Tag Archives: graphite

Making the impossible possible: on demand and by design, atomic scale pipes

This research on pipes from the University of Manchester will probably never finds its way into plumbing practices but, apparently, is of great interest in fundamental research. From a Sept. 7, 2016 news item on phys.org,

Materials containing tiny capillaries and cavities are widely used in filtration, separation and many other technologies, without which our modern lifestyle would be impossible. Those materials are usually found by luck or accident rather than design. It has been impossible to create artificial capillaries with atomic-scale precision.

Now a Manchester group led by postdoctoral researcher Radha Boya and Nobel laureate Andre Geim show how to make the impossible possible, as reported in Nature.

A Sept. 7, 2016 University of Manchester press release (also on EurekAlert), which originated the news item,  provides a description of the technology,

The new technology is elegant, adaptable and strikingly simple. In fact, it is a kind of antipode of the famous material graphene. When making graphene, people often take a piece of graphite and use Scotch tape to extract a single atomic plane of carbon atoms, graphene. The remaining graphite is discarded.

In this new research, Manchester scientists similarly extracted a strip of graphene from graphite, but discarded the graphene and focused on what was left: an ultra-thin cavity within the graphite crystal.

Such atomic scale cavities can be made from various materials to achieve not only a desired size but also to choose properties of capillary walls. They can be atomically smooth or rough, hydrophilic or hydrophobic, insulating or conductive, electrically charged or neutral; the list goes on.

The voids can be made as cavities (to confine various substances) or open-ended tunnels (to transport different gases and liquids), which is of huge interest for fundamental research and many applications. It is limited only by imagination what such narrow tunnels with designer properties can potentially do for us.

Properties of materials at this truly atomic scale are expected to be quite different from those we are familiar with in our macroscopic world. To demonstrate that this is the case of their atomic-scale voids, the Manchester group tested how water runs through those ultra-narrow pipes.

To everyone’s surprise, they found water to flow with little friction and at high speed, as if the channels were many thousands times wider than they actually are.

Radha Boya commented ‘This is an entirely new type of nanoscale systems. Such capillaries were never imagined, even in theory. No one thought that this degree of accuracy in design could be possible. New filtration, desalination, gas separation technologies are kind of obvious directions but there are so many others to explore’.

Sir Andre added ‘Making something useful out of an empty space is certainly cute. Finding that this space offers so much of new science is flabbergasting. Even with hindsight, I did not expect the idea to work so well. There are myriads of possibilities for research and development, which now need to be looked at. We are stunned by the choice.’

Here’s a link to and a citation for the paper,

Molecular transport through capillaries made with atomic-scale precision by B. Radha, A. Esfandiar, F. C. Wang, A. P. Rooney, K. Gopinadhan, A. Keerthi, A. Mishchenko, A. Janardanan, P. Blake, L. Fumagalli, M. Lozada-Hidalgo, S. Garaj, S. J. Haigh, I. V. Grigorieva, H. A. Wu, & A. K. Geim. Nature (2016)  doi:10.1038/nature19363 Published online 07 September 2016

This paper is behind a paywall.

Gold-144 is a polymorph

Au-144 (also known as Gold-144) is an iconic gold nanocluster according to a June 14, 2016 news item announcing its polymorphic nature on ScienceDaily,

Chemically the same, graphite and diamonds are as physically distinct as two minerals can be, one opaque and soft, the other translucent and hard. What makes them unique is their differing arrangement of carbon atoms.

Polymorphs, or materials with the same composition but different structures, are common in bulk materials, and now a new study in Nature Communications confirms they exist in nanomaterials, too. Researchers describe two unique structures for the iconic gold nanocluster Au144(SR)60, better known as Gold-144, including a version never seen before. Their discovery gives engineers a new material to explore, along with the possibility of finding other polymorphic nanoparticles.

A June 14, 2016 Columbia University news release (also on EurekAlert), which originated the news item, provides more insight into the work,

“This took four years to unravel,” said Simon Billinge, a physics professor at Columbia Engineering and a member of the Data Science Institute. “We weren’t expecting the clusters to take on more than one atomic arrangement. But this discovery gives us more handles to turn when trying to design clusters with new and useful properties.”

Gold has been used in coins and jewelry for thousands of years for its durability, but shrink it to a size 10,000 times smaller than a human hair [at one time one billionth of a meter or a nanometer was said to be 1/50,000, 1/60,000 or 1/100,000 of the diameter of a human hair], and it becomes wildly unstable and unpredictable. At the nanoscale, gold likes to split apart other particles and molecules, making it a useful material for purifying water, imaging and killing tumors, and making solar panels more efficient, among other applications.

Though a variety of nanogold particles and molecules have been made in the lab, very few have had their secret atomic arrangement revealed. But recently, new technologies are bringing these miniscule structures into focus.

Under one approach, high-energy x-ray beams are fired at a sample of nanoparticles. Advanced data analytics are used to interpret the x-ray scattering data and infer the sample’s structure, which is key to understanding how strong, reactive or durable the particles might be.

Billinge and his lab have pioneered a method, the atomic Pair Distribution Function (PDF) analysis, for interpreting this scattering data. To test the PDF method, Billinge asked chemists at the Colorado State University to make tiny samples of Gold-144, a molecule-sized nanogold cluster first isolated in 1995. Its structure had been theoretically predicted in 2009, and though never confirmed, Gold-144 has found numerous applications, including in tissue-imaging.

Hoping the test would confirm Gold-144’s structure, they analyzed the clusters at the European Synchrotron Radiation Source in Grenoble, and used the PDF method to infer their structure. To their surprise, they found an angular core, and not the sphere-like icosahedral core predicted. When they made a new sample and tried the experiment again, this time using synchrotrons at Brookhaven and Argonne national laboratories, the structure came back spherical.

“We didn’t understand what was going on, but digging deeper, we realized we had a polymorph,” said study coauthor Kirsten Jensen, formerly a postdoctoral researcher at Columbia, now a chemistry professor at the University of Copenhagen.

Further experiments confirmed the cluster had two versions, sometimes found together, each with a unique structure indicating they behave differently. The researchers are still unsure if Gold-144 can switch from one version to the other or, what exactly, differentiates the two forms.

To make their discovery, the researchers solved what physicists call the nanostructure inverse problem. How can the structure of a tiny nanoparticle in a sample be inferred from an x-ray signal that has been averaged over millions of particles, each with different orientations?

“The signal is noisy and highly degraded,” said Billinge. “It’s the equivalent of trying to recognize if the bird in the tree is a robin or a cardinal, but the image in your binoculars is too blurry and distorted to tell.”

“Our results demonstrate the power of PDF analysis to reveal the structure of very tiny particles,” added study coauthor Christopher Ackerson, a chemistry professor at Colorado State. “I’ve been trying, off and on, for more than 10 years to get the single-crystal x-ray structure of Gold-144. The presence of polymorphs helps to explain why this molecule has been so resistant to traditional methods.”

The PDF approach is one of several rival methods being developed to bring nanoparticle structure into focus. Now that it has proven itself, it could help speed up the work of describing other nanostructures.

The eventual goal is to design nanoparticles by their desired properties, rather than through trial and error, by understanding how form and function relate. Databases of known and predicted structures could make it possible to design new materials with a few clicks of a mouse.

The study is a first step.

“We’ve had a structure model for this iconic gold molecule for years and then this study comes along and says the structure is basically right but it’s got a doppelgänger,” said Robert Whetten, a professor of chemical physics at the University of Texas, San Antonio, who led the team that first isolated Gold-144. “It seemed preposterous, to have two distinct structures that underlie its ubiquity, but this is a beautiful paper that will persuade a lot of people.”

Here’s an image illustrating the two shapes,

Setting out to confirm the predicted structure of Gold-144, researchers discovered an entirely unexpected atomic arrangement (right). The two structures, described in detail for the first time, each have 144 gold atoms, but are uniquely shaped, suggesting they also behave differently. (Courtesy of Kirsten Ørnsbjerg Jensen)

Setting out to confirm the predicted structure of Gold-144, researchers discovered an entirely unexpected atomic arrangement (right). The two structures, described in detail for the first time, each have 144 gold atoms, but are uniquely shaped, suggesting they also behave differently. (Courtesy of Kirsten Ørnsbjerg Jensen)

Here’s a link to and a citation for the paper,

Polymorphism in magic-sized Au144(SR)60 clusters by Kirsten M.Ø. Jensen, Pavol Juhas, Marcus A. Tofanelli, Christine L. Heinecke, Gavin Vaughan, Christopher J. Ackerson, & Simon J. L. Billinge.  Nature Communications 7, Article number: 11859  doi:10.1038/ncomms11859 Published 14 June 2016

This is an open access paper.

Teijin and its fibres at Nano Tech 2016

Teijin is a Japanese chemical and pharmaceutical company known to me due to its production of nanotechnology-enabled fibres. As a consequence, a Jan. 21, 2016 news item on Nanotechnology Now piqued by interest,

Teijin Limited announced today that it will exhibit a wide range of nanotech materials and products incorporating advanced Teijin technologies during the International Nanotechnology Exhibition and Conference (nano tech 2016), the world’s largest nanotechnology show, at Tokyo Big Sight in Tokyo, Japan from January 27 to 29 [2016].

A Jan. 21, 2016 Teijin news release, which originated the news item, offers further detail,

Teijin’s booth (Stand 4E-09) will present nanotech materials and products for sustainable transportation, information and electronics, safety and protection, environment and energy, and healthcare, including the following:

– Nanofront, an ultra-fine polyester fiber with an unprecedented diameter of just 700 nanometers, features slip-resistance, heat shielding, wiping and filtering properties. It is used for diverse applications, including sportswear, cosmetics and industrial applications such as filters and heat-shielding sheets.

– Carbon nanotube yarn (CNTy) is 100%-CNT continuous yarn offering high electrical and thermal conductivity, easy handling and flexibility. Uses including space, aerospace, medical and wearable devices are envisioned. A motor using CNTy as its coil, developed by Finnish Lappeenranta University of Technology Opening a new window, will be exhibited first time in Japan.

– NanoGram Si paste is a printed electronics material containing 20nm-diameter silicon nanoparticles for photovoltaic cells capable of high conversion efficiency.

– Teijin Tetoron multilayer film is a structurally colored multilayer polyester film that utilizes the interference of each multilayer’s optical path difference rather than dyes or pigments. Decorative films for automotive and other applications will be exhibited.

– High-performance membranes, including a high-precision porous thin polyethylene membrane and multilayer membrane composites for micro filters, are moisture-permeable waterproof sheets.

– Carbon Alloy Catalyst (CAC) (under development) is platinum free catalyst made from polyacrylonitrile (precursor of carbon fiber) in combination with iron species, which is less expensive and more readily available than platinum, enabling production for reduced cost and in higher volumes. Fuel cells in which the cathode consists of the CAC without the platinum catalyst can generate exceptionally high electric power.

– Carbon nanofiber (under development) is a highly conductive carbon nanofiber with an elliptical cross section consisting of well-developed graphite layers ordered in a single direction. Envisioned applications include additives for  lithiumion secondary batteries (LIBs) , thermal conducting materials and plastic-reinforcing materials, among others.

Teijin first came to my attention in 2010 with their Morphotex product, a fabric based on the nanostructures found on the Blue Morpho butterfly’s wing. I updated the story in an April 12, 2012 posting sadly noting that Morphotex was no longer available.

For anyone interested in the exhibition, here’s the nano tech 2016 website.

SeeThruEquity sees through Lomiko Metals

The headline is a play on words. Lomiko Metals is in the graphene business (it owns graphite mines which can be turned into graphene and has part ownership of a number graphene-related businesses) and the material, graphene, could lead the way to transparent electronics. When you add an equity firm known as SeeThruEquity issuing a news release about Lomiko, well, the headline wrote itself.

A Dec. 14, 2015 SeeThruEquity news release on Yahoo Finance shares (pun!) the latest doings at Lomiko along with a stock price recommendation (Note: Links have been removed),

SeeThruEquity, a leading New York City based independent equity research and corporate access firm focused on smallcap and microcap public companies, today announced that it has issued an update note on Lomiko Metals, Inc. (TSXV: LMR.V, OTCQX: LMRMF).

The note is available here: LMR December 2015 Update. SeeThruEquity is an approved equity research contributor on Thomson First Call, Capital IQ, FactSet, and Zack’s. The report will be available on these platforms. The firm also contributes its estimates to Thomson Estimates, the leading estimates platform on Wall Street.

Based in Vancouver, BC, Lomiko Metals, Inc. (TSXV: LMR.V. OTCQX: LMRMF, “Lomiko”) is an exploration-stage company engaged in the acquisition, exploration and development of resource properties that contain minerals for the new green economy, specifically graphite. In addition to developing high quality graphite plays, including the La Loutre Crystalline Flake Graphite Property and the Quatre Milles Graphite Properties in Quebec, Lomiko is pursuing synergistic growth opportunities in the technology and new energy markets, which leverage its position in the manufacturing graphene, a graphite derivative up to 200x stronger than structural steel that also possesses very high thermal and electrical conductivity properties. These opportunities include the 3D printing, lithium ion battery, LED drivers and power conversion products.

Promising results from infill drilling at La Loutre

As part of a drilling campaign leading to a 43-101 resource estimate, Lomiko intersected 21.55 meters of 11.58%, 57.95 meters of 3.36% including 6.10 meters of 13.66% and 28.75 meters at 4.44% flake graphite at the La Loutre. On December 4, 2015, Lomiko announced that they had intersected 37.40 meters of 4.41% including 10.25 meters of 5.62%, and 48.05 meters of 3.12% including 8.90 meters of 6.13% flake graphite at their 2,867.29 hectare La Loutre Crystalline Flake Graphite Property. A Drill Map is available on the Lomiko web site under quicklinks.

Lomiko management indicated that the results showed “excellent” data including near-surface, high grade flake graphite, helping further define the play’s potential. Lomiko acquired a 40% interest in this promising crystalline flake graphite play in September 2014, and has acquired another 40% interest since we initiated coverage on the company. As we indicated in our initiation of Lomiko, there are several long-term demand catalysts for high grade graphite, including from the lithium ion battery industry, automotive demand from projects similar to the Tesla Gigafactory — which promises to have 35GWh/year of production, as well as potential new applications of graphite derivative graphene, among others.

Launch of Spider Charger(TM) moving towards collaboration

Lomiko’s wholly owned subsidiary, Lomiko Technologies, appears to be nearing commercialization for its innovative new Spider Charger, which has been developed by the company as a result of technology acquired through Lomiko’s December 2014 licensing agreement with Megahertz Power Systems Ltd. The Spider Charger(TM) is an in-wall USB charging device that employs a sleek design while improving energy efficiency for customers and allowing up to eight electronic devices (two standard, 6 via USB ports) to charge safely at one time. Lomiko completed a prototype for the Spider Charger(TM) in November and has manufactured 250 units for use for demonstration with new potential commercial customers. There is clearly a large market potential for the Spider Charger(TM), which has applications for residential and commercial builders, airlines, schools, and businesses with clientele seeking charging stations for their portable electronic devices – such as coffee houses. Lomiko recently initiated a Kickstarter campaign to fund safety and green certifications for commercial use.

Maintain price target of C$0.19

We are maintaining our price target of C$0.19 for Lomiko Metals at this time. We see the company as an intriguing, speculative investment in the graphite and graphene markets.

Please review important disclosures at www.seethruequity.com.

About Lomiko Metals, Inc.

Lomiko Metals Inc. is a Canada-based, exploration-stage company. The Company is engaged in the acquisition, exploration and development of resource properties that contain minerals for the new green economy. Its mineral properties include the La Loutre, Lac Des Iles, Quatre Milles Graphite Properties and the Vines Lake property which all have had major mineral discoveries.

Lomiko also has a 100% interest in its wholly owned subsidiary Lomiko Technologies Inc., an investor in graphene technology and manufacturer of electronic products.

For more information, visit www.lomiko.com.

About Lomiko Technologies Inc.

Lomiko Technologies was established in April, 2014 and currently holds 4.4 million shares of Graphene 3D Lab (www.Graphene3DLab.com), 40% Of Graphene Energy Storage Devices (www.Graphene-ESD.com), and a license for the manufacture and sale of three products from Megahertz.

Lomiko Technology owns 4.4 million shares of Graphene 3D Lab (TSXV: GGG, OTCQB: GPHBF ), 40% of Graphene ESD Corp and has licenses to produce three electronic products.

About SeeThruEquity

SeeThruEquity is an equity research and corporate access firm focused on companies with less than $1 billion in market capitalization. The research is not paid for and is unbiased. The company does not conduct any investment banking or commission based business. SeeThruEquity is approved to contribute its research to Thomson One Analytics (First Call), Capital IQ, FactSet, Zacks, and distribute its research to its database of opt-in investors. The company also contributes its estimates to Thomson Estimates, the leading estimates platform on Wall Street.

For more information visit www.seethruequity.com.

Please note, I’m not endorsing either the analysis or Lomiko Metals. That said, Lomiko Metals has made some interesting moves in attempts to develop applications for graphene. It’s all very well to have deposits of graphite flakes that can be turned into graphene but if there’s no market for graphene (applications for it) then who cares about the deposits? So, good on Lomiko for its development efforts.

One final comment, for those who do not know, graphene is the focus of much international interest in a race to find applications that utilize it. For example, the European Union has a 1B Euro research fund (the Graphene Flagship) being disbursed over a 10 year period.

Making diamonds at room temperature with a new carbon material

Scientists at North Carolina State University (NCSU) claim to have found a new phase for solid carbon which allows them to create diamond materials at room temperature. From a Nov. 30, 2015 news item on Nanowerk,

Researchers from North Carolina State University have discovered a new phase of solid carbon, called Q-carbon, which is distinct from the known phases of graphite and diamond. They have also developed a technique for using Q-carbon to make diamond-related structures at room temperature and at ambient atmospheric pressure in air.

Phases are distinct forms of the same material. Graphite is one of the solid phases of carbon; diamond is another.

“We’ve now created a third solid phase of carbon,” says Jay Narayan, the John C. Fan Distinguished Chair Professor of Materials Science and Engineering at NC State and lead author of three [?] papers describing the work. “The only place it may be found in the natural world would be possibly in the core of some planets.”

A Nov. 30, 2015 NCSU news release (also on EurekAlert), which originated the news item, describes some of the new material’s properties,

Q-carbon has some unusual characteristics. For one thing, it is ferromagnetic – which other solid forms of carbon are not. [definition from its Wikipedia entry: Ferromagnetism is the basic mechanism by which certain materials (such as iron) form permanent magnets, or are attracted to magnets.]

“We didn’t even think that was possible,” Narayan says.

In addition, Q-carbon is harder than diamond, and glows when exposed to even low levels of energy.

“Q-carbon’s strength and low work-function – its willingness to release electrons – make it very promising for developing new electronic display technologies,” Narayan says.

But Q-carbon can also be used to create a variety of single-crystal diamond objects. …

The news release describes the process for creating Q-carbon,

Researchers start with a substrate, such as such as sapphire, glass or a plastic polymer. The substrate is then coated with amorphous carbon – elemental carbon that, unlike graphite or diamond, does not have a regular, well-defined crystalline structure. The carbon is then hit with a single laser pulse lasting approximately 200 nanoseconds. During this pulse, the temperature of the carbon is raised to 4,000 Kelvin (or around 3,727 degrees Celsius) and then rapidly cooled. This operation takes place at one atmosphere – the same pressure as the surrounding air.

The end result is a film of Q-carbon, and researchers can control the process to make films between 20 nanometers and 500 nanometers thick.

By using different substrates and changing the duration of the laser pulse, the researchers can also control how quickly the carbon cools. By changing the rate of cooling, they are able to create diamond structures within the Q-carbon.

“We can create diamond nanoneedles or microneedles, nanodots, or large-area diamond films, with applications for drug delivery, industrial processes and for creating high-temperature switches and power electronics,” Narayan says. “These diamond objects have a single-crystalline structure, making them stronger than polycrystalline materials. And it is all done at room temperature and at ambient atmosphere – we’re basically using a laser like the ones used for laser eye surgery. So, not only does this allow us to develop new applications, but the process itself is relatively inexpensive.”

And, if researchers want to convert more of the Q-carbon to diamond, they can simply repeat the laser-pulse/cooling process.

If Q-carbon is harder than diamond, why would someone want to make diamond nanodots instead of Q-carbon ones? Because we still have a lot to learn about this new material.

“We can make Q-carbon films, and we’re learning its properties, but we are still in the early stages of understanding how to manipulate it,” Narayan says. “We know a lot about diamond, so we can make diamond nanodots. We don’t yet know how to make Q-carbon nanodots or microneedles. That’s something we’re working on.”

NC State has filed two provisional patents on the Q-carbon and diamond creation techniques.

While the news release mentions Narayan is the lead author of three papers about this work, only two papers are cited at the end of the news release.

Here are the links and citations,

Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air by Jagdish Narayan and Anagh Bhaumik. APL Mater. 3, 100702 (2015); http://dx.doi.org/10.1063/1.4932622 [Published Oct. 7, 2015]

Novel Phase of Carbon, Ferromagnetism and Conversion into Diamond by Jagdish Narayan and Anagh Bhaumik. Published online Nov. 30 [, 2015] in the Journal of Applied Physics  DOI: 10.1063/1.4936595

Both articles are open access.

Graphite research at Simon Fraser University (Vancouver, Canada) and NanoXplore’s (Montréal, Canada) graphene oxide production

Graphite

Simon Fraser University (SFU) announced a partnership with Ontario’s Sheridan College and three Canadian companies (Terrella Energy Systems, Alpha Technologies, and Westport Innovations) in a research project investigating low-cost graphite thermal management products. From an April 9, 2015 SFU news release,

Simon Fraser University is partnering with Ontario’s Sheridan College, and a trio of Canadian companies, on research aimed at helping the companies to gain market advantage from improvements on low-cost graphite thermal management products.

 

Graphite is an advanced engineering material with key properties that have potential applications in green energy systems, automotive components and heating ventilating air conditioning systems.

 

The project combines expertise from SFU’s Laboratory for Alternative Energy Conversion with Sheridan’s Centre for Advanced Manufacturing and Design Technologies.

 

With $700,000 in funding from the Natural Sciences and Engineering Research Council’s (NSERC) College and Community Innovation program, the research will help accelerate the development and commercialization of this promising technology, says project lead Majid Bahrami, an associate professor in SFU’s School of Mechatronics Systems Engineering (MSE) at SFU’s Surrey campus.

 

The proposed graphite products take aim at a strategic $40 billion/year thermal management products market, Bahrami notes. 

 

Inspired by the needs of the companies, Bahrami says the project has strong potential for generating intellectual property, leading to advanced manufacturing processes as well as new, efficient graphite thermal products.

 

The companies involved include:

 

Terrella Energy Systems, which recently developed a roll-embossing process that allows high-volume, cost-effective manufacturing of micro-patterned, coated and flexible graphite sheets;

 

Alpha Technologies, a leading telecom/electronics manufacturer, which is in the process of developing next-generation ‘green’ cooling solutions for their telecom/electronics systems;

 

Westport Innovations, which is interested in integrating graphite heat exchangers in their natural gas fuel systems, such as heat exchangers for heavy-duty trucks.

 

Bahrami, who holds a Canada Research Chair in Alternative Energy Conversion Systems, expects the project will also lead to significant training and future business and employment opportunities in the manufacturing and energy industry, as well as the natural resource sector and their supply chain.

 

“This project leverages previous federal government investment into world-class testing equipment, and SFU’s strong industrial relationships and entrepreneurial culture, to realize collective benefits for students, researchers, and companies,” says Joy Johnson, SFU’s VP Research. “By working together and pooling resources, SFU and its partners will continue to generate novel green technologies and energy conversion solutions.”

 

Fast Facts:

  • The goal of the NSERC College and Community Innovation program is to increase innovation at the community and/or regional level by enabling Canadian colleges to increase their capacity to work with local companies, particularly small and medium-sized enterprises (SMEs).
  • Canada is the fifth largest exporter of raw graphite.

I have mentioned graphite here before. Generally, it’s in relation to graphite mining deposits in Ontario and Québec, which seem to have been of great interest as a source for graphene production. A Feb. 20, 2015 posting was the the latest of those mentions and, coincidentally, it features NanoXplore and graphene, the other topic noted in the head for this posting.

Graphene and NanoXplore

An April 17, 2015 news item on Azonano makes a production announcement,

Group NanoXplore Inc., a Montreal-based company specialising in the production and application of graphene and its derivative materials, announced today that it is producing Graphene Oxide in industrial quantities. The Graphene Oxide is being produced in the same 3 metric tonne per year facility used to manufacture NanoXplore’s standard graphene grades and derivative products such as a unique graphite-graphene composite suitable for anodes in Li-ion batteries.

An April 16, 2015 NanoXplore news release on MarketWired, which originated the news item, describes graphene oxide and its various uses,

Graphene Oxide (GO) is similar to graphene but with significant amounts of oxygen introduced into the graphene structure. GO, unlike graphene, can be readily mixed in water which has led people to use GO in thin films, water-based paints and inks, and biomedical applications. GO is relatively simple to synthesise on a lab scale using a modified Hummers’ method, but scale-up to industrial production is quite challenging and dangerous. This is because the Hummers’ method uses strong oxidizing agents in a highly exothermic reaction which produces toxic and explosive gas. NanoXplore has developed a completely new and different approach to producing GO based upon its proprietary graphene production platform. This novel production process is completely safe and environmentally friendly and produces GO in volumes ranging from kilogram to tonne quantities.

“NanoXplore’s ability to produce industrially useful quantities of Graphene Oxide in a safe and scalable manner is a game changer, said Dr. Soroush Nazarpour, President and CEO of NanoXplore. “Mixing graphene with standard industrially materials is the key to bringing it to industrial markets. Graphene Oxide mixes extremely well with all water based solutions, and we have received repeated customer requests for water soluble graphene over the last two years”.

It sounds exciting but it would be helpful (for someone like me, who’s ignorant about these things) to know the graphene oxide market’s size. This would help me to contextualize the excitement.

You can find out more about NanoXplore here.

Single layer graphene as a solid lubricant

Graphite (from which graphene springs) has been used as a solid lubricant for many years but it has limitations which researchers at the US Dept. of Energy’s Argonne National Laboratory are attempting to overcome by possibly replacing it with graphene. An Oct. 14, 2014 news item on phys.org describes the research (Note: A link has been removed),

Nanoscientist Anirudha Sumant and his colleagues at Argonne’s Center for Nanoscale Materials and Argonne’s Energy Systems division applied a one-atom-thick layer of graphene, a two-dimensional form of carbon, in between a steel ball and a steel disk. They found that just the single layer of graphene lasted for more than 6,500 “wear cycles,” a dramatic improvement over conventional lubricants like graphite or molybdenum disulfide.

An Oct. 13, 2014 Argonne National Laboratory news release by Jared Sagoff, which originated the news item, provides more information about this research (Note: A link has been removed),

“For comparison,” Sumant said, “conventional lubricants would need about 1,000 layers to last for 1,000 wear cycles. That’s a huge advantage in terms of cost savings with much better performance.”

Graphite has been used as an industrial lubricant for more than 40 years, but not without certain drawbacks, Sumant explained.  “Graphite is limited by the fact that it really works only in humid environments. If you have a dry setting, it’s not going to be nearly as effective,” he said.

This limitation arises from the fact that graphite – unlike graphene – has a three-dimensional structure.  The water molecules in the moist air create slipperiness by weaving themselves in between graphite’s carbon sheets. When there are not enough water molecules in the air, the material loses its slickness.

Molybdenum disulfide, another common lubricant, has the reverse problem, Sumant said. It works in dry environments but not well in wet ones. “Essentially the challenge is to find a single all-purpose lubricant that works well for mechanical systems, no matter where they are,” he said.

Graphene’s two-dimensional structure gives it a significant advantage. “The material is able to bond directly to the surface of the stainless steel ball, making it so perfectly even that even hydrogen atoms are not able to penetrate it,” said Argonne materials scientist Ali Erdemir, a collaborator on the study who tested graphene-coated steel surfaces in his lab.

In a previous study in Materials Today, Sumant and his colleagues showed that a few layers of graphene works equally well in humid and dry environments as a solid lubricant, solving the 40-year-old puzzle of finding a flawless solid lubricant. However, the team wanted to go further and test just a single graphene layer.

While doing so in an environment containing molecules of pure hydrogen, they observed a dramatic improvement in graphene’s operational lifetime. When the graphene monolayer eventually starts to wear away, hydrogen atoms leap in to repair the lattice, like stitching a quilt back together. “Hydrogen can only get into the fabric where there is already an opening,” said Subramanian Sankaranarayanan, an Argonne computational scientist and co-author in this study. This means the graphene layer stays intact longer.

Researchers had previously done experiments to understand the mechanical strength of a single sheet of graphene, but the Argonne study is the first to explain the extraordinary wear resistance of one-atom-thick graphene.

Here’s a link to and a citation for the August 2014 study,

Extraordinary Macroscale Wear Resistance of One Atom Thick Graphene Layer by Diana Berman, Sanket A. Deshmukh, Subramanian K. R. S. Sankaranarayanan, Ali Erdemir, and Anirudha V. Sumant. Advanced Funtional Materials DOI: 10.1002/adfm.201401755 Article first published online: 26 AUG 2014

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This article is behind a paywall.

Lomiko Metals, batteries, graphite/graphene, and a strategic alliance with the Research Foundation of Stony Brook University and Graphene Laboratories, Inc.

Lomiko Metals, a Vancouver-based (Canada)  company, has been mentioned here with respect to a property in Québec (Quatre Milles) containing graphite flakes in an April 17, 2013 posting, which also mentioned the company’s strategic alliance with Graphene Laboratories Inc.

Building on that previous announcement Lomiko Metals has announced a new member to the strategic alliance in a May 30, 2013 news item on Azonano,

LOMIKO METALS INC. (the “Company”) announces that the Research Foundation of Stony Brook University (RF), Graphene Laboratories, Inc. (Graphene Labs) and Lomiko Metals, Inc. have agreed to investigate novel, energy-focused applications for graphene.

“This new agreement with Stony Brook University’s researchers means Lomiko is participating in the development of the technology graphene makes possible,” commented Paul Gill, CEO of Lomiko. “Using graphene to achieve very high energy densities in super capacitors and batteries is a transfomative technology. Strategically, Lomiko needs to be participating in this vital research to achieve the goal of creating a vertically integrated graphite and graphene business.”

The May 29, 2013 Lomiko Metals news release, which originated the news item, has more details,

Under its Strategic Alliance Agreement with Lomiko, Graphene Labs — a leading graphene manufacturer — will process graphite samples from Lomiko’s Quatre Milles property into graphene. The Research Foundation, through Stony Brook University’s Advanced Energy Research and Technology Center (AERTC) and the Center for Advanced Sensor Technology (Sensor CAT), will then examine the most efficient methods of using this graphene for energy storage applications. There is no certainty the roposed [sic]  operaton [sic] will be economically viable.

For all parties involved, the goal of this collaboration is to map commercially viable routes for the fabrication of graphene-based energy storage devices. By participating in these projects, the partners will address the cost of graphene production, as well as how best to integrate the material into commercial energy storage devices.

As I find the various business/academic partnerships interesting, I’m including the About section of the news release,

About Graphene Laboratories Inc.

Graphene Laboratories, Inc. primary focus is to apply fundamental science and technology to bring functional advanced materials and devices to market.
Graphene Laboratories Inc. operates the Graphene Supermarket® (www.graphene-supermarket.com), and is a leading supplier of advanced 2D materials to customers around the globe. In addition to the retail offering of advanced 2D materials, it offers analytical services, prototype development and consulting.

Located in Calverton NY, Graphene Labs benefits from the unique high tech community on Long Island. Efforts by Graphene Laboratories are supported by Brookhaven National Laboratory, Stony Brook Business Incubator, and the Clean Energy Business Incubator Program (CEBIP), hosted by the New York State Energy Research and Development Authority (NYSERDA).

For more information on Graphene Laboratories, Inc, visit www.graphenelabs.com or contact them at (516)-382-8649 or via email at info@graphenelabs.com

About AERTC

Located in the Research and Development Park on the campus of Stony Brook University, the Advanced Energy Incubator is space that is home to companies within the Advanced Energy Center. The Advanced Energy Center (www.aertc.org) is a true partnership of academic institutions, research institutions, energy providers and companies. Its mission is innovative energy research, education and technology deployment with a focus on efficiency, conservation,renewable energy and nanotechnology applications for new and novel sources of energy.

About Sensor CAT

The New York State Center for Advanced Technology at Stony Brook University provides intellectual, logistical, and material resources for the development of new product technologies – by facilitating R&D partnerships between New York companies with an in-state footprint and university researchers. The important outcomes are new jobs, new patents, training of students in company product matters, and improved competitiveness for New York State businesses.

About Lomiko Metals Inc.

Lomiko Metals Inc. is a Canadian based exploration-stage company. Its mineral properties include the Quatre Milles Graphite Property and the Vines Lake property which both have had recent major discoveries. On October 22 and November, 13 2012, Lomiko Metals Inc. announced 11 drill holes had intercepted high grade graphite at the 3,780 Ha Quatre Milles Property. On March 15, 2013 Lomiko reported 75.3% of graphite tested was >200 mesh and classified as graphite flake with 38.36% in the >80 mesh, large flake category. 85.3% of test results higher than the 94% carbon purity considered high carbon content, with the median test result being 98.35%.

The highlight of Lomiko’s testing was nine (9) sieve samples which captured flakes of varying sizes which tested 100.00% carbon. Both fine and flake material may be amenable to graphene conversion by Lomiko Metals Inc. partner Graphene Laboratories.

The project is located 175 km north of the Port of Montreal and 26 km from a major highway on a well-maintained gravel road.

For more information on Lomiko Metals Inc., review the website at www.lomiko.com or contact A. Paul Gill at 604-729-5312 or email: info@lomiko.com

On Behalf of the Board

“A. Paul Gill” Chief Executive Officer

We seek safe harbor. Neither TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

I couldn’t resist that last bit either. As I understand it, this means ‘caveat emptor’ or buyer beware. In short do your research.

Come fly with me! Max Planck Institute researchers turn origami paper crane into a conductive structure

Yet again the lowly inkjet printer features in a very high tech project. This time, the printer has been used to print a catalyst on paper that is then turned into conductive graphite. From the May 15, 2013 news item on ScienceDaily,

… Researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam-Golm have created targeted conductive structures on paper using a method that is quite simple: with a conventional inkjet printer, they printed a catalyst on a sheet of paper and then heated it. The printed areas on the paper were thereby converted into conductive graphite. Being an inexpensive, light and flexible raw material, paper is therefore highly suitable for electronic components in everyday objects.

Cost-efficient and flexible microchips are opening up applications in the electronics sector for which silicon chips are too expensive or difficult to make, and for which RFID chips, now available on a widespread basis, simply do not suffice: clothes, for instance, that monitor bodily functions, flexible screens, or labels that give more information about a product then can be printed on the packaging.

The Max Planck Institute of Colloids and Interfaces May 8, 2013 news release, which originated the news item, offers more detail about the advantages that conductive ‘paper’ offers,

Although many scientists around the world are successfully developing flexible chips, they have been forced to almost always rely on plastics as the carrier and, in some cases, use polymers and other organic molecules as conductive components. These materials may meet many requirements; however, they are all, without exception, sensitive to heat. “Their processing cannot be integrated into the usual production of electronics, because temperatures in production can reach over 400 degrees Celsius,” says Cristina Giordano, who leads a working group at the Max Planck Institute of Colloids and Interfaces and as now come up with an alternative solution.

Carbon electronics, which Giordano and her colleagues create from paper, can withstand temperatures of around 800 degrees Celsius during production in an oxygen-free environment, and would not have a negative impact on established processes. And that is not the only trump card of paper-based electronics. The light and inexpensive material can be processed very easily, even into three-dimensional conductive structures.

Here’s how the scientists achieved their conductive ‘paper’,

The Potsdam-based researchers convert the cellulose of the paper into graphite with iron nitrate serving as the catalyst. “Using a commercial inkjet printer, we print  a solution of the catalyst in a fine pattern on a sheet of paper,” says Stefan Glatzel, who is responsible for bringing electronics to paper in his doctoral thesis. If the researchers then heat the sheets that were printed with a catalyst to 800 degrees Celsius in a nitrogen atmosphere, the cellulose will continue to release water until all that remains is pure carbon. Whereas an electrically conducting mixture of regularly structured carbon sheets of graphite and iron carbide forms in the printed areas, the non-printed areas are left behind as carbon without a regular structure, and they are less conductive.

That actual, precisely formed conducting paths are created in this way was demonstrated by the researchers in a simple experiment: First, they printed the catalyst on a sheet of paper in the pattern of Minerva, the subtle symbol of the Max Planck Society. The printed pattern was then converted into graphite. They then used the graphite Minerva as a cathode, which was electrolytically coated with copper. The metal was only deposited on the lines sketched by the printer.

My personal favourite is the scientists’ origami crane experiment,

In another experiment, the team in Potsdam demonstrated how three-dimensional, conductive structures can be created using their method. For this experiment, the team folded a sheet of paper into an origami crane. This was then immersed in the catalyst and baked into graphite. “The three-dimensional form was completely retained, but consisted entirely of conductive carbon after the process,” says Stefan Glatzel. He demonstrated this again by electrolytically coating the origami bird with copper. The entire crane subsequently had a copper sheen.

An origami figure takes flight: A crane made from folded paper is immersed in the ferric catalyst (left) by the Max Planck researchers in Potsdam. After the conversion, all that remains besides graphite is magnetic iron carbide, which allows the bird to fly towards the magnets (centre). The picture of a transmission electron microscope reveals the nanostructure of the carbon (right). © MPI of Colloids and Interfaces

An origami figure takes flight: A crane made from folded paper is immersed in the ferric catalyst (left) by the Max Planck researchers in Potsdam. After the conversion, all that remains besides graphite is magnetic iron carbide, which allows the bird to fly towards the magnets (centre). The picture of a transmission electron microscope reveals the nanostructure of the carbon (right).
© MPI of Colloids and Interfaces

Interested parties can find more information at ScienceDaily (May 15, 2013 news item) or here at the Max Planck Institute of Colloids and Interfaces website. For the truly keen, here’s a link to and a citation for the published study,

From Paper to Structured Carbon Electrodes by Inkjet Printing by Stefan Glatzel1, Dr. Zoë Schnepp, and Dr. Cristina Giordano. Angewandte Chemie International Edition, Volume 52, Issue 8, pages 2355–2358, February 18, 2013 Article first published online: 17 JAN 2013
DOI: 10.1002/anie.201207693

This paper is behind a paywall.

A ‘graphite today, graphene tomorrow’ philosophy from Focus Graphite

Focus Graphite, a Canadian company with the tag line ‘Think Graphite today, Think Graphene tomorrow’, is making a bit of splash this month (April 2013) with its announcement of three deals (two joint ventures and the commissioning of their pilot plant) and it’s only April 17.

The most recent is the pilot plant announcement, from Focus Graphite’s Apr. 17, 2013 press release,

Focus Graphite Inc. (TSX-V:FMS)(OTCQX:FCSMF)(FRANKFURT:FKC) (“Focus” or the “Company”) is pleased to report the commissioning of its pilot plant and the start-up of circuit testing for the production of high-grade graphite concentrates from the Company’s wholly-owned Lac Knife, Québec graphite project.

The principal objectives of the pilot plant testwork are to confirm the results from Phase II bench scale Locked Cycle Tests (LCT)*; to assess the technical viability and operational performance of the processing plant design; to generate tailings for environmental testing, and; to produce a range of graphite raw materials for customer assessments and for further upgrading.

The Lac Knife project pilot plant was designed and built and is being operated by SGS Canada Inc. (“SGS”) in Lakefield, Ontario. The testing is expected to last 4-6 weeks.

….

The highlights of those tests conducted by SGS confirmed:-       The average amount of graphite flake recovered from the core samples in the Phase II LCT increased to 92.2% compared with a recovery of 84.7% graphite flake in the Phase I LCT;

–       The proportion of large flakes (+80 mesh) in the graphite concentrates ranged between 35% and 58%;

–       The carbon content of graphite concentrates produced from the four (4) composites averaged 96.6 %C, including the fine flake fraction (-200 mesh), a 4.6% increase over Phase I LCT completed in mid-2012.

Final results for Phase II LCT including for the two composite drill core samples of massive graphite mineralisation are pending.

* A locked cycle test is a repetitive batch flotation test conducted to assess flow sheet design. It is the preferred method for arriving at a metallurgical projection from laboratory testing. The final cycles of the test are designed to simulate a continuous, stable flotation circuit.

There’s also the announcement of a joint venture between Grafoid (a company where, I believe, 40% is owned by Focus Graphite) with the University of Waterloo, from the Apr. 17, 2013 news item on Azonano,

Focus Graphite Inc. on behalf of Grafoid Inc. (“Grafoid”) is pleased to announce the signing of a two-year R&D agreement between Grafoid Inc. and the University of Waterloo to investigate and develop a graphene-based composite for electrochemical energy storage for the automotive and/or portable electronics sectors.

Gary Economo, President and CEO of Focus Graphite Inc. and Grafoid Inc., said the objective of the agreement is to research and develop patentable applications using Grafoid’s unique investment which derives graphene from raw, graphite ore to target specialty high value graphene derivatives ranging from sulfur graphene to nanoporous graphene foam.

“Today’s announcement marks Grafoid’s fifth publicly declared graphene development project with a major academic or corporate institution, and the third related directly to a next generation green technology or renewable energy development project,” Mr. Economo said.

It follows R&D partnering projects announced with Rutgers University’s AMIPP, CVD Equipment Corporation, with Hydro-Quebec’s research institute, IREQ, and with British Columbia-based CapTherm Systems, an advanced thermal management technologies developer and producer.

Focus Graphite’s Apr. 16, 2013 press release, which originated the news item on Azonano, provides some context for the intense worldwide interest in graphene and the business imperatives,

Alternative Energy & Graphene:

The quest for alternative energy sources is one of the most important and exciting challenges facing science and technology in the 21st century. Environmentally-friendly, efficient and sustainable energy generation and usage have become large efforts for advancing human societal needs.  Graphene is a pure form of carbon with powerful characteristics which can bring about success in portable, stationary and transportation applications in high energy demanding areas in which electrochemical energy storage and conversion devices such as batteries, fuel cells and electrochemical supercapacitors  are the necessary devices.

Electrochemical Supercapacitors:

Supercapacitors, a zero-emission energy storage system, have a number of high-impact characteristics, such as fast charging, long charge-discharge cycles and broad operating temperature ranges, currently used or heavily researched in hybrid or electrical vehicles, electronics, aircrafts, and smart grids for energy storage. The US Department of Energy has assigned the same importance to supercapacitors and batteries. There is much research looking at combining electrochemical supercapacitors with battery systems or fuel cells.

Fuel Cells:

A fuel cell is a zero-emission source of power, and the only byproduct of a fuel cell is water. Some fuel cells use natural gas or hydrocarbons as fuel, but even those produce far less emissions than conventional sources. As a result, fuel cells eliminate or at least vastly reduce the pollution and greenhouse gas emissions caused by burning fossil fuels, and since they are also quiet in operation, they also reduce noise pollution. Fuel cells are more efficient than combustion engines as they generate electricity electrochemically. Since they can produce electricity onsite, the waste heat produced can also be used for heating purposes. Small fuel cells are already replacing batteries in portable products.

Toyota is planning to launch fuel cell cars in 2015, and has licensed its fuel cell vehicle technology to Germany’s BMW AG. BMW will use the technology to build a prototype vehicle by 2015, with plans for a market release around 2020.

By 2020, market penetration could rise as high as 1.2 million fuel cell vehicles, which would represent 7.6% of the total U.S. automotive market. Other fuel cell end users are fork lift and mining industries which continuously add profits to this growing industry.

Proton or polymer exchange membranes (PEM) have become the dominant fuel cell technology in the automotive market.

The U.S. Department of Energy has set fuel cell performance standards for 2015. As of today, no technologies under development have been able to meet the DOE’s  targets for performance and cost.

As I am from British Columbia and it was where* the first joint venture deal signed in April, here’s a bit more from Focus Graphite’s Apr. 9, 2013 press release,

Focus Graphite Inc. (TSX-V:FMS)(OTCQX:FCSMF)(FRANKFURT:FKC) on behalf of Grafoid Inc., announced today Grafoid’s joint venture development agreement with Coquitlam, British Columbia-based CapTherm Systems Inc. to develop and commercialize next generation, multiphase thermal management systems for electric vehicle (EV) battery and light emitting diode (LED) technologies.

CapTherm Systems Inc – Progressive Thermal Management is a thermal management/cooling company specializing in personal computer, server, LED, and electric vehicle cooling systems. It develops and commercializes proprietary, next-generation high-power electronics cooling technologies.

Its multiphase cooling technologies represent the core of its products that harness the power of latent heat from vaporization.

Under the terms of the agreement, Grafoid Inc., a company invested in the production of high-energy graphene and the development of graphene industrial applications will supply both materials and its science for adapting graphene to CapTherm’s existing EV and LED cooling systems.

Focus Graphite is a Canadian company, you can find more information on their website and the same for Grafoid and SGS Canada, and CapTherm Systems.

I have previously mentioned Focus Graphite in a Nov. 27, 2012 posting about their deal with Hydro Québec’s research institute, IREQ. I have also mentioned graphite mining in Canada with regard to the Northern Graphite Corporation and its Bissett Creek mine (my July 25, 2011 posting and my Feb. 6, 2012 posting). Apparently, Canada has high quality, large graphic flakes.

* ‘where’ added to sentence on Feb. 23, 2015.