3,000 documents from 834 studies to put together the library of 989 fish species.

A March 2, 2022 University of Victoria news release provides more information about the work and the research team (Note: Links have been removed),

Fascinating soundscapes exist beneath rivers, lakes and oceans. An unexpected sound source are fish making their own unique and entertaining noise from guttural grunts to high-pitched squeals. Underwater noise is a vital part of marine ecosystems, and thanks to almost 150 years of researchers documenting those sounds we know hundreds of fish species contribute their distinctive sounds. Although fish are the largest and most diverse group of sound-producing vertebrates in water, there was no record of which fish species make sound and the sounds they produce. For the very first time, there is now a digital place where that data can be freely accessed or contributed to, an online repository, a global inventory of fish sounds.

Kieran Cox co-authored the published article about fish sounds and their value in Reviews in Fish Biology and Fisheries while completing his Ph.D in marine biology at the University of Victoria. Cox recently began a Liber Ero post-doctoral collaboration with Francis Juanes that aims to integrate marine bioacoustics into the conservation of Canada’s oceans. Liber Ero program is devoted to promoting applied and evidence-based conservation in Canada.

The international group of researchers includes UVic, the University of Florida, Universidade de São Paulo, and Marine Environmental Research Infrastructure for Data Integration and Application Network (MERIDIAN) [emphasis mine] have launched the first ever, dedicated website focused on fish and their sounds: FishSounds.net. …

According to Cox, “This data is absolutely critical to our efforts. Without it, we were having a one-sided conversation about how noise impacts marine life. Now we can better understand the contributions fish make to soundscapes and examine which species may be most impacted by noise pollution.” Cox, an avid scuba diver, remembers his first dive when the distinct sound of parrotfish eating coral resonated over the reef, “It’s thrilling to know we are now archiving vital ecological information and making it freely available to the public, I feel like my younger self would be very proud of this effort.” …

There’s also a March 2, 2022 University of Florida news release on EurekAlert about FishSounds which adds more details about the work (Note: Links have been removed),

Cows moo. Wolves howl. Birds tweet. And fish, it turns out, make all sorts of ruckus.

“People are often surprised to learn that fish make sounds,” said Audrey Looby, a doctoral candidate at the University of Florida. “But you could make the case that they are as important for understanding fish as bird sounds are for studying birds.”

The sounds of many animals are well documented. Go online, and you’ll find plenty of resources for bird calls and whale songs. However, a global library for fish sounds used to be unheard of.

That’s why Looby, University of Victoria collaborator Kieran Cox and an international team of researchers created FishSounds.net, the first online, interactive fish sounds repository of its kind.

“There’s no standard system yet for naming fish sounds, so our project uses the sound names researchers have come up with,” Looby said. “And who doesn’t love a fish that boops?”

The library’s creators hope to add a feature that will allow people to submit their own fish sound recordings. Other interactive features, such as a world map with clickable fish sound data points, are also in the works.

Fish make sound in many ways. Some, like the toadfish, have evolved organs or other structures in their bodies that produce what scientists call active sounds. Other fish produce incidental or passive sounds, like chewing or splashing, but even passive sounds can still convey information.

Scientists think fish evolved to make sound because sound is an effective way to communicate underwater. Sound travels faster under water than it does through air, and in low visibility settings, it ensures the message still reaches an audience.

“Fish sounds contain a lot of important information,” said Looby, who is pursuing a doctorate in fisheries and aquatic sciences at the UF/IFAS College of Agricultural and Life Sciences. “Fish may communicate about territory, predators, food and reproduction. And when we can match fish sounds to fish species, their sounds are a kind of calling card that can tell us what kinds of fish are in an area and what they are doing.”

Knowing the location and movements of fish species is critical for environmental monitoring, fisheries management and conservation efforts. In the future, marine, estuarine or freshwater ecologists could use hydrophones — special underwater microphones — to gather data on fish species’ whereabouts. But first, they will need to be able to identify which fish they are hearing, and that’s where the fish sounds database can assist.

FishSounds.net emerged from the research team’s efforts to gather and review the existing scientific literature on fish sounds. An article synthesizing that literature has just been published in Reviews in Fish Biology and Fisheries.

In the article, the researchers reviewed scientific reports of fish sounds going back almost 150 years. They found that a little under a thousand fish species are known to make active sounds, and several hundred species were studied for their passive sounds. However, these are probably both underestimates, Cox explained.

Here’s a link to and a citation for the paper,

A quantitative inventory of global soniferous fish diversity by Audrey Looby, Kieran Cox, Santiago Bravo, Rodney Rountree, Francis Juanes, Laura K. Reynolds & Charles W. Martin. Reviews in Fish Biology and Fisheries (2022) DOI: https://doi.org/10.1007/s11160-022-09702-1 Published 18 February 2022

This paper is behind a paywall.

Finally, there’s GLUBS. A comprehensive February 27, 2022 Rockefeller University news release on EurekAlert announces a proposal for the Global Library of Underwater Biological Sounds (GLUBS), Note 1: Links have been removed; Note 2: If you’re interested in the topic, I recommend reading either the original February 27, 2022 Rockefeller University news release with its numerous embedded images, audio files, and links to marine audio libraries,

Of the roughly 250,000 known marine species, scientists think all ~126 marine mammals emit sounds – the ‘thwop’, ‘muah’, and ‘boop’s of a humpback whale, for example, or the boing of a minke whale. Audible too are at least 100 invertebrates, 1,000 of the world’s 34,000 known fish species, and likely many thousands more.

Now a team of 17 experts from nine countries has set a goal [emphasis mine] of gathering on a single platform huge collections of aquatic life’s tell-tale sounds, and expanding it using new enabling technologies – from highly sophisticated ocean hydrophones and artificial intelligence learning systems to phone apps and underwater GoPros used by citizen scientists.

The Global Library of Underwater Biological Sounds, “GLUBS,” will underpin a novel non-invasive, affordable way for scientists to listen in on life in marine, brackish and freshwaters, monitor its changing diversity, distribution and abundance, and identify new species. Using the acoustic properties of underwater soundscapes can also characterize an ecosystem’s type and condition.

“A database of unidentified sounds is, in some ways, as important as one for known sources,” the scientists say. “As the field progresses, new unidentified sounds will be collected, and more unidentified sounds can be matched to species.”

This can be “particularly important for high-biodiversity systems such as coral reefs, where even a short recording can pick up multiple animal sounds.”

Existing libraries of undersea sounds (several of which are listed with hyperlinks below) “often focus on species of interest that are targeted by the host institute’s researchers,” the paper says, and several are nationally-focussed. Few libraries identify what is missing from their catalogs, which the proposed global library would.

“A global reference library of underwater biological sounds would increase the ability for more researchers in more locations to broaden the number of species assessed within their datasets and to identify sounds they personally do not recognize,” the paper says.

The scientists note that listening to the sea has revealed great whales swimming in unexpected places, new species and new sounds.

With sound, “biologically important areas can be mapped; spawning grounds, essential fish habitat, and migration pathways can be delineated…These and other questions can be queried on broader scales if we have a global catalog of sounds.”

Meanwhile, comparing sounds from a single species across broad areas and times helps understand their diversity and evolution.

Numerous marine animals are cosmopolitan, the paper says, “either as wide-roaming individuals, such as the great whales, or as broadly distributed species, such as many fishes.”

Fin whale calls, for example, can differ among populations in the Northern and Southern hemispheres, and over seasons, whereas the call of pilot whales are similar worldwide, even though their home ranges do not (or no longer) cross the equator.

Some fishes even seem to develop geographic ‘dialects’ or completely different signal structures among regions, several of which evolve over time.

Madagascar’s skunk anemonefish … , for example, produces different agonistic (fight-related) sounds than those in Indonesia, while differences in the song of humpback whales have been observed across ocean basins.

Phone apps, underwater GoPros and citizen science

Much like BirdNet and FrogID, a library of underwater biological sounds and automated detection algorithms would be useful not only for the scientific, industry and marine management communities but also for users with a general interest.

“Acoustic technology has reached the stage where a hydrophone can be connected to a mobile phone so people can listen to fishes and whales in the rivers and seas around them. Therefore, sound libraries are becoming invaluable to citizen scientists and the general public,” the paper adds.

And citizen scientists could be of great help to the library by uploading the results of, for example, the River Listening app (www.riverlistening.com), which encourages the public to listen to and record fish sounds in rivers and coastal waters.

Low-cost hydrophones and recording systems (such as the Hydromoth) are increasingly available and waterproof recreational recording systems (such as GoPros) can also collect underwater biological sounds.

Here’s a link to and a citation for the paper,

Sounding the Call for a Global Library of Underwater Biological Sounds by Miles J. G. Parsons, Tzu-Hao Lin, T. Aran Mooney, Christine Erbe, Francis Juanes, Marc Lammers, Songhai Li, Simon Linke, Audrey Looby, Sophie L. Nedelec, Ilse Van Opzeeland, Craig Radford, Aaron N. Rice, Laela Sayigh, Jenni Stanley, Edward Urban and Lucia Di Iorio. Front. Ecol. Evol., 08 February 2022 DOI: https://doi.org/10.3389/fevo.2022.810156 Published: 08 February 2022.

This paper appears to be open access.