Tag Archives: groundwater remediation

Abakan makes good on Alberta (Canada) promise (coating for better pipeline transport of oil)

It took three years but it seems that US company Abakan Inc.’s announcement of a joint research development centre at the Northern Alberta Institute of Technology (NAIT), (mentioned here in a May 7, 2012 post [US company, Abakan, wants to get in on the Canadian oils sands market]), has borne fruit. A June 8, 2015 news item on Azonano describes the latest developments,

Abakan Inc., an emerging leader in the advanced coatings and metal formulations markets, today announced that it has begun operations at its joint-development facility in Edmonton, Alberta.

Abakan’s subsidiary, MesoCoat Inc., along with the lead project partner, Northern Alberta Institute of Technology (NAIT) will embark on an 18-month collaborative effort to establish a prototype demonstration facility for developing, testing and commercializing wear-resistant clad pipe and components. Western Economic Diversification Canada is also supporting this initiative through a $1.5 million investment toward NAIT. Improvements in wear resistance are expected to make a significant impact in reducing maintenance and downtime costs while increasing productivity in oil sands and other mining applications.

A June 4, 2015 Abakan news release, which originated the news item, provides more detail about the proposed facility, the difficulties encountered during the setup, and some interesting information about pipes,

Abakan shipped its CermaClad high-speed large-area cladding system for installation at the Northern Alberta Institute of Technology’s (NAIT) campus in Edmonton, Alberta in early 2015. Despite delays associated with the installation of some interrelated equipment and machinery, the CermaClad system and other ancillary equipment are now installed at the Edmonton facility. The Edmonton facility is intended to serve as a pilot-scale wear-resistant clad pipe manufacturing facility for the development and qualification of wear-resistant clad pipes, and as a stepping stone for setting-up a full-scale wear-resistant clad pipe manufacturing facility in Alberta. The new facility will also serve as a platform for Abakan’s introduction to the Alberta oil sands market, which, with proven reserves estimated at more than 169 billion barrels, is one of the largest oil resources in the world and a major source of oil for Canada, the United States and Asia. Since Alberta oil sands production is expected to increase significantly over the next decade, producers want to extend the life of the carbon steel pipes used for the hydro-transportation of tailings with harder, tougher coatings that protect pipes from the abrasiveness of tar-like bituminous oil sands.

“Our aim is to fast-track market entry of our wear-resistant clad pipe products for the transportation of oil sands and mining slurries. We have received commitments from oil sands producers in Canada and mining companies in Mexico and Brazil to field-test CermaClad wear-resistant clad pipe products as soon as our system is ready for testing. Apart from our work with conventional less expensive chrome carbide and the more expensive tungsten carbide wear-resistant cladding on pipes, Abakan also expects to introduce new iron-based structurally amorphous metal (SAM) alloy cladding that in testing has exhibited better performance than tungsten carbide cladding, but at a fraction of the cost.” Robert Miller stated further that “although more expensive than the more widely used chrome carbide cladding, our new alloy cladding is expected to be a significantly better value proposition when you consider an estimated life of three times that of chrome carbide cladding and those cost efficiencies that correspond to less downtime revenue losses, and lower maintenance and replacement costs.”

The costs associated with downtime and maintenance in the Alberta oil sands industry estimated at more than $10 billion a year are expected to grow as production expands, according to the Materials and Reliability in Oil Sands (MARIOS) consortium in Alberta. The development of Alberta’s oil sands has been held up by the lack of materials for transport lines and components that are resistant to the highly abrasive slurry. Due to high abrasion, the pipelines have to be rotated every three to four months and replaced every 12 to 15 months. [emphasis mine] The costs involved just in rotating and replacing the pipes is approximately $2 billion annually. The same is true of large components, for example the steel teeth on the giant electric shovels used to recover oil sands, must be replaced approximately every two days.

Abakan’s combination of high productivity coating processes and groundbreaking materials are expected to facilitate significant efficiencies associated with the extraction of these oil resources. Our proprietary materials combined with CermaClad large-area based fusion cladding technology, have demonstrated in laboratory tests a three to eight times improvement in wear and corrosion resistance when compared with traditional weld overlays at costs comparable to rubber and metal matrix composite alternatives. Abakan intends to complete development and initiate field-testing by end of year 2016 and begin the construction of a full-scale wear-resistant clad pipe manufacturing facility in Alberta in early-2017.

Given that there is extensive talk about expanding oil pipelines from Alberta to British Columbia (where I live), the information about the wear and tear is fascinating and disturbing. Emotions are high with regard to the proposed increase in oil flow to the coast as can be seen in a May 27, 2015 article by Mike Howell for the Vancouver Courier about a city hall report on the matter,

A major oil spill in Vancouver waters could potentially expose up to one million people to unsafe levels of a toxic vapour released from diluted bitumen, city council heard Wednesday in a damning city staff report on Kinder Morgan’s proposal to build a pipeline from Alberta to Burnaby [British Columbia].

In presenting the report, deputy city manager Sadhu Johnston outlined scenarios where exposure to the chemical benzene could lead to adverse health effects for residents and visitors, ranging from dizziness to nausea to possible death.

“For folks that are on the seawall, they could be actually struck with this wave of toxic gases that could render them unable to evacuate,” said Johnston, noting 25,000 residents live within 300 metres of the city’s waterfront. “These are serious health impacts. So this is not just about oil hitting shorelines, this is about our residents being exposed to very serious health effects.

  • Kinder Morgan’s own estimate is that pipeline leaks under 75 litres per hour may not be detected.

While I find the presentation’s hysteria a little off-putting, it did alert me to one or two new issues, benzene gas and when spillage from the pipes raises an alarm. For anyone curious about benzene gas and other chemical aspects of an oil spill, there’s a US National Oceanic and Atmospheric Administration (NOAA) webpage titled, Chemistry of an Oil Spill.

Getting back to the pipes, that figure of 75 litres per hour puts a new perspective on the proposed Abakan solution and it suggests that whether or not more and bigger pipes are in our future, we should do a better of job of protecting our environment now. That means better cladding for the pipes and better dispersants and remediation for water, earth, air when there’s a spill.

Canadian soil remediation expert in Australia

Back in my Nov. 4, 2011 posting where I reviewed the third episode in a limited series on nanotechnology, broadcast as a Nature of Things television science programme on  Canadian Broadcasting Corporation stations, I noted Dr. Dennis O’Carroll’s soil remediation work in southern Ontario.

There’s more news about professor O’Carroll, currently visiting Australia, in a June 4, 2012 news item on Nanowerk,

“Toxic contamination of soils is an historical problem,” says Dr Denis O’Carroll, a visiting academic at the University of New South Wales (UNSW) Water Research Lab. “Until the 1970s, people wrongly believed that if we put these toxins into the ground they would simply disappear – that the subsurface would act as a natural filtration unit.”

“The possibility of this waste polluting the environment, and potentially contaminating groundwater sources and remaining there for decades was ignored,” he says.

Far from magically disappearing, chemical contaminants from spilled gas and solvents, when not directly polluting surface waters, seep down into the earth, travelling through microscopic soil cracks, where they accumulate and can eventually reach the groundwater table.

Traditional clean-up methods have focussed on pumping out the contaminated water or flushing out toxins with a specially designed cleansing solution, but these are limited by difficulties in accurately pinpointing and accessing locations where contamination has occurred, says O’Carroll.

His approach is to tackle toxic contaminants with nanotechnology. O’Carroll, who is visiting UNSW from the University of Western Ontario in Canada, has been trialling an innovative new groundwater clean-up technology using metal nanoparticles 500 to 5,000 times narrower than a human hair.

There are more details about O’Carroll’s specific innovations in this field in the June 4, 2012 news item. As well, I published, in its entirety (and with permission), an excellent description of nanotechnology-enabled soil remediation by Joe Martin, a graduate student at the University of Michigan, in my March 30, 2012 posting. Here’s a tidbit from Joe’s article,

… The use of iron oxides to adsorb and immobilize metals and arsenic is not a new concept, but nano-particles offer new advantages. When I wrote “adsorb”, I was not making a spelling error; adsorption is a process by which particles adhere to the surface of another material, but do not penetrate into the interior. This makes surface area, not volume, the important characteristic. Nano-particles provide the maximum surface area-to-weight ratio, maximizing the adsorptive surfaces onto which these elements can attach. These adsorptive processes a very effective at binding and immobilizing metals and arsenic, but they do not allow for the removal of the toxic components. This may be less-than-ideal, but in places like Bangladesh, where arsenic contamination of groundwater poses major health risks, it may be just short of a miracle.

There’s an extensive list with links to further reading and videos on the topic of nanotechnology and site remediation at the end of the March 30, 2012 posting.