Tag Archives: god particle

Peter Higgs and François Englert to receive 2013 Nobel Prize in Physics and TRIUMF name changes?

After all the foofaraw about finding/confirming the existence of the Higgs Boson or ‘god’ particle (featured in my July 4, 2012 posting amongst many others), the Royal Swedish Academy of Sciences has decided to award the 2013 Nobel prize for Physics to two of the individuals responsible for much of the current thinking about subatomic particles and mass (from the Oct. 8, 2013 news item on ScienceDaily),

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2013 to François Englert of Université Libre de Bruxelles, Brussels, Belgium, and Peter W. Higgs of the University of Edinburgh, UK, “for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN’s Large Hadron Collider.”

François Englert and Peter W. Higgs are jointly awarded the Nobel Prize in Physics 2013 for the theory of how particles acquire mass. In 1964, they proposed the theory independently of each other (Englert together with his now deceased colleague Robert Brout). In 2012, their ideas were confirmed by the discovery of a so called Higgs particle at the CERN laboratory outside Geneva in Switzerland.

TRIUMF, sometimes known as Canada’s national laboratory for particle and nuclear physics, has issued an Oct. 8, 2013 news release,

HIGGS, ENGLERT SHARE 2013 NOBEL PRIZE IN PHYSICS

Canadians Key Part of Historical Nobel Prize to “Godfathers” of the “God Particle”

(Vancouver, BC) — The Royal Swedish Academy of Sciences today awarded the Nobel Prize in physics to Professor Peter W. Higgs (Univ. of Edinburgh) and Professor François Englert (Univ. Libre de Bruxelles) to recognize their work developing the theory of what is now known as the Higgs field, which gives elementary particles mass.  Canadians have played critical roles in all stages of the breakthrough discovery Higgs boson particle that validates the original theoretical framework.  Throngs across Canada are celebrating.

More than 150 Canadian scientists and students at 10 different institutions are presently involved in the global ATLAS experiment at CERN.  Canada’s national laboratory for particle and nuclear physics, TRIUMF, has been a focal point for much of the Canadian involvement that has ranged from assisting with the construction of the LHC accelerator to building key elements of the ATLAS detector and hosting one of the ten global Tier-1 Data Centres that stores and processes the physics for the team of thousands.

“The observation of a Higgs Boson at about 125 GeV, or 130 times the mass of the proton, by both the ATLAS and CMS groups is a tremendous achievement,” said Rob McPherson, spokesperson of the ATLAS Canada collaboration, a professor of physics at the University of Victoria and Institute of Particle Physics scientist. “Its existence was predicted in 1964 when theorists reconciled how massive particles came into being.  It took almost half a century to confirm the detailed predictions of the theories in a succession of experiments, and finally to discover the Higgs Boson itself using our 2012 data.”

The Brout-Englert-Higgs (BEH) mechanism was first proposed in 1964 in two papers published independently, the first by Belgian physicists Robert Brout and François Englert, and the second by British physicist Peter Higgs. It explains how the force responsible for beta decay is much weaker than electromagnetism, but is better known as the mechanism that endows fundamental particles with mass. A third paper, published by Americans Gerald Guralnik and Carl Hagen with their British colleague Tom Kibble further contributed to the development of the new idea, which now forms an essential part of the Standard Model of particle physics. As was pointed out by Higgs, a key prediction of the idea is the existence of a massive boson of a new type, which was discovered by the ATLAS and CMS experiments at CERN in 2012.

The next step will be to determine the precise nature of the Higgs particle and its significance for our understanding of the universe. Are its properties as expected for the Higgs boson predicted by the Standard Model of particle physics? Or is it something more exotic? The Standard Model describes the fundamental particles from which we, and every visible thing
in the universe, are made, and the forces acting between them. All the matter that we can see, however, appears to be no more than about 4% of the total. A more exotic version of the Higgs particle could be a bridge to understanding the 96% of the universe that remains obscure.

TRIUMF salutes Peter Higgs and François Englert for their groundbreaking work recognized by today’s Nobel Prize and congratulates the international team of tens of thousands of scientists, engineers, students, and many more from around the world who helped make the discovery.

For spokespeople at the major Canadian universities involved in the Higgs discovery, please see the list below:

CANADIAN CONTACTS

U of Alberta: Doug Gingrich, gingrich@ualberta.ca, 780-492-9501
UBC:  Colin Gay, cgay@physics.ubc.ca, 604-822-2753
Carleton U: Gerald Oakham (& TRIUMF), oakham@physics.carleton.ca, 613-520-7539
McGill U: Brigitte Vachon (also able to interview in French), vachon@physics.mcgill.ca, 514-398-6478
U of Montreal: Claude Leroy (also able to interview in French),leroy@lps.uontreal.ca, 514-343-6722
Simon Fraser U: Mike Vetterli (& TRIUMF, also able to interview in French), vetm@triumf.ca, 778-782-5488
TRIUMF: Isabel Trigger (also able to interview in French), itrigger@triumf.ca, 604-222-7651
U of Toronto: Robert Orr, orr@physics.utoronto.ca, 416-978-6029
U of Victoria: Rob McPherson, rmcphers@triumf.ca, 604-222-7654
York U: Wendy Taylor, taylorw@yorku.ca, 416-736-2100 ext 77758

While I know Canadians have been part of the multi-year, multi-country effort to determine the existence or non-existence of the Higgs Boson and much more in the field of particle physics, I would prefer we were not described as “… Key Part of Historical Nobel Prize … .” The question that springs to mind is: how were Canadian efforts key to this work? The answer is not revealed in the news release, which suggests that the claim may be a little overstated. On the other hand, I do like the bit about ‘saluting Higgs and Englert for their groundbreaking work’.

As for TRIUMF and what appears to be a series of name changes, I’m left somewhat puzzled, This Oct. 8, 2013 news release bears the name (or perhaps it’s a motto or tagline of some sort?): TRIUMF — Accelerating Science for Canada, meanwhile the website still sports this: TRIUMF Canada’s national laboratory for particle and nuclear physics while a July 17, 2013 TRIUMF news release gloried in this name: TRIUMF Accelerators, Inc., (noted in my July 18, 2013 posting). Perhaps TRIUMF is trying to follow in CERN’s footsteps. CERN was once known as the ‘European particle physics laboratory’ but is now known as the European Organization for Nuclear Research and seems to also have the tagline: ‘Accelerating science’.

An engineer explains why the Higgs boson matters to us all and a theologian muses on the ‘god’ particle

Titled “What is the God Particle and Why Should I Care?,” this essay is by Dr. Michael T. Gamble,

So much sound and fury over the Higgs Boson, signifying what? A complete understanding of the fundamental constituents of the world in which we live? Of the universe of which we are an integral part? No … and yes.

High-energy physicists at CERN, the European Center for Nuclear Research, announced this week they are closer than ever to detecting the apparently hallowed boson — or possibly it is called God Particle merely for mass consumption. Its quantification would at once provide breathtaking insights into the infinitesimal domain affecting Earthly life and to the composition of the entire universe, a broad range, indeed.

Rewards of Basic Science

This is basic science at its best, the unraveling of the underpinnings of the thing, matter, in this case. The payoff is understanding the whys and wherefores of how particles come to be endowed with mass. And when mass teams up with gravity, watch out, literally. An apple falls to Earth because gravity, a force centrally directed toward the Earth’s core, acts on mass, and on mass alone. We all owe a great debt to mass. In hydroelectric power plants, gravity acts on the mass of water spilling over the dam and pulls it downward, turning the turbines.

Humans don’t float away into space, as in Frank in Kubric’s “2001: A Space Odyssey”, because the Earth’s gravity acts on our body mass. Yes, mass is directly proportional to weight, the product of mass multiplied times the Earth’s gravitational acceleration. Cheer up, on Mars you would weigh about 60 percent less!

Standard Model Confirmation and Extensions

The best description of the nature of matter and how it interacts with itself that scientists have devised is codified in the so-called standard model (SM) of particle physics. The Higgs Boson is encompassed by the SM and would fit perfectly, once detected, as it is the sole remaining undetected/unquantified particle prophesized by SM devotee.

Of greater import than completing the equivalent of a prestigious stamp collection for high-energy physicists, quantifying the Higgs Field, the modality via which mass is apportioned, would enable more of the principal forces observed in nature to be unified, mutually describable in a set of complete equations.

Electricity and magnetism have long been codified in the Maxwell equations. Quantification of the Higgs Field would enable a separate phenomenon, nuclear beta decay, also called the nuclear weak force, to be unified with the forces of electricity and magnetism and elaborated in electro-weak equations.

While the Higgs Boson remains unquantified, narrowing the range of its mass to between 114.4 GeV and 131 GeV, according to CERN scientists, is meaningful news. Some years ago the Higgs was thought to be as massive as 500+ GeV, an energy regime unreachable by the LHC [Large Hadron Collider], whose peak energy is closer to 450 GeV.

It appears that it is only a matter of time to determining the mass of the God Particle. And although Einstein’s grand unification vision, a single set of equations describing all of the fundamental forces including gravity, will still be unrealized, I, for one, will celebrate by eating ice cream. When talking mass, every kilogram counts.

About Dr. Michael T. Gamble: Dr. Gamble is a former staff member of the physics division of the Los Alamos National Laboratory, where he researched directed-energy devices such as terawatt laser systems. He was also a senior manager within the Gammas, Electrons, and Muons detector collaboration at the Superconducting Super Collider. Gamble is the author of “Zeroscape,” a high-tech thriller. He holds degrees in nuclear and mechanical engineering, and was a postdoctoral Fellow at the Massachusetts Institute of Technology.

Thank you Dr. Gamble for having this essay sent to me today. I very much appreciate the clarity and the way in which you made the Higgs boson relevant to those of us who are not physicists. It makes a good companion piece to the material I was able to include in my Dec. 14, 2011 posting about the CERN announcement.

I stumbled across a Dec. 15, 2011 article in The Telegraph titled “Higgs boson: the particle of faith” by Alister McGrath, which provides a brief history of how the Higgs boson came to be called the ‘god’ particle and some thoughts on science and belief (excerpted from the article),

In 1994, Nobel Laureate Leon Lederman came up with a nickname for the Higgs boson – the mysterious particle proposed by physicist Peter Higgs back in the 1960s to explain the origin of mass. Journalists loved the name – “the God particle” – which probably explains the huge media interest recently in the work of the Large Hadron Collider. Most scientists hated it, considering it misleading and simplistic. Maybe so. But it certainly got people talking about physics.

Some tell us that science is about what can be proved. The wise tell us it is really about offering the best explanations of what we see, realising that these explanations often cannot be proved, and may sometimes lie beyond proof. Science often proposes the existence of invisible (and often undetectable) entities – such as dark matter – to explain what can be seen. The reason why the Higgs boson is taken so seriously in science is not because its existence has been proved, but because it makes so much sense of observations that its existence seems assured. In other words, its power to explain is seen as an indicator of its truth.

Alister McGrath is Professor of Theology at King’s College London, and President of the Oxford Centre for Christian Apologetics. He is currently writing a new biography of the Oxford apologist and writer C. S. Lewis, to be published in March 2013.

I think that taken together both of these pieces offer interesting and contrasting perspectives on the Higgs boson, one notable for its clarity and certainty and the other notable for its suggestion that much of what we know about it  is based on a type of faith, albeit not a religious faith.