Tag Archives: glucagon

Bionic pancreas tested at home

This news about a bionic pancreas must be exciting for diabetics as it would eliminate the need for constant blood sugar testing throughout the day. From a Dec. 19, 2016 Massachusetts General Hospital news release (also on EurekAlert), Note: Links have been removed,

The bionic pancreas system developed by Boston University (BU) investigators proved better than either conventional or sensor-augmented insulin pump therapy at managing blood sugar levels in patients with type 1 diabetes living at home, with no restrictions, over 11 days. The report of a clinical trial led by a Massachusetts General Hospital (MGH) physician is receiving advance online publication in The Lancet.

“For study participants living at home without limitations on their activity and diet, the bionic pancreas successfully reduced average blood glucose, while at the same time decreasing the risk of hypoglycemia,” says Steven Russell, MD, PhD, of the MGH Diabetes Unit. “This system requires no information other than the patient’s body weight to start, so it will require much less time and effort by health care providers to initiate treatment. And since no carbohydrate counting is required, it significantly reduces the burden on patients associated with diabetes management.”

Developed by Edward Damiano, PhD, and Firas El-Khatib, PhD, of the BU Department of Biomedical Engineering, the bionic pancreas controls patients’ blood sugar with both insulin and glucagon, a hormone that increases glucose levels. After a 2010 clinical trial confirmed that the original version of the device could maintain near-normal blood sugar levels for more than 24 hours in adult patients, two follow-up trials – reported in a 2014 New England Journal of Medicine paper – showed that an updated version of the system successfully controlled blood sugar levels in adults and adolescents for five days.  Another follow-up trial published in The Lancet Diabetes and Endocrinology in 2016  showed it could do the same for children as young as 6 years of age.

While minimal restrictions were placed on participants in the 2014 trials, participants in both spent nights in controlled settings and were accompanied at all times by either a nurse for the adult trial or remained in a diabetes camp for the adolescent and pre-adolescent trials. Participants in the current trial had no such restrictions placed upon them, as they were able to pursue normal activities at home or at work with no imposed limitations on diet or exercise. Patients needed to live within a 30-minute drive of one of the trial sites – MGH, the University of Massachusetts Medical School, Stanford University, and the University of North Carolina at Chapel Hill – and needed to designate a contact person who lived with them and could be contacted by study staff, if necessary.

The bionic pancreas system – the same as that used in the 2014 studies – consisted of a smartphone (iPhone 4S) that could wirelessly communicate with two pumps delivering either insulin or glucagon. Every five minutes the smartphone received a reading from an attached continuous glucose monitor, which was used to calculate and administer a dose of either insulin or glucagon. The algorighms controlling the system were updated for the current trial to better respond to blood sugar variations.

While the device allows participants to enter information about each upcoming meal into a smartphone app, allowing the system to deliver an anticipatory insulin dose, such entries were optional in the current trial. If participants’ blood sugar dropped to dangerous levels or if the monitor or one of the pumps was disconnected for more than 15 minutes, the system would alerted study staff, allowing them to check with the participants or their contact persons.

Study participants were adults who had been diagnosed with type 1 diabetes for a year or more and had used an insulin pump to manage their care for at least six months. Each of 39 participants that finished the study completed two 11-day study periods, one using the bionic pancreas and one using their usual insulin pump and any continous glucose monitor they had been using. In addition to the automated monitoring of glucose levels and administered doses of insulin or glucagon, participants completed daily surveys regarding any episodes of symptomatic hypoglycemia, carbohydrates consumed to treat those episodes, and any episodes of nausea.

On days when participants were on the bionic pancreas, their average blood glucose levels were significantly lower – 141 mg/dl versus 162 mg/dl – than when on their standard treatment. Blood sugar levels were at levels indicating hypoglycemia (less than 60 mg/dl) for 0.6 percent of the time when participants were on the bionic pancreas, versus 1.9 percent of the time on standard treatment. Participants reported fewer episodes of symptomatic hypoglycemia while on the bionic pancreas, and no episodes of severe hypoglycemia were associated with the system.

The system performed even better during the overnight period, when the risk of hypoglycemia is particularly concerning. “Patients with type 1 diabetes worry about developing hypoglycemia when they are sleeping and tend to let their blood sugar run high at night to reduce that risk,” explains Russell, an assistant professor of Medicine at Harvard Medical School. “Our study showed that the bionic pancreas reduced the risk of overnight hypoglycemia to almost nothing without raising the average glucose level. In fact the improvement in average overnight glucose was greater than the improvement in average glucose over the full 24-hour period.”

Damiano, whose work on this project is inspired by his own 17-year-old son’s type 1 diabetes, adds, “The availability of the bionic pancreas would dramatically change the life of people with diabetes by reducing average glucose levels – thereby reducing the risk of diabetes complications – reducing the risk of hypoglycemia, which is a constant fear of patients and their families, and reducing the emotional burden of managing type 1 diabetes.” A co-author of the Lancet report, Damiano is a professor of Biomedical Engineering at Boston University.

The BU patents covering the bionic pancreas have been licensed to Beta Bionics, a startup company co-founded by Damiano and El-Khatib. The company’s latest version of the bionic pancreas, called the iLet, integrates all components into a single unit, which will be tested in future clinical trials. People interested in participating in upcoming trials may contact Russell’s team at the MGH Diabetes Research Center in care of Llazar Cuko (LCUKO@mgh.harvard.edu ).

Here`s a link to and a citation for the paper,

Home use of a bihormonal bionic pancreas versus insulin pump therapy in adults with type 1 diabetes: a multicentre randomised crossover trial by Firas H El-Khatib, Courtney Balliro, Mallory A Hillard, Kendra L Magyar, Laya Ekhlaspour, Manasi Sinha, Debbie Mondesir, Aryan Esmaeili, Celia Hartigan, Michael J Thompson, Samir Malkani, J Paul Lock, David M Harlan, Paula Clinton, Eliana Frank, Darrell M Wilson, Daniel DeSalvo, Lisa Norlander, Trang Ly, Bruce A Buckingham, Jamie Diner, Milana Dezube, Laura A Young, April Goley, M Sue Kirkman, John B Buse, Hui Zheng, Rajendranath R Selagamsetty, Edward R Damiano, Steven J Russell. Lancet DOI: http://dx.doi.org/10.1016/S0140-6736(16)32567-3  Published: 19 December 2016

This paper is behind a paywall.

You can find out more about Beta Bionics and iLet here.

Nano-G, obesity, market opportunities, and thoughts on perfection

A new treatment platform that addresses diabetes and/or obesity issues, Nano-G is being promoted as a “multi billion dollar opportunity.” From the April 3, 2012 news release on Business Wire,

“Nano-G fulfills the long overdue need for a rapidly self-administered, auto-injector delivered glucagon for hypoglycemia rescue and is the missing piece needed for the bi-hormonal pump and novel combination therapies for obesity,” noted Dr. Andrew Chen, LPI’s [Latitude Pharmaceuticals, Inc.] president. “With its excellent stability and regulatory familiarity, Nano-G can be rapidly commercialized under a low risk, low-cost 505(b)(2) NDA to provide important new therapeutic options for diabetes and obesity that were never before possible. We are now seeking partners to commercialize this exceptional multi billion dollar opportunity.”

I first read about Nano-G in an April 5, 2012 news item by Cameron Chai on Azonnano and being made curious checked out Latitude Pharmaceutical’s website to find this (excerpted from the home page),

LATITUDE Pharmaceuticals is a leading-edge contract research boutique that provides innovative drug formulation services to the biotech and pharmaceutical industries. Since our founding in 2003, we have serviced over 130 client companies and developed a reputation for creative approaches, reliability, rapid turnaround, client success and satisfaction.  We are formulation specialists that can tackle the tough formulation challenges of insoluble (un-dissolvable) compounds and we have the track record and experience to do this.

LATITUDE has an armamentarium of unique techniques and technologies to address problematic formulation issues such as insolubility, poor absorption, and vein irritation that are often encountered in new drug development.

Thank you, Latitude, for a new word, armamentarium. More sadly I was not able to find additional information about Nano-G. So I went back to the news release to find this,

LATITUDE Pharmaceuticals, Inc. (LPI) announced today that its scientists have developed the first ever, ready-to-inject, stable liquid glucagon formulation (Nano-G). A glucagon formulation with these properties had been a highly sought after Holy Grail of drug developers for decades.

Currently, glucagon is indicated for emergency treatment of insulin-induced hypoglycemia and as a diagnostic aid for radiological examinations. Researchers have long been interested in evaluating glucagon for hypoglycemia prevention, the bi-hormonal insulin/glucagon pump and the treatment of obesity but have been thwarted by the absence of a stable injectable glucagon formulation.

Glucagon is a notoriously insoluble and unstable molecule and is therefore provided as a dried powder. Before use, the glucagon is dissolved in an acid solution by following a cumbersome, eight-step procedure that becomes an outsized task during life-threatening hypoglycemia.

Nano-G is a pH-neutral, isotonic, detergent-free, aqueous formulation that contains only FDA-approved injectable ingredients. Results from rigorous 6-month real-time and accelerated ICH stability testing predict a 2-yr shelf-life. Nano-G is also stable at body temperature, making it highly suitable for subcutaneous infusion pump delivery.

Elsewhere in the news release, it’s noted that Nano-G is based on the company’s ‘Nano-E injectable nanoemulsion drug delivery program.’ The company doesn’t offer much in the way of technical detail, from the Proprietary Formulation Platform Technologies page,

These innovative dosage forms, which have patents pending, may solve your formulation challenges as well as provide new IP for your API and include:

  • Sustained release oral dosage forms (ALLDay, Minspheres, and others)
  • Bioavailability enhancing oral dosage forms for insoluble drugs
  • Injectable emulsions for low solubility, high drug load compounds (Nano-E)
  • Injectable emulsions that reduce vein irritation (Nano-E)
  • Stability enhancing and lyophilizable formulations
  • Sustained release subcutaneous and subdermal depots (PG Depot)
  • Fast drying, non-irritating adhesive gels for transdermal delivery (GelPatch)

It occurred to me while reading the news release that not only is obesity very big business as governments in Canada, the US, and elsewhere pour money into obesity research but it’s one more target in this war we’ve declared on human imperfection. Increasingly it seems that we (governments, corporations, and other formal and informal institutions) are pressed to remain youthful forever, demonstrate socially approved personality traits (shyness, begone!), maintain the ‘right’ weight, etc. as we relentlessly pursue a vision of perfection that remains always just beyond grasp.

In the meantime, I expect for those who suffer from diabetes, the news about Nano-G is promising.