Tag Archives: Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

With a wave of your finger you can control your electronic fabric

A March 6, 2025 news item on ScienceDaily announces a durable electronic textile that can be washed,

A team of researchers from Nottingham Trent University (UK), Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and Free University of Bozen-Bolzano (Italy) has created washable and durable magnetic field sensing electronic textiles — thought to be the first of their kind — which they say paves the way to transform use in clothing, as they report in the journal Communications Engineering. This technology will allow users to interact with everyday textiles or specialized clothing by simply pointing their finger above a sensor.

A March 5, 2025 Helmholtz-Zentrum Dresden-Rossendorf press release (also on EurekAlert but published March 6, 2025), which originated the news item, describes some possibilities that, until now, have been the province of science fiction,

The researchers show how they placed tiny flexible and highly responsive magnetoresistive sensors within braided textile yarns compatible with conventional textile manufacturing. The garment can be operated by the user across a variety of functions through the use of a ring or glove which would require a miniature magnet. The sensors are seamlessly integrated within the textile, allowing the position of the sensors to be indicated using dyeing or embroidering, acting as touchless controls or ‘buttons’.

The technology, which could even be in the form of a textile-based keyboard, can be integrated into clothing and other textiles and can work underwater and across different weather conditions. Importantly, the researchers argue, it is not prone to accidental activation unlike some capacitive sensors in textiles and textile-based switches. “By integrating the technology into everyday clothing people would be able to interact with computers, smart phones, watches and other smart devices, transforming their clothes into a wearable human-computer interface”, summarizes Dr. Denys Makarov from the Institute of Ion Beam Physics and Materials Research at HZDR.

Washable fashion for human-computer interaction

The technology could be applied to areas such as temperature or safety controls for specialized clothing, gaming, or interactive fashion – such as allowing its users to employ simple gestures to control LEDs or other illuminating devices embedded in the textiles. Furthermore, the research team demonstrates the technology on a variety of uses, including a functional armband allowing navigational control in a virtual reality environment, and a self-monitoring safety strap for a motorcycle helmet. “It is the first time that washable magnetic sensors have been unobtrusively integrated within textiles to be used for human-computer interactions”, emphasizes Prof. Niko Münzenrieder from Free University of Bozen-Bolzano.

“Our design could revolutionize electronic textiles for both specialized and everyday clothing,” said lead researcher Dr. Pasindu Lugoda, who is based in Nottingham Trent University’s Department of Engineering. He further remarks: “Tactile sensors on textiles vary in usefulness as accidental activation occurs when they rub or brush against surfaces. Touchless interaction reduces wear and tear. Importantly, our technology is designed for everyday use. It is machine washable and durable and does not impact the drape, or overall aesthetic appeal of the textile.”

Electronic textiles are becoming increasingly popular with wide-ranging uses, but the fusion of electronic functionality and textile fabrics can be very challenging. Such textiles have evolved and now rely on soft and flexible materials which are robust enough to endure washing and bending, but which are intuitive and reliable.

Here’s a link to and and a citation for the paper,

Submersible touchless interactivity in conformable textiles enabled by highly selective overbraided magnetoresistive sensors by Pasindu Lugoda, Eduardo Sergio Oliveros-Mata, Kalana Marasinghe, Rahul Bhaumik, Niccolò Pretto, Carlos Oliveira, Tilak Dias, Theodore Hughes-Riley, Michael Haller, Niko Münzenrieder & Denys Makarov. Communications Engineering volume 4, Article number: 33 (2025) DOI: https://doi.org/10.1038/s44172-025-00373-x Published: 25 February 2025

This paper is open access.

Neurotransistor for brainlike (neuromorphic) computing

According to researchers at Helmholtz-Zentrum Dresden-Rossendorf and the rest of the international team collaborating on the work, it’s time to look more closely at plasticity in the neuronal membrane,.

From the abstract for their paper, Intrinsic plasticity of silicon nanowire neurotransistors for dynamic memory and learning functions by Eunhye Baek, Nikhil Ranjan Das, Carlo Vittorio Cannistraci, Taiuk Rim, Gilbert Santiago Cañón Bermúdez, Khrystyna Nych, Hyeonsu Cho, Kihyun Kim, Chang-Ki Baek, Denys Makarov, Ronald Tetzlaff, Leon Chua, Larysa Baraban & Gianaurelio Cuniberti. Nature Electronics volume 3, pages 398–408 (2020) DOI: https://doi.org/10.1038/s41928-020-0412-1 Published online: 25 May 2020 Issue Date: July 2020

Neuromorphic architectures merge learning and memory functions within a single unit cell and in a neuron-like fashion. Research in the field has been mainly focused on the plasticity of artificial synapses. However, the intrinsic plasticity of the neuronal membrane is also important in the implementation of neuromorphic information processing. Here we report a neurotransistor made from a silicon nanowire transistor coated by an ion-doped sol–gel silicate film that can emulate the intrinsic plasticity of the neuronal membrane.

Caption: Neurotransistors: from silicon chips to neuromorphic architecture. Credit: TU Dresden / E. Baek Courtesy: Helmholtz-Zentrum Dresden-Rossendorf

A July 14, 2020 news item on Nanowerk announced the research (Note: A link has been removed),

Especially activities in the field of artificial intelligence, like teaching robots to walk or precise automatic image recognition, demand ever more powerful, yet at the same time more economical computer chips. While the optimization of conventional microelectronics is slowly reaching its physical limits, nature offers us a blueprint how information can be processed and stored quickly and efficiently: our own brain.

For the very first time, scientists at TU Dresden and the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have now successfully imitated the functioning of brain neurons using semiconductor materials. They have published their research results in the journal Nature Electronics (“Intrinsic plasticity of silicon nanowire neurotransistors for dynamic memory and learning functions”).

A July 14, 2020 Helmholtz-Zentrum Dresden-Rossendorf press release (also on EurekAlert), which originated the news items delves further into the research,

Today, enhancing the performance of microelectronics is usually achieved by reducing component size, especially of the individual transistors on the silicon computer chips. “But that can’t go on indefinitely – we need new approaches”, Larysa Baraban asserts. The physicist, who has been working at HZDR since the beginning of the year, is one of the three primary authors of the international study, which involved a total of six institutes. One approach is based on the brain, combining data processing with data storage in an artificial neuron.

“Our group has extensive experience with biological and chemical electronic sensors,” Baraban continues. “So, we simulated the properties of neurons using the principles of biosensors and modified a classical field-effect transistor to create an artificial neurotransistor.” The advantage of such an architecture lies in the simultaneous storage and processing of information in a single component. In conventional transistor technology, they are separated, which slows processing time and hence ultimately also limits performance.

Silicon wafer + polymer = chip capable of learning

Modeling computers on the human brain is no new idea. Scientists made attempts to hook up nerve cells to electronics in Petri dishes decades ago. “But a wet computer chip that has to be fed all the time is of no use to anybody,” says Gianaurelio Cuniberti from TU Dresden. The Professor for Materials Science and Nanotechnology is one of the three brains behind the neurotransistor alongside Ronald Tetzlaff, Professor of Fundamentals of Electrical Engineering in Dresden, and Leon Chua [emphasis mine] from the University of California at Berkeley, who had already postulated similar components in the early 1970s.

Now, Cuniberti, Baraban and their team have been able to implement it: “We apply a viscous substance – called solgel – to a conventional silicon wafer with circuits. This polymer hardens and becomes a porous ceramic,” the materials science professor explains. “Ions move between the holes. They are heavier than electrons and slower to return to their position after excitation. This delay, called hysteresis, is what causes the storage effect.” As Cuniberti explains, this is a decisive factor in the functioning of the transistor. “The more an individual transistor is excited, the sooner it will open and let the current flow. This strengthens the connection. The system is learning.”

Cuniberti and his team are not focused on conventional issues, though. “Computers based on our chip would be less precise and tend to estimate mathematical computations rather than calculating them down to the last decimal,” the scientist explains. “But they would be more intelligent. For example, a robot with such processors would learn to walk or grasp; it would possess an optical system and learn to recognize connections. And all this without having to develop any software.” But these are not the only advantages of neuromorphic computers. Thanks to their plasticity, which is similar to that of the human brain, they can adapt to changing tasks during operation and, thus, solve problems for which they were not originally programmed.

I highlighted Dr. Leon Chua’s name as he was one of the first to conceptualize the notion of a memristor (memory resistor), which is what the press release seems to be referencing with the mention of artificial synapses. Dr. Chua very kindly answered a few questions for me about his work which I published in an April 13, 2010 posting (scroll down about 40% of the way).

DNA-based nanowires in your computer?

In the quest for smaller and smaller, DNA (deoxyribonucleic acid) is being exploited as never before. From a Nov. 9, 2016 news item on phys.org,

Tinier than the AIDS virus—that is currently the circumference of the smallest transistors. The industry has shrunk the central elements of their computer chips to fourteen nanometers in the last sixty years. Conventional methods, however, are hitting physical boundaries. Researchers around the world are looking for alternatives. One method could be the self-organization of complex components from molecules and atoms. Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and Paderborn University have now made an important advance: the physicists conducted a current through gold-plated nanowires, which independently assembled themselves from single DNA strands. …

A Nov. 9, 2016 HZDR press release (also on EurekAlert), which originated the news item, provides more information,

At first glance, it resembles wormy lines in front of a black background. But what the electron microscope shows up close is that the nanometer-sized structures connect two electrical contacts. Dr. Artur Erbe from the Institute of Ion Beam Physics and Materials Research is pleased about what he sees. “Our measurements have shown that an electrical current is conducted through these tiny wires.” This is not necessarily self-evident, the physicist stresses. We are, after all, dealing with components made of modified DNA. In order to produce the nanowires, the researchers combined a long single strand of genetic material with shorter DNA segments through the base pairs to form a stable double strand. Using this method, the structures independently take on the desired form.

“With the help of this approach, which resembles the Japanese paper folding technique origami and is therefore referred to as DNA-origami, we can create tiny patterns,” explains the HZDR researcher. “Extremely small circuits made of molecules and atoms are also conceivable here.” This strategy, which scientists call the “bottom-up” method, aims to turn conventional production of electronic components on its head. “The industry has thus far been using what is known as the ‘top-down’ method. Large portions are cut away from the base material until the desired structure is achieved. Soon this will no longer be possible due to continual miniaturization.” The new approach is instead oriented on nature: molecules that develop complex structures through self-assembling processes.

Golden Bridges Between Electrodes

The elements that thereby develop would be substantially smaller than today’s tiniest computer chip components. Smaller circuits could theoretically be produced with less effort. There is, however, a problem: “Genetic matter doesn’t conduct a current particularly well,” points out Erbe. He and his colleagues have therefore placed gold-plated nanoparticles on the DNA wires using chemical bonds. Using a “top-down” method – electron beam lithography — they subsequently make contact with the individual wires electronically. “This connection between the substantially larger electrodes and the individual DNA structures have come up against technical difficulties until now. By combining the two methods, we can resolve this issue. We could thus very precisely determine the charge transport through individual wires for the first time,” adds Erbe.

As the tests of the Dresden researchers have shown, a current is actually conducted through the gold-plated wires — it is, however, dependent on the ambient temperature. “The charge transport is simultaneously reduced as the temperature decreases,” describes Erbe. “At normal room temperature, the wires function well, even if the electrons must partially jump from one gold particle to the next because they haven’t completely melded together. The distance, however, is so small that it currently doesn’t even show up using the most advanced microscopes.” In order to improve the conduction, Artur Erbe’s team aims to incorporate conductive polymers between the gold particles. The physicist believes the metallization process could also still be improved.

He is, however, generally pleased with the results: “We could demonstrate that the gold-plated DNA wires conduct energy. We are actually still in the basic research phase, which is why we are using gold rather than a more cost-efficient metal. We have, nevertheless, made an important stride, which could make electronic devices based on DNA possible in the future.”

Here’s a link to and a citation for the paper,

Temperature-Dependent Charge Transport through Individually Contacted DNA Origami-Based Au Nanowires by Bezu Teschome, Stefan Facsko, Tommy Schönherr, Jochen Kerbusch, Adrian Keller, and Artur Erbe. Langmuir, 2016, 32 (40), pp 10159–10165, DOI: 10.1021/acs.langmuir.6b01961, Publication Date (Web): September 14, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.