I was taught in high school that the US was running out of its resources and that Canada still had much of its resources. That was decades ago. As well, throughout the years, usually during a vote in Québec about separating, I’ve heard rumblings about the US absorbing part or all of Canada as something they call ‘Manifest Destiny,’ which dates back to the 19th century.
Unlike the previous forays Into Manifest Destiny, this one has not been precipitated by any discussion of separation.
Manifest Destiny
It took a while for that phrase to emerge this time but when it finally did the Canadian Broadcasting Corporation (CBC) online news published a January 19, 2025 article by Ainsley Hawthorn providing some context for the term, Note: Links have been removed,
U.S. president-elect Donald Trump says he’s prepared to use economic force to turn Canada into America’s 51st state, and it’s making Canadians — two-thirds of whom believe he’s sincere — anxious.
But the last time Canada faced the threat of American annexation, it united us more than ever before, leading to the foundation of our country as we know it today.
In the 1860s, several prominent U.S. politicians advocated for annexing the colonies of British North America.
“I look on Rupert’s Land [modern-day Manitoba and parts of Alberta, Saskatchewan, Nunavut, Ontario, and Quebec] and Canada, and see how an ingenious people and a capable, enlightened government are occupied with bridging rivers and making railroads and telegraphs,” Secretary of State William Henry Seward told a crowd in St. Paul, Minn. while campaigning on behalf of presidential candidate Abraham Lincoln.
“I am able to say, it is very well; you are building excellent states to be hereafter admitted into the American Union.”
Seward believed in Manifest Destiny, the doctrine that the United States would inevitably expand across the entire North American continent. While he seems to have preferred to acquire territory through negotiation rather than aggression, Canadians weren’t wholly assured of America’s peaceful intentions.
…
In the late 1850s and early 1860s, Canadian parliament had been so deadlocked it had practically come to a standstill. Within just a few years, American pressure created a sense of unity so great it led to Confederation.
The current conversation around annexation is likewise uniting Canada’s leaders to a degree we’ve rarely seen in recent years.
Representatives across the political spectrum are sharing a common message, the same message as British North Americans in the late nineteenth century: despite our problems, Canadians value Canada.
Critical minerals and water
Prime Minister Justin Trudeau had a few comments to make about US President Donald Trump’s motivation for ‘absorbing’ Canada as the 51st state, from a February 7, 2025 CBC news online article by Peter Zimonjic, ·
Prime Minister Justin Trudeau told business leaders at the Canada-U.S. Economic Summit in Toronto that U.S. President Donald Trump’s threat to annex Canada “is a real thing” motivated by his desire to tap into the country’s critical minerals.
“Mr. Trump has it in mind that the easiest way to do it is absorbing our country and it is a real thing,” Trudeau said, before a microphone cut out at the start of the closed-door meeting.
The prime minister made the remarks to more than 100 business leaders after delivering an opening address to the summit Friday morning [February 7, 2025], outlining the key issues facing the country when it comes to Canada’s trading relationship with the U.S.
After the opening address, media were ushered out of the room when a microphone that was left on picked up what was only meant to be heard by attendees [emphasis mine].
…
Automotive Parts Manufacturers’ Association president Flavio Volpe was in the room when Trudeau made the comments. He said the prime minister went on to say that Trump is driven because the U.S. could benefit from Canada’s critical mineral resources.
…
There was more, from a February 7, 2025 article by Nick Taylor-Vaisey for Politico., Note: A link has been removed,
…
In remarks caught on tape by The Toronto Star, Trudeau suggested the president is keenly aware of Canada’s vast mineral resources. “I suggest that not only does the Trump administration know how many critical minerals we have but that may be even why they keep talking about absorbing us and making us the 51st state,” Trudeau said.
…
All of this reminded me of US President Joe Biden’s visit to Canada and his interest in critical minerals which I mentioned briefly in my comments about the 2023 federal budget, from my April 17, 2023 posting (scroll down to the ‘Canadian economic theory (the staples theory), mining, nuclear energy, quantum science, and more’ subhead,
Critical minerals are getting a lot of attention these days. (They were featured in the 2022 budget, see my April 19, 2022 posting, scroll down to the Mining subhead.) This year, US President Joe Biden, in his first visit to Canada as President, singled out critical minerals at the end of his 28 hour state visit (from a March 24, 2023 CBC news online article by Alexander Panetta; Note: Links have been removed),
There was a pot of gold at the end of President Joe Biden’s jaunt to Canada. It’s going to Canada’s mining sector.
The U.S. military will deliver funds this spring to critical minerals projects in both the U.S. and Canada. The goal is to accelerate the development of a critical minerals industry on this continent.
The context is the United States’ intensifying rivalry with China.
The U.S. is desperate to reduce its reliance on its adversary for materials needed to power electric vehicles, electronics and many other products, and has set aside hundreds of millions of dollars under a program called the Defence Production Act.
The Pentagon already has told Canadian companies they would be eligible to apply. It has said the cash would arrive as grants, not loans.
On Friday [March 24, 2023], before Biden left Ottawa, he promised they’ll get some.
The White House and the Prime Minister’s Office announced that companies from both countries will be eligible this spring for money from a $250 million US fund.
Which Canadian companies? The leaders didn’t say. Canadian officials have provided the U.S. with a list of at least 70 projects that could warrant U.S. funding.
…
“Our nations are blessed with incredible natural resources,” Biden told Canadian parliamentarians during his speech in the House of Commons.
“Canada in particular has large quantities of critical minerals [emphasis mine] that are essential for our clean energy future, for the world’s clean energy future.
…
I don’t think there’s any question that the US knows how much, where, and how easily ‘extractable’ Canadian critical minerals might be.
Pressure builds
On the same day (Monday, February 3, 2025) the tariffs were postponed for a month,Trudeau had two telephone calls with US president Donald Trump. According to a February 9, 2025 article by Steve Chase and Stefanie Marotta for the Globe and Mail, Trump and his minions are exploring the possibility of acquiring Canada by means other than a trade war or economic domination,
…
“He [Trudeau] talked about two phone conversations he had with Mr. Trump on Monday [February 3, 2025] before the President agreed to delay to steep tariffs on Canadian goods for 30 days.n
During the calls, the Prime Minister recalled Mr. Trump referred to a four-page memo that included a list of grievances he had with Canadian trade and commercial rules, including the President’s false claim that US banks are unable to operate in Canada. …
In the second conversation with Mr. Trump on Monday, the Prime Minister told the summit, the President asked him whether he was familiar with the Treaty of 1908, a pact between the United States and Britain that defined the border between the United States and Canada. he told Mr. Trudeau, he should look it up.
Mr. Trudeau told the summit he thought the treaty had been superseded by other developments such as the repatriation the Canadian Constitution – in other words, that the border cannot be dissolved by repealing that treaty. He told the audience that international law would prevent the dissolution 1908 Treaty leading to the erasure of the border. For example, various international laws define sovereign borders, including the United Nationals Charter of which both countries are signatories and which has protection to territorial integrity.
A source familiar with the calls said Mr. Trump’s reference to the 1908 Treaty was taken as an implied threat. … [p. A3 in paper version]
I imagine Mr. Trump and/or his minions will keep trying to find one pretext or another for this attempt to absorb or annex or wage war (economically or otherwise) on Canada.
What makes Canadian (and Greenlandic) minerals and water so important?
You may have noticed the January 21, 2025 announcement by Mr. Trump about the ‘Stargate Project,’ a proposed US $500B AI infrastructure company (you can find more about the Stargate Project (Stargate LLC) in its Wikipedia entry).
Most likely not a coincidence, on February 10, 2025 President of France, Emmanuel Macron announced a 109B euros investment in French AI sector, from the February 9, 2025 Reuters preannouncement article,
France will announce private sector investments totalling some 109 billion euros ($112.5 billion [US]) in its artificial intelligence sector during the Paris AI summit which opens on Monday, President Emmanuel Macron said.
The financing includes plans by Canadian investment firm [emphasis mine] Brookfield to invest 20 billion euros in AI projects in France and financing from the United Arab Emirates which could hit 50 billion euros in the years ahead, Macron’s office said.
…
Big projects, non? It’s no surprise critical minerals will be necessary but the need for massive amounts of water may be. My October 16, 2023 posting focuses on water and AI development, specifically ChatGPT-4,
A September 9, 2023 news item (an Associated Press article by Matt O’Brien and Hannah Fingerhut) on phys.org and also published September 12, 2023 on the Iowa Public Radio website, describe an unexpected cost for building ChatGPT and other AI agents, Note: Links [in the excerpt] have been removed,
The cost of building an artificial intelligence product like ChatGPT can be hard to measure.
But one thing Microsoft-backed OpenAI needed for its technology was plenty of water [emphases mine], pulled from the watershed of the Raccoon and Des Moines rivers in central Iowa to cool a powerful supercomputer as it helped teach its AI systems how to mimic human writing.
As they race to capitalize on a craze for generative AI, leading tech developers including Microsoft, OpenAI and Google have acknowledged that growing demand for their AI tools carries hefty costs, from expensive semiconductors to an increase in water consumption.
But they’re often secretive about the specifics. Few people in Iowa knew about its status as a birthplace of OpenAI’s most advanced large language model, GPT-4, before a top Microsoft executive said in a speech it “was literally made next to cornfields west of Des Moines.”
…
In its latest environmental report, Microsoft disclosed that its global water consumption spiked 34% from 2021 to 2022 (to nearly 1.7 billion gallons , or more than 2,500 Olympic-sized swimming pools), a sharp increase compared to previous years that outside researchers tie to its AI research. [emphases mine]
…
As for how much water was diverted in Iowa for a data centre project, from my October 16, 2023 posting
…
Jason Clayworth’s September 18, 2023 article for AXIOS describes the issue from the Iowan perspective, Note: Links [from the excerpt] have been removed,
Future data center projects in West Des Moines will only be considered if Microsoft can implement technology that can “significantly reduce peak water usage,” the Associated Press reports.
Why it matters: Microsoft’s five WDM data centers — the “epicenter for advancing AI” — represent more than $5 billion in investments in the last 15 years.
Yes, but: They consumed as much as 11.5 million gallons of water a month for cooling, or about 6% of WDM’s total usage during peak summer usage during the last two years, according to information from West Des Moines Water Works.
…
The bottom line is that these technologies consume a lot of water and require critical minerals.
Greenland
Evan Dyer’s January 16, 2025 article for CBC news online describes both US military strategic interests and hunger for resources, Note 1: Article links have been removed; Note 2: I have added one link to a Wikipedia entry,
The person who first put a bug in Donald Trump’s ear about Greenland — if a 2022 biography is to be believed — was his friend Ronald Lauder, a New York billionaire and heir to the Estée Lauder cosmetics fortune.
But it would be wrong to believe that U.S. interest in Greenland originated with idle chatter at the country club, rather than real strategic considerations.
Trump’s talk of using force to annex Greenland — which would be an unprovoked act of war against a NATO ally — has been rebuked by Greenlandic, Danish and European leaders. A Fox News team that travelled to Greenland’s capital Nuuk reported back to the Trump-friendly show Fox & Friends that “most of the people we spoke with did not support Trump’s comments and found them offensive.”
…
Certainly, military considerations motivated the last U.S. attempt at buying Greenland in 1946.
…
The military value to the U.S. of acquiring Greenland is much less clear in 2025 than it was in 1946.
Russian nuclear submarines no longer need to traverse the GIUK [the GIUK gap; “{sometimes written G-I-UK} is an area in the northern Atlantic Ocean that forms a naval choke point. Its name is an acronym for Greenland, Iceland, and the United Kingdom, the gap being the two stretches of open ocean among these three landmasses.”]. They can launch their missiles from closer to home.
And in any case, the U.S. already has a military presence on Greenland, used for early warning, satellite tracking and marine surveillance. The Pentagon simply ignored Denmark’s 1957 ban on nuclear weapons on Greenlandic territory. Indeed, an American B-52 bomber carrying four hydrogen bombs crashed in Greenland in 1968.
“The U.S. already has almost unhindered access [emphasis mine], and just building on their relationship with Greenland is going to do far more good than talk of acquisition,” said Dwayne Menezes, director of the Polar Research and Policy Initiative in London.
The complication, he says, is Greenland’s own independence movement. All existing defence agreements involving the U.S. presence in Greenland are between Washington and the Kingdom of Denmark. [emphasis mine]
“They can’t control what’s happening between Denmark and Greenland,” Menezes said. “Over the long term, the only way to mitigate that risk altogether is by acquiring Greenland.”
Menezes also doesn’t believe U.S. interest in Greenland is purely military.
And Trump’s incoming national security adviser Michael Waltz [emphasis mine] appeared to confirm as much when asked by Fox News why the administration wanted Greenland.
“This is about critical minerals, this is about natural resources [emphasis mine]. This is about, as the ice caps pull back, the Chinese are now cranking out icebreakers and are pushing up there.”
…
While the United States has an abundance of natural resources, it risks coming up short in two vital areas: rare-earth minerals and freshwater.
Greenland’s apparent barrenness belies its richness in those two key 21st-century resources.
The U.S. rise to superpower was driven partly by the good fortune of having abundant reserves of oil, which fuelled its industrial growth. The country is still a net exporter of petroleum.
China, Washington’s chief strategic rival, had no such luck. It has to import more than two-thirds of its oil, and is now importing more than six times as much as it did in 2000.
But the future may not favour the U.S. as much as the past.
…
I stand corrected, where oil is concerned. From Dyer’s January 16, 2025 article, Note: Links have been removed,
…
It’s China, and not the U.S., that nature blessed with rich deposits of rare-earth elements, a collection of 17 metals such as yttrium and scandium that are increasingly necessary for high-tech applications from cellphones and flat-screen TVs to electric cars.
The rare-earth element neodymium is an essential part of many computer hard drives and defence systems including electronic displays, guidance systems, lasers, radar and sonar.
Three decades ago, the U.S. produced a third of the world’s rare-earth elements, and China about 40 per cent. By 2011, China had 97 per cent of world production, and its government was increasingly limiting and controlling exports.
The U.S. has responded by opening new mines and spurring recovery and recycling to reduce dependence on China.
…
Such efforts have allowed the U.S. to claw back about 20 per cent of the world’s annual production of rare-earth elements. But that doesn’t change the fact that China has about 44 million tonnes of reserves, compared to fewer than two million in the U.S.
“There’s a huge dependency on China,” said Menezes. “It offers China the economic leverage, in the midst of a trade war in particular, to restrict supply to the West, thus crippling industries like defence, the green transition. This is where Greenland comes in.”
Greenland’s known reserves are almost equivalent to those of the entire U.S., and much more may lie beneath its icebound landscape.
“Greenland is believed to be able to meet at least 25 per cent of global rare-earth demand well into the future,” he said.
An abundance of freshwater
The melting ice caps referenced by Trump’s nominee for national security adviser are another Greenlandic resource the world is increasingly interested in.
Seventy per cent of the world’s freshwater is locked up in the Antarctic ice cap. Of the remainder, two-thirds is in Greenland, in a massive ice cap that is turning to liquid at nearly twice the volume of melting in Antarctica.
“We know this because you can weigh the ice sheet from satellites,” said Christian Schoof, a professor of Earth, ocean and atmospheric sciences at the University of British Columbia who spent part of last year in Greenland studying ice cap melting.
“The ice sheet is heavy enough that it affects the orbit of satellites going over it. And you can record the change in that acceleration of satellites due to the ice sheet over time, and directly weigh the ice sheet.”
…
“There is a growing demand for freshwater on the world market, and the use of the vast water potential in Greenland may contribute to meeting this demand,” the Greenland government announces on its website.
The Geological Survey of Denmark and Greenland found 10 locations that were suitable for the commercial exploitation of Greenland’s ice and water, and has already issued a number of licenses.
…
Schoof told CBC News that past projects that attempted to tow Greenlandic ice to irrigate farms in the Middle East “haven’t really taken off … but humans are resourceful and inventive, and we face some really significant issues in the future.”
For the U.S., those issues include the 22-year-long “megadrought” which has left the western U.S. [emphases mine] drier than at any time in the past 1,200 years, and which is already threatening the future of some American cities.
…
As important as they are, there’s more than critical minerals and water, according to Dyer’s January 16, 2025 article
…
Even the “rock flour” that lies under the ice cap could have great commercial and strategic importance.
Ground into nanoparticles by the crushing weight of the ice, research has revealed it to have almost miraculous properties, says Menezes.
“Scientists have found that Greenlandic glacial flour has a particular nutrient composition that enables it to be regenerative of soil conditions elsewhere,” he told CBC News. “It improves agricultural yields. It has direct implications for food security.”
Spreading Greenland rock flour on corn fields in Ghana produced a 30 to 50 per cent increase in crop yields. Similar yield gains occurred when it was spread on Danish fields that produce the barley for Carlsberg beer.
…
Canada
It’s getting a little tiring keeping up with Mr. Trump’s tariff tear (using ‘tear’ as a verbal noun; from the Cambridge dictionary, verb: TEAR definition: 1. to pull or be pulled apart, or to pull pieces off: 2. to move very quickly …).
The bottom line is that Mr. Trump wants something and certainly Canadian critical minerals and water constitute either his entire interest or, at least, his main interest for now, with more to be determined later.
Niall McGee’s February 9, 2025 article for the Globe and Mail provides an overview of the US’s dependence on Canada’s critical minerals,
…
The US relies on Canada for a huge swath of its critical mineral imports, including 40 per cent of its primary nickel for its defence industry, 30 per cent of its uranium, which is used in its nuclear-power fleet, and 79 per cent of its potash for growing crops.
The US produces only small amounts of all three, while Canada is the world’s biggest potash producer, the second biggest in uranium, and number six in nickel.
If the US wants to buy fewer critical minerals from Canada, in many cases it would be forced to source them from hostile countries such as Russia and China.
…
Vancouver-based Teck Resources Ltd. is one of the few North American suppliers of germanium. The critical mineral is used in fibre-optic networks, infrared vision systems, solar panels. The US relies on Canada for 23 per cent of its imports of germanium.
China in December [2024] banned exports of the critical mineral to the US citing national security concerns. The ban raised fears of possible shortages for the US.
“It’s obvious we have a lot of what Trump wants to support America’s ambitions, from both an economic and a geopolitical standpoint,” says Martin Turenne, CEO of Vancouver-based FPX Nickel Corp., which is developing a massive nickel project in British Columbia. [p. B5 paper version]
…
Akshay Kulkarni’s January 15, 2025 article for CBC news online provides more details about British Columbia and its critical minerals, Note: Links have been removed,
…
The premier had suggested Tuesday [January 14, 2025] that retaliatory tariffs and export bans could be part of the response, and cited a smelter operation located in Trail, B.C. [emphasis mine; keep reading], which exports minerals that Eby [Premier of British Columbia, David Eby] said are critical for the U.S.
…
The U.S. and Canada both maintain lists of critical minerals — ranging from aluminum and tin to more obscure elements like ytterbium and hafnium — that both countries say are important for defence, energy production and other key areas.
Michael Goehring, the president of the Mining Association of B.C., said B.C. has access to or produces 16 of the 50 minerals considered critical by the U.S.
Individual atoms of silicon and germanium are seen following an Atomic Probe Tomography (APT) measurement at Polytechnique Montreal. Both minerals are manufactured in B.C. (Christinne Muschi/The Canadian Press)
“We have 17 critical mineral projects on the horizon right now, along with a number of precious metal projects,” he told CBC News on Tuesday [January 14, 2025].
“The 17 critical mineral projects alone represent some $32 billion in potential investment for British Columbia,” he added.
John Steen, director of the Bradshaw Research Institute for Minerals and Mining at the University of B.C., pointed to germanium — which is manufactured at Teck’s facility in Trail [emphasis mine] — as one of the materials most important to U.S industry.
…
There are a number of mines and manufacturing facilities across B.C. and Canada for critical minerals.
The B.C. government says the province is Canada’s largest producer of copper, and only producer of molybdenum, which are both considered critical minerals.
…
There’s also graphite, not in BC but in Québec. This April 8, 2023 article by Christian Paas-Lang for CBC news online focuses largely on issues of how to access and exploit graphite and also, importantly, indigenous concerns, but this excerpt focuses on graphite as a critical mineral,
A mining project might not be what comes to mind when you think of the transition to a lower emissions economy. But embedded in electric vehicles, solar panels and hydrogen fuel storage are metals and minerals that come from mines like the one in Lac-des-Îles, Que.
The graphite mine, owned by the company Northern Graphite, is just one of many projects aimed at extracting what are now officially dubbed “critical minerals” — substances of significant strategic and economic importance to the future of national economies.
Lac-des-Îles is the only significant graphite mining project in North America, accounting for Canada’s contribution to an industry dominated by China.
…
There was another proposed graphite mine in Québec, which encountered significant push back from the local Indigenous community as noted in my November 26, 2024 posting, “Local resistance to Lomiko Metals’ Outaouais graphite mine.” The posting also provides a very brief update of graphite mining in Canada.
It seems to me that water does not get the attention that it should and that’s why I lead with water in my headline. Eric Reguly’s February 9, 2025 article in the Globe and Mail highlights some of the water issues facing the US, not just Iowa,
…
Water may be the real reason, or one of the top reasons, propelling his [Mr. Trump’s] desire to turn Canada into Minnesota North. Canadians represent 0.5 per cent of the globe’s population yet sit on 20% or more of its fresh water. Vast tracts of the United States routinely suffer from water shortages, which are drying up rivers – the once mighty Colorado River no longer reaches the Pacific Ocean – shrinking aquifers beneath farmland and preventing water-intensive industries from building factories. Warming average temperatures will intensify the shortages. [p. B2 in paper version]
…
Reguly is more interested in the impact water shortages have on industry. He also offers a brief history of US interest in acquiring Canadian water resources dating back to the first North America Free Trade Agreement (NAFTA) that came into effect on January 1, 1994.
A March 6, 2024 article by Elia Nilsen for CNN television news online details Colorado river geography and gives you a sense of just how serious the situation is, Note: Links have been removed,
Seven Western states are starting to plot a future for how much water they’ll draw from the dwindling Colorado River in a warmer, drier world.
The river is the lifeblood for the West – providing drinking water for tens of millions, irrigating crops, and powering homes and industry with hydroelectric dams.
…
This has bought states more time to figure out how to divvy up the river after 2026, when the current operating guidelines expire.
To that end, the four upper basin river states of Colorado, Utah, New Mexico and Wyoming submitted their proposal for how future cuts should be divvied up among the seven states to the federal government on Tuesday [March 5, 2024], and the three lower basin states of California, Arizona and Nevada submitted their plan on Wednesday [March 6, 2024].
One thing is clear from the competing plans: The two groups of states do not agree so far on who should bear the brunt of future cuts if water levels drop in the Colorado River basin.
…
As of a December 12, 2024 article by Shannon Mullane for watereducationcolorado.org, the states are still wrangling and they are not the only interested parties, Note: A link has been removed,
… officials from seven states are debating the terms of a new agreement for how to store, release and deliver Colorado River water for years to come, and they have until 2026 to finalize a plan. This month, the tone of the state negotiations soured as some state negotiators threw barbs and others called for an end to the political rhetoric and saber-rattling.
…
The state negotiators are not the only players at the table: Tribal leaders, federal officials, environmental organizations, agricultural groups, cities, industrial interests and others are weighing in on the process.
…
Water use from the Colorado river has international implications as this February 5, 2025 essay (Water is the other US-Mexico border crisis, and the supply crunch is getting worse) by Gabriel Eckstein, professor of law at Texas A&M University and Rosario Sanchez, senior research scientist at Texas Water Resources Institute and at Texas A&M University for The Conversation makes clear, Note: Links have been removed,
…
The Colorado River provides water to more than 44 million people, including seven U.S. and two Mexican states, 29 Indian tribes and 5.5 million acres of farmland. Only about 10% of its total flow reaches Mexico. The river once emptied into the Gulf of California, but now so much water is withdrawn along its course that since the 1960s it typically peters out in the desert.
…
At least 28 aquifers – underground rock formations that contain water – also traverse the border. With a few exceptions, very little information on these shared resources exists. One thing that is known is that many of them are severely overtapped and contaminated.
Nonetheless, reliance on aquifers is growing as surface water supplies dwindle. Some 80% of groundwater used in the border region goes to agriculture. The rest is used by farmers and industries, such as automotive and appliance manufacturers.
Over 10 million people in 30 cities and communities throughout the border region rely on groundwater for domestic use. Many communities, including Ciudad Juarez; the sister cities of Nogales in both Arizona and Sonora; and the sister cities of Columbus in New Mexico and Puerto Palomas in Chihuahua, get all or most of their fresh water from these aquifers.
…
A booming region
About 30 million people live within 100 miles (160 kilometers) of the border on both sides. Over the next 30 years, that figure is expected to double.
Municipal and industrial water use throughout the region is also expected to increase. In Texas’ lower Rio Grande Valley, municipal use alone could more than double by 2040.
At the same time, as climate change continues to worsen, scientists project that snowmelt will decrease and evaporation rates will increase. The Colorado River’s baseflow – the portion of its volume that comes from groundwater, rather than from rain and snow – may decline by nearly 30% in the next 30 years.
Precipitation patterns across the region are projected to be uncertain and erratic for the foreseeable future. This trend will fuel more extreme weather events, such as droughts and floods, which could cause widespread harm to crops, industrial activity, human health and the environment.
Further stress comes from growth and development. Both the Colorado River and Rio Grande are tainted by pollutants from agricultural, municipal and industrial sources. Cities on both sides of the border, especially on the Mexican side, have a long history of dumping untreated sewage into the Rio Grande. Of the 55 water treatment plants located along the border, 80% reported ongoing maintenance, capacity and operating problems as of 2019.
Drought across the border region is already stoking domestic and bilateral tensions. Competing water users are struggling to meet their needs, and the U.S. and Mexico are straining to comply with treaty obligations for sharing water [emphasis mine].
…
Getting back to Canada and water, Reguly’s February 9, 2025 article notes Mr. Trump’s attitude towards our water,
…
Mr. Trump’s transaction-oriented brain know that water availability translates into job availability. If Canada were forced to export water by bulk to the United States, Canada would in effect be exporting jobs and America absorbing them. In the fall [2024] when he was campaigning, he called British Columbia “essentially a very large faucet” [emphasis mine] that could be used to overcome California’s permanent water deficit.
…
In Canada’s favour, Canadians have been united in their opposition to bulk water exports. That sentiment is codified in the Transboundary Waters Protection Act, which bans large scale removal from waterways shared with the United States. … [p. B2 in paper version]
…
It’s reassuring to read that we have some rules regarding water removal but British Columbia also has a water treaty with the US, the Columbia River Treaty, and an update to it lingers in limbo as Kirk Lapointe notes in his February 6, 2025 article for vancouverisawesome.com. Lapointe mentions shortcomings on both sides of the negotiating table for the delay in ratifying the update while expressing concern over Mr. Trump’s possible machinations should this matter cross his radar.
What about Ukraine’s critical mineral?
A February 13, 2025 article by Geoff Nixon for CBC news online provides some of the latest news on the situation between the US and the Ukraine, Note: Links have been removed,
Ukraine has clearly grabbed the attention of U.S. President Donald Trump with its apparent willingness to share access to rare-earth resources with Washington, in exchange for its continued support and security guarantees.
Trump wants what he calls “equalization” for support the U.S. has provided to Ukraine in the wake of Russia’s full-scale invasion. And he wants this payment in the form of Ukraine’s rare earth minerals, metals “and other things,” as the U.S. leader put it last week.
U.S. Treasury Secretary Scott Bessent has travelled to Ukraine to discuss the proposition, which was first raised with Trump last fall [2024], telling reporters Wednesday [February 12, 2025] that he hoped a deal could be reached within days.
Bessent says such a deal could provide a “security shield” in post-war Ukraine. Ukrainian President Volodymyr Zelenskyy, meanwhile, said in his daily address that it would both strengthen Ukraine’s security and “give new momentum to our economic relations.”
But just how much trust can Kyiv put in a Trump-led White House to provide support to Ukraine, now and in the future? Ukraine may not be in a position to back away from the offer, with Trump’s interest piqued and U.S. support remaining critical for Kyiv after nearly three years of all-out war with Russia.
“I think the problem for Ukraine is that it doesn’t really have much choice,” said Oxana Shevel, an associate professor of political science at Boston’s Tufts University.
…
Then there’s the issue of the Ukrainian minerals, which have to remain in Kyiv’s hands in order for the U.S. to access them — a point Zelenskyy and other Ukraine officials have underlined.
There are more than a dozen elements considered to be rare earths, and Ukraine’s Institute of Geology says those that can be found in Ukraine include lanthanum, cerium, neodymium, erbium and yttrium. EU-funded research also indicates that Ukraine has scandium reserves. But the details of the data are classified.
Rare earths are used in manufacturing magnets that turn power into motion for electric vehicles, in cellphones and other electronics, as well as for scientific and industrial applications.
…
Trump has said he wants the equivalent of $500 billion US in rare earth minerals.
Yuriy Gorodnichenko, a professor of economics at the University of California, Berkeley, says any effort to develop and extract these resources won’t happen overnight and it’s unclear how plentiful they are.
“The fact is, nobody knows how much you have for sure there and what is the value of that,” he said in an interview.
“It will take years to do geological studies,” he said. “Years to build extraction facilities.”
…
Just how desperate is the US?
Yes, the United States has oil but it doesn’t have much in the way of materials it needs for the new technologies and it’s running out of something very basic: water.
I don’t know how desperate the US is but Mr. Trump’s flailings suggest that the answer is very, very desperate.
These don’t look like any clams I’ve ever seen but that is the point of Cynthia Barnett’s absorbing Sept. 10, 2018 article for The Atlantic (Note: A link has been removed),
Snorkeling amid the tree-tangled rock islands of Ngermid Bay in the western Pacific nation of Palau, Alison Sweeney lingers at a plunging coral ledge, photographing every giant clam she sees along a 50-meter transect. In Palau, as in few other places in the world, this means she is going to be underwater for a skin-wrinkling long time.
At least the clams are making it easy for Sweeney, a biophysicist at the University of Pennsylvania. The animals plump from their shells like painted lips, shimmering in blues, purples, greens, golds, and even electric browns. The largest are a foot across and radiate from the sea floor, but most are the smallest of the giant clams, five-inch Tridacna crocea, living higher up on the reef. Their fleshy Technicolor smiles beam in all directions from the corals and rocks of Ngermid Bay.
…
… Some of the corals are bleached from the conditions in Ngermid Bay, where naturally high temperatures and acidity mirror the expected effects of climate change on the global oceans. (Ngermid Bay is more commonly known as “Nikko Bay,” but traditional leaders and government officials are working to revive the indigenous name of Ngermid.)
Even those clams living on bleached corals are pulsing color, like wildflowers in a white-hot desert. Sweeney’s ponytail flows out behind her as she nears them with her camera. They startle back into their fluted shells. Like bashful fairytale creatures cursed with irresistible beauty, they cannot help but draw attention with their sparkly glow.
Barnett makes them seem magical and perhaps they are (Note: A link has been removed),
It’s the glow that drew Sweeney’s attention to giant clams, and to Palau, a tiny republic of more than 300 islands between the Philippines and Guam. Its sun-laden waters are home to seven of the world’s dozen giant-clam species, from the storied Tridacna gigas—which can weigh an estimated 550 pounds and measure over four feet across—to the elegantly fluted Tridacna squamosa. Sweeney first came to the archipelago in 2009, while working on animal iridescence as a post-doctoral fellow at the University of California at Santa Barbara. Whether shimmering from a blue morpho butterfly’s wings or a squid’s skin, iridescence is almost always associated with a visual signal—one used to attract mates or confuse predators. Giant clams’ luminosity is not such a signal. So, what is it?
In the years since, Sweeney and her colleagues have discovered that the clams’ iridescence is essentially the outer glow of a solar transformer—optimized over millions of years to run on sunlight and algal biofuel. Giant clams reach their cartoonish proportions thanks to an exceptional ability to grow their own photosynthetic algae in vertical farms spread throughout their flesh. Sweeney and other scientists think this evolved expertise may shed light on alternative fuel technologies and other industrial solutions for a warming world.
Barnett goes on to describe Palau’s relationship to the clams and the clams’ environment,
Palau’s islands have been inhabited for at least 3,400 years, and from the start, giant clams were a staple of diet, daily life, and even deity. Many of the islands’ oldest-surviving tools are crafted of thick giant-clam shell: arched-blade adzes, fishhooks, gougers, heavy taro-root pounders. Giant-clam shell makes up more than three-fourths of some of the oldest shell middens in Palau, a percentage that decreases through the centuries. Archaeologists suggest that the earliest islanders depleted the giant clams that crowded the crystalline shallows, then may have self-corrected. Ancient Palauan conservation law, known as bul, prohibited fishing during critical spawning periods, or when a species showed signs of over-harvesting.
Before the Christianity that now dominates Palauan religion sailed in on eighteenth-century mission ships, the culture’s creation lore began with a giant clam called to life in an empty sea. The clam grew bigger and bigger until it sired Latmikaik, the mother of human children, who birthed them with the help of storms and ocean currents.
The legend evokes giant clams in their larval phase, moving with the currents for their first two weeks of life. Before they can settle, the swimming larvae must find and ingest one or two photosynthetic alga, which later multiply, becoming self-replicating fuel cells. After the larvae down the alga and develop a wee shell and a foot, they kick around like undersea farmers, looking for a sunny spot for their crop. When they’ve chosen a well-lit home in a shallow lagoon or reef, they affix to the rock, their shell gaping to the sky. After the sun hits and photosynthesis begins, the microalgae will multiply to millions, or in the case of T. gigas, billions, and clam and algae will live in symbiosis for life.
…
Giant clam is a beloved staple in Palau and many other Pacific islands, prepared raw with lemon, simmered into coconut soup, baked into a savory pancake, or sliced and sautéed in a dozen other ways. But luxury demand for their ivory-like shells and their adductor muscle, which is coveted as high-end sashimi and an alleged aphrodisiac, has driven T. gigas extinct in China, Taiwan, and other parts of their native habitat. Some of the toughest marine-protection laws in the world, along with giant-clam aquaculture pioneered here, have helped Palau’s wild clams survive. The Palau Mariculture Demonstration Center raises hundreds of thousands of giant clams a year, supplying local clam farmers who sell to restaurants and the aquarium trade and keeping pressure off the wild population. But as other nations have wiped out their clams, Palau’s 230,000-square-mile ocean territory is an increasing target of illegal foreign fishers.
Barnett delves into how the country of Palau is responding to the voracious appetite for the giant clams and other marine life,
Palau, drawing on its ancient conservation tradition of bul, is fighting back. In 2015, President Tommy Remengesau Jr. signed into law the Palau National Marine Sanctuary Act, which prohibits fishing in 80 percent of Palau’s Exclusive Economic Zone and creates a domestic fishing area in the remaining 20 percent, set aside for local fishers selling to local markets. In 2016, the nation received a $6.6 million grant from Japan to launch a major renovation of the Palau Mariculture Demonstration Center. Now under construction at the waterfront on the southern tip of Malakal Island, the new facility will amp up clam-aquaculture research and increase giant-clam production five-fold, to more than a million seedlings a year.
Last year, Palau amended its immigration policy to require that all visitors sign a pledge to behave in an ecologically responsible manner. The pledge, stamped into passports by an immigration officer who watches you sign, is written to the island’s children:
Children of Palau, I take this pledge, as your guest, to preserve and protect your beautiful and unique island home. I vow to tread lightly, act kindly and explore mindfully. I shall not take what is not given. I shall not harm what does not harm me. The only footprints I shall leave are those that will wash away.
The pledge is winning hearts and public-relations awards. But Palau’s existential challenge is still the collective “we,” the world’s rising carbon emissions and the resulting upturns in global temperatures, sea levels, and destructive storms.
F. Umiich Sengebau, Palau’s Minister for Natural Resources, Environment, and Tourism, grew up on Koror and is full of giant-clam proverbs, wisdom and legends from his youth. He tells me a story I also heard from an elder in the state of Airai: that in old times, giant clams were known as “stormy-weather food,” the fresh staple that was easy to collect and have on hand when it was too stormy to go out fishing.
As Palau faces the storms of climate change, Sengebau sees giant clams becoming another sort of stormy-weather food, serving as a secure source of protein; a fishing livelihood; a glowing icon for tourists; and now, an inspiration for alternative energy and other low-carbon technologies. “In the old days, clams saved us,” Sengebau tells me. “I think there’s a lot of power in that, a great power and meaning in the history of clams as food, and now clams as science.”
The Atlantic is expanding the global footprint of its science writing today with a multi-year series to investigate life in all of its multitudes. The series, “Life Up Close,” created with support from Howard Hughes Medical Institute’s Department of Science Education (HHMI), begins today at TheAtlantic.com. In the first piece for the project, “The Zombie Diseases of Climate Change,” The Atlantic’s Robinson Meyer travels to Greenland to report on the potentially dangerous microbes emerging from thawing Arctic permafrost.
The project is ambitious in both scope and geographic reach, and will explore how life is adapting to our changing planet. Journalists will travel the globe to examine these changes as they happen to microbes, plants, and animals in oceans, grasslands, forests, deserts, and the icy poles. The Atlantic will question where humans should look for life next: from the Martian subsurface, to Europa’s oceans, to the atmosphere of nearby stars and beyond. “Life Up Close” will feature at least twenty reported pieces continuing through 2018.
“The Atlantic has been around for 160 years, but that’s a mere pinpoint in history when it comes to questions of life and where it started, and where we’re going,” said Ross Andersen, The Atlantic’s senior editor who oversees science, tech, and health. “The questions that this project will set out to tackle are critical; and this support will allow us to cover new territory in new and more ambitious ways.”
…
About The Atlantic:
Founded in 1857 and today one of the fastest growing media platforms in the industry, The Atlantic has throughout its history championed the power of big ideas and continues to shape global debate across print, digital, events, and video platforms. With its award-winning digital presence TheAtlantic.com and CityLab.com on cities around the world, The Atlantic is a multimedia forum on the most critical issues of our times—from politics, business, urban affairs, and the economy, to technology, arts, and culture. The Atlantic is celebrating its 160th anniversary this year. Bob Cohn is president of The Atlantic and Jeffrey Goldberg is editor in chief.
About the Howard Hughes Medical Institute (HHMI) Department of Science Education:
HHMI is the leading private nonprofit supporter of scientific research and science education in the United States. The Department of Science Education’s BioInteractive division produces free, high quality educational media for science educators and millions of students around the globe, its HHMI Tangled Bank Studios unit crafts powerful stories of scientific discovery for television and big screens, and its grants program aims to transform science education in universities and colleges. For more information, visit www.hhmi.org.
Getting back to the giant clams, sometimes all you can do is marvel, eh?
Vancouver (Canada) Café Scientifique’s next talk is at Yagger’s Downtown (433 W. Pender). From the November 19, 2016 notice received via email,
Our next café will happen on Tuesday November 29th, 7:30pm in the back room at Yagger’s Downtown (433 W Pender). Our speaker for the evening will be Dr. Michèle Koppes, from the Department of Geography at UBC. The title of her talk is:
Can climate change move mountains?
Climate change is causing more than warmer oceans and erratic weather. It can also change the shape of the planet. Glaciers are a fundamental link between climate and the tectonic and surface processes that create topography. Mountain ranges worldwide have undergone large-scale modification due the erosive action of ice, yet the mechanisms that control the timing of this modification and the rate by which ice erodes remain poorly understood. We find a wide range of erosion rates from individual ice masses over varying timescales, suggesting that modern erosion rates exceed long-term averages by two to three orders of magnitude. We also see that glaciers in Patagonia erode 1000 times faster than they do in Antarctica today. These modern rates are likely due to the dynamic acceleration of these ice masses as air and ocean temperatures warmed and they retreated over the past few decades. The repercussions of this erosion add to the already complex effects of climate change in polar and high mountain regions. Shrinking and accelerating glaciers destabilize slopes upstream, increasing the risk of landslides, and deposit more sediment in downstream basins, potentially impacting fisheries, dams and access to clean freshwater in mountain communities. And the dramatic increase in modern erosion rates suggest that glaciers in the Canadian Arctic, one of the most rapidly warming regions in the world, are on the brink of a major shift that will see them speeding up and eroding faster as temperatures warm above 0ºC.
Michele Koppes is an Assistant Professor in Geography at UBC, a Canada Research Chair Tier II in Landscapes of Climate Change, a faculty affiliate at IRES and a Senior TED Fellow. Her passion is forensic geomorphology: the art of reading landscapes to decipher the forces that shaped them. Her particular expertise is in glaciers, and their impact in shaping mountains and polar regions at a variety of time scales, from last year to the last million years. Her research focus is two-fold: to determine the efficacy of glaciers as agents of erosion, and to determine the climatic and oceanic drivers of glaciations in high mountains and coastal settings. She has current field projects in high places all over the world, from BC to Patagonia, Alaska, the Himalayas, Greenland and Antarctica, where her team combines detailed field observations with numerical modeling of ice-ocean dynamics and glacier mass balance.
I got an exciting announcement today about a new science portal. From the Nov. 16, 2011 announcement,
ScienceNordic is a news service with science news in English covering the Nordic countries. Two Nordic science media, one Danish and one Norwegian, have joined forces to launch ScienceNordic.
The Norwegian Minister of Research and Higher Education Tora Aasland, who opened ScienceNordic.com, says she expects the new portal to make Nordic research more visible on the global arena.
The international science press is dominated by news from Anglo-American research institutions and periodicals –because they are published in English. [emphasis mine] But the scientific results created in the Nordic countries are just as strong and newsworthy, and ScienceNordic will report on them.
“This leaves a huge gap in the market for science news from the region, communicated to a broader audience in English. We intend to fill this gap,” says Vibeke Hjortlund, editor-in-chief at Videnskab.dk.
“We will, naturally, focus our efforts on areas where Nordic researchers have their particular strengths. This includes areas such as green technology, climate and the environment, oil and offshore technology, biotechnology, gender equality and the welfare state and its economy, says Nina Kristiansen, editor-in-chief at Forskning.no.
ScienceNordic will target the academic environment, the business community, international organisations and decision-makers with interests in scientific development, science journalists and members of the general public with a strong interest in science.
ScienceNordic will cover Denmark, Norway, Sweden, Finland and Iceland – with an eye on Greenland, the Faroe Islands and Åland which are also part of the Nordic region.
Nordforsk, The Ministry of Education and Research in Norway and The Ministry of Science, Innovation and Higher Education in Denmark has provided funds to establish ScienceNordic.
I quite agree about research published in English dominating science discussion. I often long for the ability to read more languages so I can better understand what is happening internationally; this new portal is very welcome news.
Here’s a sampling of what you can hope to find at ScienceNordic,
When a glacier calves into the ocean scientists see the same patterns that are found in brain impulses
Norwegians are still in a state of shock. How will the terrorist attacks on July 22 change the country?
Male circumcision leads to a bad sex life, according to new study.
Your smartphone can scan your brain, if you install the new Danish app.
How did a French, 13th century gold ring end up in inside a stone wall on a small Norwegian island?
Strictly speaking this is not nano but it is interesting and artistic too. A Dutch artist is planning to create a sculpture that will make ice in the desert. From the Nov. 7, 2011 news item on physorg.com,
“You have to open the borders of your thinking,” he [Ap Verheggen] said, in his apartment surrounded by his works. “To make ice in the desert is breaking down the border, and that is opening a new world.”
Verheggen’s giant sculpture is so far only a sketch and a series of charts in a laboratory in Zoetermeer, near his home in The Hague. Cofely, a refrigeration company that makes ice rinks and custom-designed cooling units for food storage, is testing the principles of creating ice in desert conditions.
…
Scientist Andras Szollosi-Nagi says Verheggen’s work falls at the crossroads of art, environment and science. “It’s an amazing piece, it’s very unusual and that makes it very exciting.”
In Zoetermeer, engineers have produced a 10-centimeter (4-inch)-thick layer of ice on a slab of aluminum inside a shipping container-sized box that simulates desert conditions, with the temperature set at 30 Celsius (86 Fahrenheit) and plans to crank it up to 50C (122F). A humidifier provides the moisture, and a fan is directed at the ice like a desert breeze, resulting in a pool of water dripping off the surface of the ice sheet even as it thickens.
The company is using off-the-shelf technology. “Everybody thinks it’s dry in the desert, but it’s roughly the same amount of moisture in the air as here,” said project manager Erik Hoogendoorn.
Verheggen has created other art/science sculptures with environmental themes. You can read more about them on his blog and about this project SunGlacier on its own blog. I found this video about an earlier project, cool(E)motion, on Verheggen’s personal blog.
According to the SunGlacier blog (Project Outline page), there is a link between the two projects,
The SunGlacier art project hopes to stimulate people to think creatively about solutions to the challenges of climate change. These changes are not necessarily all negative or better still, if we can find a way to turn some of them to our advantage then nothing should stop us to do so. To carry this fresh and positive way of thinking forward, I have kicked off the SunGlacier project as a new and unique sequel to the successful cool(E)motion endeavour.