Tag Archives: H. Maleki

Honey nanofibres tested as scaffolding for wound dressing in an Iran-Netherlands collaboration

It’s taken me a while to get to this one but I can’t resist this honey-enabled technology any longer. According to a Sept. 19, 2013 news item on Nanowerk, honey, a well known antibiotic, has been used in a new technique for wound dressings (Note: A link has been removed),

Researchers applied electrospinning process and produced a drug-carrying nanofibrous web to be used in wound dressing by using an artificial and biodegradable polymer and honey as a natural polymer (“A novel honey-based nanofibrous scaffold for wound dressing application”).

A wide range of biological and biodegradable materials have been electrospun in recent years to produce nanofibers. In this research, a drug carrying nanofibrous web was produced to be used in wound dressing by using an artificial and biodegradable polymer and a natural polymer through electrospinning method.

The Sept. 19, 2013 Iran National Nanotechnology Initiative Council (INIC) news release, which originated the news item, mentions honey’s antibiotic properties and explains how its application in this new technique for wound dressing,

Honey has antibacterial and anti-inflammation properties. Many studies have been published on the effects of honey in the treatment of infections and in prevention of the wound from being infected. Therefore, the combination of the unique properties of nanofibers and the natural properties of honey in the production of wound dressing is the most important characteristic of this research.

SEM [scanning electron microscope] and AFM [atomic force microscope] results showed that the fibers were completely homogenous with relatively smooth surface. However, spindle-like beads were observed in nanofibers containing 60% honey. As the concentration of honey increased in the mixture, a decrease was observed in the diameter of nanofibers. Drug-loaded nanofibers, too, had relatively smooth and homogenous surface, and as the amount of drug increases, the diameter of the nanofibers decreased. Drug release behavior studies demonstrated a sudden initial release. Statistical analyses showed that the presence of honey did not have significant effect on the process or on the behavior of drug release. Therefore, electrospun nanofibers that contain honey are appropriate option to be used in wound dressing.

Wounds can be dressed faster by using the achievements of this research. Honey is considered as a well-known drug in traditional medical sciences, which has been loaded with drugs in this research.

The research paper’s (a link and citation will be provided further down) abstract provides a bit more detail,

In this study, nanofiber meshes were produced from aqueous mixtures of poly(vinyl alcohol) (PVA) and honey via electrospinning. The Electrospinning process was performed at different PVAs to honey ratios (100/0, 90/10, 80/20, 70/30, and 60/40). Dexamethasone sodium phosphate was selected as an anti-inflammatory drug and incorporated in the electrospinning solutions. Its release behavior was determined. Uniform and smooth nanofibers were formed, independent of the honey content. In case honey content increased up to 40%, some spindle-like beads on the fibers were observed. The diameter of electrospun fibers decreased as the ratio of honey increased. The release characteristics of the model drug from both the PVA and PVA/honey (80/20) nanofibrous mats were studied and statistical analysis was performed. All electrospun fibers exhibited a large initial burst release at a short time after incubation. The release profile was similar for both PVA and PVA/honey (80/20) drug-loaded nanofibers. This study shows that an anti-inflammatory drug can be released during the initial stages and honey can be used as a natural antibiotic to improve the wound dressing efficiency and increase the healing rate.

Here’s a link to and a citation for paper,

A novel honey-based nanofibrous scaffold for wound dressing application by  H. Maleki, A. A. Gharehaghaji, and P. J. Dijkstra.
Journal of Applied Polymer Science, Volume 127, Issue 5, pages 4086–4092, 5 March 2013 (Article first published online: 29 MAY 2012) DOI: 10.1002/app.37601

Copyright © 2012 Wiley Periodicals, Inc.

This article is behind a paywall.

One final note, the researchers are from (Maleki and Gharehaghaji) Amirkabir University of Technology, Tehran, Iran and (Dijkstra) the University of Twente, Enschede, The Netherlands