Tag Archives: heparin

Nano-spray gel to better manage frostbite injuries

While it’s late in the season to be thinking of frostbite in the Northern Hemisphere, there’s always next year. This research from India looks quite promising, assuming you have the gel available when you first get frostbite. From a December 11, 2019 news item on Nanowerk (Note: A link has been removed),

Mountaineers and winter sports enthusiasts know the dangers of frostbite –– the tissue damage that can occur when extremities, such as the nose, ears, fingers and toes, are exposed to very cold temperatures. However, it can be difficult to get treated quickly in remote, snowbound areas.

Now, researchers reporting in ACS Biomaterials Science & Engineering (“Heparin-Encapsulated Metered-Dose Topical “Nano-Spray Gel” Liposomal Formulation Ensures Rapid On-Site Management of Frostbite Injury by Inflammatory Cytokines Scavenging”) have developed a convenient gel that could be sprayed onto frostbite injuries when they occur, helping wounds heal.

A December 11, 2019 American Chemical Society (ACS) news release, which originated the news item, describes frostbite and the nano-spray gel in more detail,

Frostbite causes fluids in the skin and underlying tissues to freeze and crystallize, resulting in inflammation, decreased blood flow and cell death. Extremities are the most affected areas because they are farther away from the body’s core and already have reduced blood flow. If frostbite is not treated soon after the injury, it could lead to gangrene and amputation of the affected parts. Conventional treatments include immersing the body part in warm water, applying topical antibiotic creams or administering vasodilators and anti-inflammatory drugs, but many of these are unavailable in isolated snowy areas, like mountaintops. Others, such as topical medications, could end up freezing themselves. Rahul Verma and colleagues at the Institute of Nano Science and Technology [India] wanted to develop a cold-stable spray gel that could be administered on-site for the immediate treatment of frostbite injuries.

To develop their spray, the researchers packaged heparin, an anticoagulant that improves blood flow by reducing clotting and aiding in blood vessel repair, into liposomes. These lipid carriers helped deliver heparin deep inside the skin. They embedded the heparin-loaded liposomes in a sprayable hydrogel that also contained ibuprofen (a painkiller and anti-inflammatory drug) and propylene glycol, which helped keep the spray from freezing at very low temperatures. When the researchers tested the spray gel on rats with frostbite, they found that the treatment completely healed the injuries within 14 days, whereas untreated injuries were only about 40% healed, and wounds treated with an antibiotic cream were about 80% healed. The spray reduced levels of inflammatory cytokines at the wound site and in the blood circulation, which likely accelerated healing, the researchers say.

The authors acknowledge funding from the Defence Institute of High Altitude Research [India, Ministry of Defence]

Here’s a link to and a citation for the paper,

Heparin-Encapsulated Metered-Dose Topical “Nano-Spray Gel” Liposomal Formulation Ensures Rapid On-Site Management of Frostbite Injury by Inflammatory Cytokines Scavenging by Kalpesh Vaghasiya, Ankur Sharma, Kushal Kumar, Eupa Ray, Suneera Adlakha, Om Prakash Katare, Sunil Kumar Hota, Rahul K. Verma. ACS Biomater. Sci. Eng. 2019, 5, 12, 6617-6631 DOI: https://doi.org/10.1021/acsbiomaterials.9b01486 Publication Date: November 6, 2019 Copyright © 2019 American Chemical Society

This paper is behind a paywall.

presspak at webhosting

SLIPS (Slippery Liquid-Infused Porous Surfaces) technology repels blood and bacteria from medical devices

Researchers at Harvard University’s Wyss Institute for Biologically Inspired Engineering have developed a coating for medical devices that helps to address some of these devices’ most  troublesome aspects. From an Oct. 12, 2014 news item on ScienceDaily,

From joint replacements to cardiac implants and dialysis machines, medical devices enhance or save lives on a daily basis. However, any device implanted in the body or in contact with flowing blood faces two critical challenges that can threaten the life of the patient the device is meant to help: blood clotting and bacterial infection.

A team of Harvard scientists and engineers may have a solution. They developed a new surface coating for medical devices using materials already approved by the Food and Drug Administration (FDA). The coating repelled blood from more than 20 medically relevant substrates the team tested — made of plastic to glass and metal — and also suppressed biofilm formation in a study reported in Nature Biotechnology. But that’s not all.

The team implanted medical-grade tubing and catheters coated with the material in large blood vessels in pigs, and it prevented blood from clotting for at least eight hours without the use of blood thinners such as heparin. Heparin is notorious for causing potentially lethal side-effects like excessive bleeding but is often a necessary evil in medical treatments where clotting is a risk.

“Devising a way to prevent blood clotting without using anticoagulants is one of the holy grails in medicine,” said Don Ingber, M.D., Ph.D., Founding Director of Harvard’s Wyss Institute for Biologically Inspired Engineering and senior author of the study. Ingber is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and Boston Children’s Hospital, as well as professor of bioengineering at Harvard School of Engineering and Applied Sciences (SEAS).

An Oct. 12, 2014 Wyss Institute news release (also on EurekAlert), which originated the news item, describes the inspiration for this work,

The idea for the coating evolved from SLIPS, a pioneering surface technology developed by coauthor Joanna Aizenberg, Ph.D., who is a Wyss Institute Core Faculty member and the Amy Smith Berylson Professor of Materials Science at Harvard SEAS. SLIPS stands for Slippery Liquid-Infused Porous Surfaces. Inspired by the slippery surface of the carnivorous pitcher plant, which enables the plant to capture insects, SLIPS repels nearly any material it contacts. The liquid layer on the surface provides a barrier to everything from ice to crude oil and blood.

“Traditional SLIPS uses porous, textured surface substrates to immobilize the liquid layer whereas medical surfaces are mostly flat and smooth – so we further adapted our approach by capitalizing on the natural roughness of chemically modified surfaces of medical devices,” said Aizenberg, who leads the Wyss Institute’s Adaptive Materials platform. “This is yet another incarnation of the highly customizable SLIPS platform that can be designed to create slippery, non-adhesive surfaces on any material.”

The Wyss team developed a super-repellent coating that can be adhered to existing, approved medical devices. In a two-step surface-coating process, they chemically attached a monolayer of perfluorocarbon, which is similar to Teflon. Then they added a layer of liquid perfluorocarbon, which is widely used in medicine for applications such as liquid ventilation for infants with breathing challenges, blood substitution, eye surgery, and more. The team calls the tethered perfluorocarbon plus the liquid layer a Tethered-Liquid Perfluorocarbon surface, or TLP for short.

In addition to working seamlessly when coated on more than 20 different medical surfaces and lasting for more than eight hours to prevent clots in a pig under relatively high blood flow rates without the use of heparin, the TLP coating achieved the following results:

  • TLP-treated medical tubing was stored for more than a year under normal temperature and humidity conditions and still prevented clot formation
  • The TLP surface remained stable under the full range of clinically relevant physiological shear stresses, or rates of blood flow seen in catheters and central lines, all the way up to dialysis machines
  • It repelled the components of blood that cause clotting (fibrin and platelets)
  • When bacteria called Pseudomonas aeruginosa were grown in TLP-coated medical tubing for more than six weeks, less than one in a billion bacteria were able to adhere. Central lines coated with TLP significantly reduce sepsis from Central-Line Mediated Bloodstream Infections (CLABSI). (Sepsis is a life-threatening blood infection caused by bacteria, and a significant risk for patients with implanted medical devices.)

Out of sheer curiosity, the researchers even tested a TLP-coated surface with a gecko – the superstar of sticking whose footpads contain many thousands of hairlike structures with tremendous adhesive strength. The gecko was unable to hold on.

“We were wonderfully surprised by how well the TLP coating worked, particularly in vivo without heparin,” said one of the co-lead authors, Anna Waterhouse, Ph.D., a Wyss Institute Postdoctoral Fellow. “Usually the blood will start to clot within an hour in the extracorporeal circuit, so our experiments really demonstrate the clinical relevance of this new coating.”

While most of the team’s demonstrations were performed on medical devices such as catheters and perfusion tubing using relatively simple setups, they say there is a lot more on the horizon.

“We feel this is just the beginning of how we might test this for use in the clinic,” said co-lead author Daniel Leslie, Ph.D., a Wyss Institute Staff Scientist, who aims to test it on more complex systems such as dialysis machines and ECMO, a machine used in the intensive care unit to help critically ill patients breathe.

I first featured SLIPS technology in a Jan. 15, 2014 post about its possible use for stain-free, self-cleaning clothing. This Wyss Institute video about the latest work featuring the use of  SLIPS technology in medical devices also describes its possible use in pipelines and airplanes,

You can find research paper with this link,

A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling by Daniel C Leslie, Anna Waterhouse, Julia B Berthet, Thomas M Valentin, Alexander L Watters, Abhishek Jain, Philseok Kim, Benjamin D Hatton, Arthur Nedder, Kathryn Donovan, Elana H Super, Caitlin Howell, Christopher P Johnson, Thy L Vu, Dana E Bolgen, Sami Rifai, Anne R Hansen, Michael Aizenberg, Michael Super, Joanna Aizenberg, & Donald E Ingber. Nature Biotechnology (2014) doi:10.1038/nbt.3020 Published online 12 October 2014

This paper is behind a paywall but there is a free preview available via ReadCube Access.