Tag Archives: handedness

Flipping chirality at the Lawrence Berkeley National Laboratory

First, it might be a good idea to define chirality. From the Lawrence Berkeley National Laboratory (Berkeley Lab) July 10, 2012 news release by LynnYarris,

Chirality is the distinct left/right orientation or “handedness” of some types of molecules, meaning the molecule can take one of two mirror image forms. The right-handed and left-handed forms of such molecules, called “enantiomers,” can exhibit strikingly different properties. For example, one enantiomer of the chiral molecule limonene smells of lemon, the other smells of orange. The ability to observe or even switch the chirality of molecules using terahertz (trillion-cycles-per-second) electromagnetic radiation is a much coveted asset in the world of high technology.

As for why anyone would want  to flip molecules back and forth between left- and right-handedness (from the news release),

A multi-institutional team of researchers that included scientists with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has created the first artificial molecules whose chirality can be rapidly switched from a right-handed to a left-handed orientation with a  beam of light. This holds potentially important possibilities for the application of terahertz technologies across a wide range of fields, including reduced energy use for data-processing, homeland security and ultrahigh-speed communications.

Here’s how the technique works, from the July 10, 2012 news item on physorg.com,

Working with terahertz (THz) metamaterials engineered from nanometer-sized gold strips with air as the dielectric – Zhang [Xiang Zhang, one of the leaders of this research and a principal investigator with Berkeley Lab’s Materials Sciences Division] and his colleagues fashioned a delicate artificial chiral molecule which they then incorporated with a photoactive silicon medium. Through photoexcitation of their metamolecules with an external beam of light, the researchers observed handedness flipping in the form of circularly polarized emitted THz light. Furthermore, the photoexcitation enabled this chirality flipping and the circular polarization of THz light to be dynamically controlled.

“In contrast to previous demonstrations where chirality was merely switched on or off in metamaterials using photoelectric stimulation, we used an optical switch to actually reverse the chirality of our THz metamolecules,” Zhang says.

The researchers describe in more detail the potential for this new technique,

“The observed giant switchable chirality we can engineer into our metamaterials provides a viable approach towards creating high performance polarimetric devices that are largely not available at terahertz frequencies,” says corresponding author Antoinette Taylor. “This frequency range is particularly interesting because it uniquely reveals information about physical phenomena such as the interactions between or within biologically relevant molecules, and may enable control of electronic states in novel material systems, such as cyclotron resonances in graphene and topological insulators.”

Taylor and her co-authors say that the general design principle of their optically switchable chiral THz metamolecules is not limited to handedness switching but could also be applied to the dynamic reversing of other electromagnetic properties.

From what I understand metamaterials are very expensive and difficult to produce which means this exciting advance is likely to remain in the laboratory of at least 10 years.