Tag Archives: Hidetoshi Nishimori

Microsoft, D-Wave Systems, quantum computing, and quantum supremacy?

Before diving into some of the latest quantum computing doings, here’s why quantum computing is so highly prized and chased after, from the Quantum supremacy Wikipedia entry, Note: Links have been removed,

In quantum computing, quantum supremacy or quantum advantage is the goal of demonstrating that a programmable quantum computer can solve a problem that no classical computer can solve in any feasible amount of time, irrespective of the usefulness of the problem.[1][2][3] The term was coined by John Preskill in 2011,[1][4] but the concept dates to Yuri Manin’s 1980[5] and Richard Feynman’s 1981[6] proposals of quantum computing.

Quantum supremacy and quantum advantage have been mentioned a few times here over the years. You can check my March 6, 2020 posting for when researchers from the University of California at Santa Barbara claimed quantum supremacy and my July 31, 2023 posting for when D-Wave Systems claimed a quantum advantage on optimization problems. I’d understood quantum supremacy and quantum advantage to be synonymous but according the article in Betakit (keep scrolling down to the D-Wave subhead and then, to ‘A controversy of sorts’ subhead in this posting), that’s not so.

The latest news on the quantum front comes from Microsoft (February 2025) and D-Wave systems (March 2025).

Microsoft claims a new state of matter for breakthroughs in quantum computing

Here’s the February 19, 2025 news announcement from Microsoft’s Chetan Nayak, Technical Fellow and Corporate Vice President of Quantum Hardware, Note: Links have been removed,

Quantum computers promise to transform science and society—but only after they achieve the scale that once seemed distant and elusive, and their reliability is ensured by quantum error correction. Today, we’re announcing rapid advancements on the path to useful quantum computing:

  • Majorana 1: the world’s first Quantum Processing Unit (QPU) powered by a Topological Core, designed to scale to a million qubits on a single chip.
  • A hardware-protected topological qubit: research published today in Nature, along with data shared at the Station Q meeting, demonstrate our ability to harness a new type of material and engineer a radically different type of qubit that is small, fast, and digitally controlled.
  • A device roadmap to reliable quantum computation: our path from single-qubit devices to arrays that enable quantum error correction.
  • Building the world’s first fault-tolerant prototype (FTP) based on topological qubits: Microsoft is on track to build an FTP of a scalable quantum computer—in years, not decades—as part of the final phase of the Defense Advanced Research Projects Agency (DARPA) Underexplored Systems for Utility-Scale Quantum Computing (US2QC) program.

Together, these milestones mark a pivotal moment in quantum computing as we advance from scientific exploration to technological innovation.

Harnessing a new type of material

All of today’s announcements build on our team’s recent breakthrough: the world’s first topoconductor. This revolutionary class of materials enables us to create topological superconductivity, a new state of matter that previously existed only in theory. The advance stems from Microsoft’s innovations in the design and fabrication of gate-defined devices that combine indium arsenide (a semiconductor) and aluminum (a superconductor). When cooled to near absolute zero and tuned with magnetic fields, these devices form topological superconducting nanowires with Majorana Zero Modes (MZMs) at the wires’ ends.

Chris Vallance’s February 19, 2025 article for the British Broadcasting Corporation (BBC) news online website provides a description of Microsoft’s claims and makes note of the competitive quantum research environment,

Microsoft has unveiled a new chip called Majorana 1 that it says will enable the creation of quantum computers able to solve “meaningful, industrial-scale problems in years, not decades”.

It is the latest development in quantum computing – tech which uses principles of particle physics to create a new type of computer able to solve problems ordinary computers cannot.

Creating quantum computers powerful enough to solve important real-world problems is very challenging – and some experts believe them to be decades away.

Microsoft says this timetable can now be sped up because of the “transformative” progress it has made in developing the new chip involving a “topological conductor”, based on a new material it has produced.

The firm believes its topoconductor has the potential to be as revolutionary as the semiconductor was in the history of computing.

But experts have told the BBC more data is needed before the significance of the new research – and its effect on quantum computing – can be fully assessed.

Jensen Huang – boss of the leading chip firm, Nvidia – said in January he believed “very useful” quantum computing would come in 20 years.

Chetan Nayak, a technical fellow of quantum hardware at Microsoft, said he believed the developments would shake up conventional thinking about the future of quantum computers.

“Many people have said that quantum computing, that is to say useful quantum computers, are decades away,” he said. “I think that this brings us into years rather than decades.”

Travis Humble, director of the Quantum Science Center of Oak Ridge National Laboratory in the US, said he agreed Microsoft would now be able to deliver prototypes faster – but warned there remained work to do.

“The long term goals for solving industrial applications on quantum computers will require scaling up these prototypes even further,” he said.

While rivals produced a steady stream of announcements – notably Google’s “Willow” at the end of 2024 – Microsoft seemed to be taking longer.

Pursuing this approach was, in the company’s own words, a “high-risk, high-rewards” strategy, but one it now believes is going to pay off.

If you have the time, do read Vallance’s February 19, 2025 article.

The research paper

Purdue University’s (Indiana, US) February 25, 2025 news release on EurekAlert announces publication of the research, Note: Links have been removed,

Microsoft Quantum published an article in Nature on Feb. 19 [2025] detailing recent advances in the measurement of quantum devices that will be needed to realize a topological quantum computer. Among the authors are Microsoft scientists and engineers who conduct research at Microsoft Quantum Lab West Lafayette, located at Purdue University. In an announcement by Microsoft Quantum, the team describes the operation of a device that is a necessary building block for a topological quantum computer. The published results are an important milestone along the path to construction of quantum computers that are potentially more robust and powerful than existing technologies.

“Our hope for quantum computation is that it will aid chemists, materials scientists and engineers working on the design and manufacturing of new materials that are so important to our daily lives,” said Michael Manfra, scientific director of Microsoft Quantum Lab West Lafayette and the Bill and Dee O’Brien Distinguished Professor of Physics and Astronomy, professor of materials engineering, and professor of electrical and computer engineering at Purdue. “The promise of quantum computation is in accelerating scientific discovery and its translation into useful technology. For example, if quantum computers reduce the time and cost to produce new lifesaving therapeutic drugs, that is real societal impact.” 

The Microsoft Quantum Lab West Lafayette team advanced the complex layered materials that make up the quantum plane of the full device architecture used in the tests. Microsoft scientists working with Manfra are experts in advanced semiconductor growth techniques, including molecular beam epitaxy, that are used to build low-dimensional electron systems that form the basis for quantum bits, or qubits. They built the semiconductor and superconductor layers with atomic layer precision, tailoring the material’s properties to those needed for the device architecture.

Manfra, a member of the Purdue Quantum Science and Engineering Institute, credited the strong relationship between Purdue and Microsoft, built over the course of a decade, with the advances conducted at Microsoft Quantum Lab West Lafayette. In 2017 Purdue deepened its relationship with Microsoft with a multiyear agreement that includes embedding Microsoft employees with Manfra’s research team at Purdue.

“This was a collaborative effort by a very sophisticated team, with a vital contribution from the Microsoft scientists at Purdue,” Manfra said. “It’s a Microsoft team achievement, but it’s also the culmination of a long-standing partnership between Purdue and Microsoft. It wouldn’t have been possible without an environment at Purdue that was conducive to this mode of work — I attempted to blend industrial with academic research to the betterment of both communities. I think that’s a success story.”

Quantum science and engineering at Purdue is a pillar of the Purdue Computes initiative, which is focused on advancing research in computing, physical AI, semiconductors and quantum technologies.

“This research breakthrough in the measurement of the state of quasi particles is a milestone in the development of topological quantum computing, and creates a watershed moment in the semiconductor-superconductor hybrid structure,” Purdue President Mung Chiang said. “Marking also the latest success in the strategic initiative of Purdue Computes, the deep collaboration that Professor Manfra and his team have created with the Microsoft Quantum Lab West Lafayette on the Purdue campus exemplifies the most impactful industry research partnership at any American university today.”

Most approaches to quantum computers rely on local degrees of freedom to encode information. The spin of an electron is a classic example of a qubit. But an individual spin is prone to disturbance — by relatively common things like heat, vibrations or interactions with other quantum particles — which can corrupt quantum information stored in the qubit, necessitating a great deal of effort in detecting and correcting errors. Instead of spin, topological quantum computers store information in a more distributed manner; the qubit state is encoded in the state of many particles acting in concert. Consequently, it is harder to scramble the information as the state of all the particles must be changed to alter the qubit state.

In the Nature paper, the Microsoft team was able to accurately and quickly measure the state of quasi particles that form the basis of the qubit.

“The device is used to measure a basic property of a topological qubit quickly,” Manfra said. “The team is excited to build on these positive results.”

“The team in West Lafayette pushed existing epitaxial technology to a new state-of-the-art for semiconductor-superconductor hybrid structures to ensure a perfect interface between each of the building blocks of the Microsoft hybrid system,” said Sergei Gronin, a Microsoft Quantum Lab scientist.

“The materials quality that is required for quantum computing chips necessitates constant improvements, so that’s one of the biggest challenges,” Gronin said. “First, we had to adjust and improve semiconductor technology to meet a new level that nobody was able to achieve before. But equally important was how to create this hybrid system. To do that, we had to merge a semiconducting part and a superconducting part. And that means you need to perfect the semiconductor and the superconductor and perfect the interface between them.”

While work discussed in the Nature article was performed by Microsoft employees, the exposure to industrial-scale research and development is an outstanding opportunity for Purdue students in Manfra’s academic group as well. John Watson, Geoffrey Gardner and Saeed Fallahi, who are among the coauthors of the paper, earned their doctoral degrees under Manfra and now work for Microsoft Quantum at locations in Redmond, Washington, and Copenhagen, Denmark. Most of Manfra’s former students now work for quantum computing companies, including Microsoft. Tyler Lindemann, who works in the West Lafayette lab and helped to build the hybrid semiconductor-superconductor structures required for the device, is earning a doctoral degree from Purdue under Manfra’s supervision.

“Working in Professor Manfra’s lab in conjunction with my work for Microsoft Quantum has given me a head start in my professional development, and been fruitful for my academic work,” Lindemann said. “At the same time, many of the world-class scientists and engineers at Microsoft Quantum have some background in academia, and being able to draw from their knowledge and experience is an indispensable resource in my graduate studies. From both perspectives, it’s a great opportunity.”

Here’s a link to and a citation for the paper,

Interferometric single-shot parity measurement in InAs–Al hybrid devices by Microsoft Azure Quantum, Morteza Aghaee, Alejandro Alcaraz Ramirez, Zulfi Alam, Rizwan Ali, Mariusz Andrzejczuk, Andrey Antipov, Mikhail Astafev, Amin Barzegar, Bela Bauer, Jonathan Becker, Umesh Kumar Bhaskar, Alex Bocharov, Srini Boddapati, David Bohn, Jouri Bommer, Leo Bourdet, Arnaud Bousquet, Samuel Boutin, Lucas Casparis, Benjamin J. Chapman, Sohail Chatoor, Anna Wulff Christensen, Cassandra Chua, Patrick Codd, William Cole, Paul Cooper, Fabiano Corsetti, Ajuan Cui, Paolo Dalpasso, Juan Pablo Dehollain, Gijs de Lange, Michiel de Moor, Andreas Ekefjärd, Tareq El Dandachi, Juan Carlos Estrada Saldaña, Saeed Fallahi, Luca Galletti, Geoff Gardner, Deshan Govender, Flavio Griggio, Ruben Grigoryan, Sebastian Grijalva, Sergei Gronin, Jan Gukelberger, Marzie Hamdast, Firas Hamze, Esben Bork Hansen, Sebastian Heedt, Zahra Heidarnia, Jesús Herranz Zamorano, Samantha Ho, Laurens Holgaard, John Hornibrook, Jinnapat Indrapiromkul, Henrik Ingerslev, Lovro Ivancevic, Thomas Jensen, Jaspreet Jhoja, Jeffrey Jones, Konstantin V. Kalashnikov, Ray Kallaher, Rachpon Kalra, Farhad Karimi, Torsten Karzig, Evelyn King, Maren Elisabeth Kloster, Christina Knapp, Dariusz Kocon, Jonne V. Koski, Pasi Kostamo, Mahesh Kumar, Tom Laeven, Thorvald Larsen, Jason Lee, Kyunghoon Lee, Grant Leum, Kongyi Li, Tyler Lindemann, Matthew Looij, Julie Love, Marijn Lucas, Roman Lutchyn, Morten Hannibal Madsen, Nash Madulid, Albert Malmros, Michael Manfra, Devashish Mantri, Signe Brynold Markussen, Esteban Martinez, Marco Mattila, Robert McNeil, Antonio B. Mei, Ryan V. Mishmash, Gopakumar Mohandas, Christian Mollgaard, Trevor Morgan, George Moussa, Chetan Nayak, Jens Hedegaard Nielsen, Jens Munk Nielsen, William Hvidtfelt Padkar Nielsen, Bas Nijholt, Mike Nystrom, Eoin O’Farrell, Thomas Ohki, Keita Otani, Brian Paquelet Wütz, Sebastian Pauka, Karl Petersson, Luca Petit, Dima Pikulin, Guen Prawiroatmodjo, Frank Preiss, Eduardo Puchol Morejon, Mohana Rajpalke, Craig Ranta, Katrine Rasmussen, David Razmadze, Outi Reentila, David J. Reilly, Yuan Ren, Ken Reneris, Richard Rouse, Ivan Sadovskyy, Lauri Sainiemi, Irene Sanlorenzo, Emma Schmidgall, Cristina Sfiligoj, Mustafeez Bashir Shah, Kevin Simoes, Shilpi Singh, Sarat Sinha, Thomas Soerensen, Patrick Sohr, Tomas Stankevic, Lieuwe Stek, Eric Stuppard, Henri Suominen, Judith Suter, Sam Teicher, Nivetha Thiyagarajah, Raj Tholapi, Mason Thomas, Emily Toomey, Josh Tracy, Michelle Turley, Shivendra Upadhyay, Ivan Urban, Kevin Van Hoogdalem, David J. Van Woerkom, Dmitrii V. Viazmitinov, Dominik Vogel, John Watson, Alex Webster, Joseph Weston, Georg W. Winkler, Di Xu, Chung Kai Yang, Emrah Yucelen, Roland Zeisel, Guoji Zheng & Justin Zilke. Nature 638, 651–655 (2025). DOI: https://doi.org/10.1038/s41586-024-08445-2 Published online: 19 February 2025 Issue Date: 20 February 2025

This paper is open access. Note: I usually tag all of the authors but not this time.

Controversy over this and previous Microsoft quantum computing claims

Elizabeth Hlavinka’s March 17, 2025 article for Salon.com provides an overview, Note: Links have been removed,

The matter making up the world around us has long-since been organized into three neat categories: solids, liquids and gases. But last month [February 2025], Microsoft announced that it had allegedly discovered another state of matter originally theorized to exist in 1937. 

This new state of matter called the Majorana zero mode is made up of quasiparticles, which act as their own particle and antiparticle. The idea is that the Majorana zero mode could be used to build a quantum computer, which could help scientists answer complex questions that standard computers are not capable of solving, with implications for medicine, cybersecurity and artificial intelligence.

In late February [2025], Sen. Ted Cruz presented Microsoft’s new computer chip at a congressional hearing, saying, “Technologies like this new chip I hold in the palm of my hand, the Majorana 1 quantum chip, are unlocking a new era of computing that will transform industries from health care to energy, solving problems that today’s computers simply cannot.”

However, Microsoft’s announcement, claiming a “breakthrough in quantum computing,” was met with skepticism from some physicists in the field. Proving that this form of quantum computing can work requires first demonstrating the existence of Majorana quasiparticles, measuring what the Majorana particles are doing, and creating something called a topological qubit used to store quantum information.

But some say that not all of the data necessary to prove this has been included in the research paper published in Nature, on which this announcement is based. And due to a fraught history of similar claims from the company being disputed and ultimately rescinded, some are extra wary of the results. [emphasis mine]

It’s not the first time Microsoft has faced backlash from presenting findings in the field. In 2018, the company reported that they had detected the presence of Majorana zero-modes in a research paper, but it was retracted by Nature, the journal that published it after a report from independent experts put their findings under more intense scrutiny.

In the [2018] report, four physicists not involved in the research concluded that it did not appear that Microsoft had intentionally misrepresented the data, but instead seemed to be “caught up in the excitement of the moment [emphasis mine].”

Establishing the existence of these particles is extremely complex in part because disorder in the device can create signals that mimic these quasiparticles when they are not actually there. 

Modern computers in use today are encoded in bits, which can either be in a zero state (no current flowing through them), or a one state (current flowing.) These bits work together to send information and signals that communicate with the computer, powering everything from cell phones to video games.

Companies like Google, IBM and Amazon have invested in designing another form of quantum computer that uses chips built with “qubits,” or quantum bits. Qubits can exist in both zero and one states at the same time due to a phenomenon called superposition. 

However, qubits are subject to external noise from the environment that can affect their performance, said Dr. Paolo Molignini, a researcher in theoretical quantum physics at Stockholm University.

“Because qubits are in a superposition of zero and one, they are very prone to errors and they are very prone to what is called decoherence, which means there could be noise, thermal fluctuations or many things that can collapse the state of the qubits,” Molignini told Salon in a video call. “Then you basically lose all of the information that you were encoding.”

In December [2024], Google said its quantum computer could perform a calculation that a standard computer could complete in 10 septillion years — a period far longer than the age of the universe — in just under five minutes.

However, a general-purpose computer would require billions of qubits, so these approaches are still a far cry from having practical applications, said Dr. Patrick Lee, a physicist at the Massachusetts Institute of Technology [MIT], who co-authored the report leading to the 2018 Nature paper’s retraction.

Microsoft is taking a different approach to quantum computing by trying to develop  a topological qubit, which has the ability to store information in multiple places at once. Topological qubits exist within the Majorana zero states and are appealing because they can theoretically offer greater protection against environmental noise that destroys information within a quantum system.

Think of it like an arrow, where the arrowhead holds a portion of the information and the arrow tail holds the rest, Lee said. Distributing information across space like this is called topological protection.

“If you are able to put them far apart from each other, then you have a chance of maintaining the identity of the arrow even if it is subject to noise,” Lee told Salon in a phone interview. “The idea is that if the noise affects the head, it doesn’t kill the arrow and if it affects only the tail it doesn’t kill your arrow. It has to affect both sides simultaneously to kill your arrow, and that is very unlikely if you are able to put them apart.”

… Lee believes that even if the data doesn’t entirely prove that topological qubits exist in the Majorana zero-state, it still represents a scientific advancement. But he noted that several important issues need to be solved before it has practical implications. For one, the coherence time of these particles — or how long they can exist without being affected by environmental noise — is still very short, he explained.

“They make a measurement, come back, and the qubit has changed, so you have lost your coherence,” Lee said. “With this very short time, you cannot do anything with it.”

“I just wish they [Microsoft] were a bit more careful with their claims because I fear that if they don’t measure up to what they are saying, there might be a backlash at some point where people say, ‘You promised us all these fancy things and where are they now?’” Molignini said. “That might damage the entire quantum community, not just themselves.”

Iif you have the time, please read Hlavinka’s March 17, 2025 article in its entirety .

D-Wave Quantum Systems claims quantum supremacy over real world problem solution

A March 15, 2025 article by Bob Yirka for phys.org announces the news from D-Wave Quantum Systems. Note: The company, which had its headquarters in Canada (Burnaby, BC) now seems to be a largely US company with its main headquarters in Palo Alto, California and an ancillary or junior (?) headquarters in Canada, Note: A link has been removed,

A team of quantum computer researchers at quantum computer maker D-Wave, working with an international team of physicists and engineers, is claiming that its latest quantum processor has been used to run a quantum simulation faster than could be done with a classical computer.

In their paper published in the journal Science, the group describes how they ran a quantum version of a mathematical approximation regarding how matter behaves when it changes states, such as from a gas to a liquid—in a way that they claim would be nearly impossible to conduct on a traditional computer.

Here’s a March 12, 2025 D-Wave Systems (now D-Wave Quantum Systems) news release touting its real world problem solving quantum supremacy,

New landmark peer-reviewed paper published in Science, “Beyond-Classical Computation in Quantum Simulation,” unequivocally validates D-Wave’s achievement of the world’s first and only demonstration of quantum computational supremacy on a useful, real-world problem

Research shows D-Wave annealing quantum computer performs magnetic materials simulation in minutes that would take nearly one million years and more than the world’s annual electricity consumption to solve using a classical supercomputer built with GPU clusters

D-Wave Advantage2 annealing quantum computer prototype used in supremacy achievement, a testament to the system’s remarkable performance capabilities

PALO ALTO, Calif. – March 12, 2025 – D-Wave Quantum Inc. (NYSE: QBTS) (“D-Wave” or the “Company”), a leader in quantum computing systems, software, and services and the world’s first commercial supplier of quantum computers, today announced a scientific breakthrough published in the esteemed journal Science, confirming that its annealing quantum computer outperformed one of the world’s most powerful classical supercomputers in solving complex magnetic materials simulation problems with relevance to materials discovery. The new landmark peer-reviewed paper, Beyond-Classical Computation in Quantum Simulation,” validates this achievement as the world’s first and only demonstration of quantum computational supremacy on a useful problem.

An international collaboration of scientists led by D-Wave performed simulations of quantum dynamics in programmable spin glasses—computationally hard magnetic materials simulation problems with known applications to business and science—on both D-Wave’s Advantage2TM prototype annealing quantum computer and the Frontier supercomputer at the Department of Energy’s Oak Ridge National Laboratory. The work simulated the behavior of a suite of lattice structures and sizes across a variety of evolution times and delivered a multiplicity of important material properties. D-Wave’s quantum computer performed the most complex simulation in minutes and with a level of accuracy that would take nearly one million years using the supercomputer. In addition, it would require more than the world’s annual electricity consumption to solve this problem using the supercomputer, which is built with graphics processing unit (GPU) clusters.

“This is a remarkable day for quantum computing. Our demonstration of quantum computational supremacy on a useful problem is an industry first. All other claims of quantum systems outperforming classical computers have been disputed or involved random number generation of no practical value,” said Dr. Alan Baratz, CEO of D-Wave. “Our achievement shows, without question, that D-Wave’s annealing quantum computers are now capable of solving useful problems beyond the reach of the world’s most powerful supercomputers. We are thrilled that D-Wave customers can use this technology today to realize tangible value from annealing quantum computers.”

Realizing an Industry-First Quantum Computing Milestone
The behavior of materials is governed by the laws of quantum physics. Understanding the quantum nature of magnetic materials is crucial to finding new ways to use them for technological advancement, making materials simulation and discovery a vital area of research for D-Wave and the broader scientific community. Magnetic materials simulations, like those conducted in this work, use computer models to study how tiny particles not visible to the human eye react to external factors. Magnetic materials are widely used in medical imaging, electronics, superconductors, electrical networks, sensors, and motors.

“This research proves that D-Wave’s quantum computers can reliably solve quantum dynamics problems that could lead to discovery of new materials,” said Dr. Andrew King, senior distinguished scientist at D-Wave. “Through D-Wave’s technology, we can create and manipulate programmable quantum matter in ways that were impossible even a few years ago.”

Materials discovery is a computationally complex, energy-intensive and expensive task. Today’s supercomputers and high-performance computing (HPC) centers, which are built with tens of thousands of GPUs, do not always have the computational processing power to conduct complex materials simulations in a timely or energy-efficient manner. For decades, scientists have aspired to build a quantum computer capable of solving complex materials simulation problems beyond the reach of classical computers. D-Wave’s advancements in quantum hardware have made it possible for its annealing quantum computers to process these types of problems for the first time.

“This is a significant milestone made possible through over 25 years of research and hardware development at D-Wave, two years of collaboration across 11 institutions worldwide, and more than 100,000 GPU and CPU hours of simulation on one of the world’s fastest supercomputers as well as computing clusters in collaborating institutions,” said Dr. Mohammad Amin, chief scientist at D-Wave. “Besides realizing Richard Feynman’s vision of simulating nature on a quantum computer, this research could open new frontiers for scientific discovery and quantum application development.” 

Advantage2 System Demonstrates Powerful Performance Gains
The results shown in “Beyond-Classical Computation in Quantum Simulation” were enabled by D-Wave’s previous scientific milestones published in Nature Physics (2022) and Nature (2023), which theoretically and experimentally showed that quantum annealing provides a quantum speedup in complex optimization problems. These scientific advancements led to the development of the Advantage2 prototype’s fast anneal feature, which played an essential role in performing the precise quantum calculations needed to demonstrate quantum computational supremacy.

“The broader quantum computing research and development community is collectively building an understanding of the types of computations for which quantum computing can overtake classical computing. This effort requires ongoing and rigorous experimentation,” said Dr. Trevor Lanting, chief development officer at D-Wave. “This work is an important step toward sharpening that understanding, with clear evidence of where our quantum computer was able to outperform classical methods. We believe that the ability to recreate the entire suite of results we produced is not possible classically. We encourage our peers in academia to continue efforts to further define the line between quantum and classical capabilities, and we believe these efforts will help drive the development of ever more powerful quantum computing technology.”

The Advantage2 prototype used to achieve quantum computational supremacy is available for customers to use today via D-Wave’s Leap™ real-time quantum cloud service. The prototype provides substantial performance improvements from previous-generation Advantage systems, including increased qubit coherence, connectivity, and energy scale, which enables higher-quality solutions to larger, more complex problems. Moreover, D-Wave now has an Advantage2 processor that is four times larger than the prototype used in this work and has extended the simulations of this paper from hundreds of qubits to thousands of qubits, which are significantly larger than those described in this paper.

Leading Industry Voices Echo Support
Dr. Hidetoshi Nishimori, Professor, Department of Physics, Tokyo Institute of Technology:
“This paper marks a significant milestone in demonstrating the real-world applicability of large-scale quantum computing. Through rigorous benchmarking of quantum annealers against state-of-the-art classical methods, it convincingly establishes a quantum advantage in tackling practical problems, revealing the transformative potential of quantum computing at an unprecedented scale.”

Dr. Seth Lloyd, Professor of Quantum Mechanical Engineering, MIT:
Although large-scale, fully error-corrected quantum computers are years in the future, quantum annealers can probe the features of quantum systems today. In an elegant paper, the D-Wave group has used a large-scale quantum annealer to uncover patterns of entanglement in a complex quantum system that lie far beyond the reach of the most powerful classical computer. The D-Wave result shows the promise of quantum annealers for exploring exotic quantum effects in a wide variety of systems.”

Dr. Travis Humble, Director of Quantum Science Center, Distinguished Scientist at Oak Ridge National Laboratory:
“ORNL seeks to expand the frontiers of computation through many different avenues, and benchmarking quantum computing for materials science applications provides critical input to our understanding of new computational capabilities.”

Dr. Juan Carrasquilla, Associate Professor at the Department of Physics, ETH Zürich:
“I believe these results mark a critical scientific milestone for D-Wave. They also serve as an invitation to the scientific community, as these results offer a strong benchmark and motivation for developing novel simulation techniques for out-of-equilibrium dynamics in quantum many-body physics. Furthermore, I hope these findings encourage theoretical exploration of the computational challenges involved in performing such simulations, both classically and quantum-mechanically.”

Dr. Victor Martin-Mayor, Professor of Theoretical Physics, Universidad Complutense de Madrid:
“This paper is not only a tour-de-force for experimental physics, it is also remarkable for the clarity of the results. The authors have addressed a problem that is regarded both as important and as very challenging to a classical computer. The team has shown that their quantum annealer performs better at this task than the state-of-the-art methods for classical simulation.”

Dr. Alberto Nocera, Senior Staff Scientist, The University of British Columbia:
“Our work shows the impracticability of state-of-the-art classical simulations to simulate the dynamics of quantum magnets, opening the door for quantum technologies based on analog simulators to solve scientific questions that may otherwise remain unanswered using conventional computers.”

About D-Wave Quantum Inc.
D-Wave is a leader in the development and delivery of quantum computing systems, software, and services. We are the world’s first commercial supplier of quantum computers, and the only company building both annealing and gate-model quantum computers. Our mission is to help customers realize the value of quantum, today. Our 5,000+ qubit Advantage™ quantum computers, the world’s largest, are available on-premises or via the cloud, supported by 99.9% availability and uptime. More than 100 organizations trust D-Wave with their toughest computational challenges. With over 200 million problems submitted to our Advantage systems and Advantage2™ prototypes to date, our customers apply our technology to address use cases spanning optimization, artificial intelligence, research and more. Learn more about realizing the value of quantum computing today and how we’re shaping the quantum-driven industrial and societal advancements of tomorrow: www.dwavequantum.com.

Forward-Looking Statements
Certain statements in this press release are forward-looking, as defined in the Private Securities Litigation Reform Act of 1995. These statements involve risks, uncertainties, and other factors that may cause actual results to differ materially from the information expressed or implied by these forward-looking statements and may not be indicative of future results. These forward-looking statements are subject to a number of risks and uncertainties, including, among others, various factors beyond management’s control, including the risks set forth under the heading “Risk Factors” discussed under the caption “Item 1A. Risk Factors” in Part I of our most recent Annual Report on Form 10-K or any updates discussed under the caption “Item 1A. Risk Factors” in Part II of our Quarterly Reports on Form 10-Q and in our other filings with the SEC. Undue reliance should not be placed on the forward-looking statements in this press release in making an investment decision, which are based on information available to us on the date hereof. We undertake no duty to update this information unless required by law.

Here’s a link to and a citation for the most recent paper,

Beyond-classical computation in quantum simulation by Andrew D. King , Alberto Nocera, Marek M. Rams, Jacek Dziarmaga, Roeland Wiersema, William Bernoudy, Jack Raymond, Nitin Kaushal, Niclas Heinsdorf, Richard Harris, Kelly Boothby, Fabio Altomare, Mohsen Asad, Andrew J. Berkley, Martin Boschnak, Kevin Chern, Holly Christiani, Samantha Cibere, Jake Connor, Martin H. Dehn, Rahul Deshpande, Sara Ejtemaee, Pau Farre, Kelsey Hamer, Emile Hoskinson, Shuiyuan Huang, Mark W. Johnson, Samuel Kortas, Eric Ladizinsky, Trevor Lanting, Tony Lai, Ryan Li, Allison J. R. MacDonald, Gaelen Marsden, Catherine C. McGeoch, Reza Molavi, Travis Oh, Richard Neufeld, Mana Norouzpour, Joel Pasvolsky, Patrick Poitras, Gabriel Poulin-Lamarre, Thomas Prescott, Mauricio Reis, Chris Rich, Mohammad Samani, Benjamin Sheldan, Anatoly Smirnov, Edward Sterpka, Berta Trullas Clavera, Nicholas Tsai, Mark Volkmann, Alexander M. Whiticar, Jed D. Whittaker, Warren Wilkinson, Jason Yao, T.J. Yi, Anders W. Sandvik, Gonzalo Alvarez, Roger G. Melko, Juan Carrasquilla, Marcel Franz, and Mohammad H. Amin. Science 12 Mar 2025 First Release DOI: 10.1126/science.ado6285

This paper appears to be open access.Note: I usually tag all of the authors but not this time either.

A controversy of sorts

Madison McLauchlan’s March 19, 2025 article for Betakit (website for Canadian Startup News & Tech Innovation), Note: Links have been removed,

Canadian-born company D-Wave Quantum Systems said it achieved “quantum supremacy” last week after publishing what it calls a groundbreaking paper in the prestigious journal Science. Despite the lofty term, Canadian experts say supremacy is not the be-all, end-all of quantum innovation. 

D-Wave, which has labs in Palo Alto, Calif., and Burnaby, BC, claimed in a statement that it has shown “the world’s first and only demonstration of quantum computational supremacy on a useful, real-world problem.”

Coined in the early 2010s by physicist John Preskill, quantum supremacy is the ability of a quantum computing system to solve a problem no classical computer can in a feasible amount of time. The metric makes no mention of whether the problem needs to be useful or relevant to real life. Google researchers published a paper in Nature in 2019 claiming they cleared that bar with the Sycamore quantum processor. Researchers at the University of Science and Technology in China claimed they demonstrated quantum supremacy several times. 

D-Wave’s attempt differs in that its researchers aimed to solve a real-world materials-simulation problem with quantum computing—one the company claims would be nearly impossible for a traditional computer to solve in a reasonable amount of time. D-Wave used an annealing designed to solve optimization problems. The problem is represented like an energy space, where the “lowest energy state” corresponds to the solution. 

While exciting, quantum supremacy is just one metric among several that mark the progress toward widely useful quantum computers, industry experts told BetaKit. 

“It is a very important and mostly academic metric, but certainly not the most important in the grand scheme of things, as it doesn’t take into account the usefulness of the algorithm,” said Martin Laforest, managing partner at Quantacet, a specialized venture capital fund for quantum startups. 

He added that Google and Xanadu’s [Xanadu Quantum Technologies based in Toronto, Canada] past claims to quantum supremacy were “extraordinary pieces of work, but didn’t unlock practicality.” 

Laforest, along with executives at Canadian quantum startups Nord Quantique and Photonic, say that the milestones of ‘quantum utility’ or ‘quantum advantage’ may be more important than supremacy. 

According to Quantum computing company Quera [QuEra?], quantum advantage is the demonstration of a quantum algorithm solving a real-world problem on a quantum computer faster than any classical algorithm running on any classical computer. On the other hand, quantum utility, according to IBM, refers to when a quantum computer is able to perform reliable computations at a scale beyond brute-force classical computing methods that provide exact solutions to computational problems. 

Error correction hasn’t traditionally been considered a requirement for quantum supremacy, but Laforest told BetaKit the term is “an ever-moving target, constantly challenged by advances in classical algorithms.” He added: “In my opinion, some level of supremacy or utility may be possible in niche areas without error correction, but true disruption requires it.”

Paul Terry, CEO of Vancouver-based Photonic, thinks that though D-Wave’s claim to quantum supremacy shows “continued progress to real value,” scalability is the industry’s biggest hurdle to overcome.

But as with many milestone claims in the quantum space, D-Wave’s latest innovation has been met with scrutiny from industry competitors and researchers on the breakthrough’s significance, claiming that classical computers have achieved similar results. Laforest echoed this sentiment.

“Personally, I wouldn’t say it’s an unequivocal demonstration of supremacy, but it is a damn nice experiment that once again shows the murky zone between traditional computing and early quantum advantage,” Laforest said.

Originally founded out of the University of British Columbia, D-Wave went public on the New York Stock Exchange just over two years ago through a merger with a special-purpose acquisition company in 2022. D-Wave became a Delaware-domiciled corporation as part of the deal.

Earlier this year, D-Wave’s stock price dropped after Nvidia CEO Jensen Huang publicly stated that he estimated that useful quantum computers were more than 15 years away. D-Wave’s stock price, which had been struggling, has seen a considerable bump in recent months alongside a broader boost in the quantum market. The price popped after its most recent earnings, shared right after its quantum supremacy announcement. 

The beat goes on

Some of this is standard in science. There’s always a debate over big claims and it’s not unusual for people to get over excited and have to make a retraction. Scientists are people too. That said, there’s a lot of money on the line and that appears to be making situation even more volatile than usual.

That last paragraph was completed on the morning of March 21, 2025 and later that afternoon I came across this March 21, 2025 article by Michael Grothaus for Fast Company, Note: Links have been removed,

Quantum computing stocks got pummeled yesterday, with the four most prominent public quantum computing companies—IonQ, Rigetti Computing, Quantum Computing Inc., and D-Wave Quantum Inc.—falling anywhere from over 9% to over 18%. The reason? A lot of it may have to do with AI chip giant Nvidia. Again.

Stocks crash yesterday on Nvidia quantum news

Yesterday was a bit of a bloodbath on the stock market for the four most prominent publicly traded quantum computing companies. …

All four of these quantum computing stocks [IonQ, Inc.; Rigetti Computing, Inc.; Quantum Computing Inc.; D-Wave Quantum Inc.] tumbled on the day that AI chip giant Nvidia kicked off its two-day Quantum Day event. In a blog post from January 14 announcing Quantum Day, Nvidia said the event “brings together leading experts for a comprehensive and balanced perspective on what businesses should expect from quantum computing in the coming decades — mapping the path toward useful quantum applications.”

Besides bringing quantum experts together, the AI behemoth also announced that it will be launching a new quantum computing research center in Boston.

Called the NVIDIA Accelerated Quantum Research Center (NVAQC), the new research lab “will help solve quantum computing’s most challenging problems, ranging from qubit noise to transforming experimental quantum processors into practical devices,” the company said in a press release.

The NVAQC’s location in Boston means it will be near both Harvard University and the Massachusetts Institute of Technology (MIT). 

Before Nvidia’s announcement yesterday, IonQ, Rigetti, D-Wave, and Quantum Computing Inc. were the leaders in the nascent field of quantum computing. And while they still are right now (Nvidia’s quantum research lab hasn’t been built yet), the fear is that Nvidia could use its deep pockets to quickly buy its way into a leadership spot in the field. With its $2.9 trillion market cap, the company can easily afford to throw billions of research dollars into quantum computing.

As noted by the Motley Fool, the location of the NVIDIA Accelerated Quantum Research Center in Boston will also allow Nvidia to more easily tap into top quantum talent from Harvard and MIT—talent that may have otherwise gone to IonQ, Rigetti, D-Wave, and Quantum Computing Inc.

Nvidia’s announcement is a massive about-face from the company in regard to how it views quantum computing. It’s also the second time that Nvidia has caused quantum stocks to crash this year. Back in January, shares in prominent quantum computing companies fell after Huang said that practical use of quantum computing was decades away.

Those comments were something quantum computing company CEOs like D-Wave’s Alan Baratz took issue with. “It’s an egregious error on Mr. Huang’s part,” Bartaz told Fast Company at the time. “We’re not decades away from commercial quantum computers. They exist. There are companies that are using our quantum computer today.”

According to Investor’s Business Daily, Huang reportedly got the idea for Nvidia’s Quantum Day event after the blowback to his comments, inviting quantum computing executives to the event to explain why he was incorrect about quantum computing.

The word is volatile.

D-Wave Systems demonstrates quantum advantage on optimization problems with a 5,000-qubit programmable spin glass

This May 17, 2023 article by Ingrid Fadelli for phys.org describes quantum research performed by D-Wave Systems (a company in Vancouver, Canada) and Boston University (Massachusetts, US), Note: Links have been removed,

Over the past decades, researchers and companies worldwide have been trying to develop increasingly advanced quantum computers. The key objective of their efforts is to create systems that will outperform classical computers on specific tasks, which is also known as realizing “quantum advantage.”

A research team at D-Wave Inc., a quantum computing company, recently created a new quantum computing system that outperforms classical computing systems on optimization problems. This system, introduced in a paper in Nature, is based on a programmable spin glass with 5,000 qubits (the quantum equivalents of bits in classical computing).

“This work validates the original hypothesis behind quantum annealing, coming full circle from some seminal experiments conducted in the 1990s,” Andrew D. King, one of the researchers who carried out the study, told Phys.org.

“These original experiments took chunks of spin-glass alloy and subjected them to varying magnetic fields, and the observations suggested that if we made a programmable quantum spin glass, it could drive down to low-energy states of optimization problems faster than analogous classical algorithms. A Science paper published in 2014 tried to verify this on a D-Wave Two processor, but no speedup was found.”

“This is a ‘full circle’ moment, in the sense that we have verified and extended the hypothesis of the UChicago [University of Chicago] and NEC [Nippon Electric Company] researchers; quantum annealing shows a scaling advantage over simulated thermal annealing,” King said. “Ours is the largest programmable quantum simulation ever performed; reproducing it classically is way beyond the reach of known methods.”

“We have a clear view of quantum effects and very clear evidence, both theoretical and experimental, that the quantum effects are conferring a computational scaling advantage over classical methods,” King said. “We want to highlight the difference between this original definition of quantum advantage and the fact that it is sometimes used as a stand-in term for quantum supremacy, which we have not demonstrated. [emphases mine] Gate-model quantum computers have not shown any capabilities approaching this for optimization, and I personally don’t believe they ever will.”

“For a long time, it was subject for debate whether or not coherent quantum dynamics were playing any role at all in quantum annealing,” King said. “While this controversy has been rebuked by previous works, this new research is the clearest demonstration yet, by far.”

An April 19, 2023 D-Wave Systems news release, which seems to have been the basis for Fadelli’s article, provides more detail in a release that functions as a research announcement and a sales tool, Note: Links have been removed,

D-Wave Quantum Inc. (NYSE: QBTS), a leader in quantum computing systems, software, and services—and the only provider building both annealing and gate-model quantum computers, today published a peer-reviewed milestone paper showing the performance of its 5,000 qubit Advantage™ quantum computer is significantly faster than classical compute on 3D spin glass optimization problems, an intractable class of optimization problems. This paper also represents the largest programmable quantum simulation reported to date.

The paper—a collaboration between scientists from D-Wave and Boston University—entitled “Quantum critical dynamics in a 5,000-qubit programmable spin glass,” was published in the peer-reviewed journal Nature today and is available here. Building upon research conducted on up to 2,000 qubits last September, the study shows that the D-Wave quantum processor can compute coherent quantum dynamics in large-scale optimization problems. This work was done using D-Wave’s commercial-grade annealing-based quantum computer, which is accessible for customers to use today.

With immediate implications to optimization, the findings show that coherent quantum annealing can improve solution quality faster than classical algorithms. The observed speedup matches the theory of coherent quantum annealing and shows​ a direct connection between coherence and the core computational power of quantum annealing.

“This research marks a significant achievement for quantum technology, as it demonstrates a computational advantage over classical approaches for an intractable class of optimization problems,” said Dr. Alan Baratz, CEO of D-Wave. “For those seeking evidence of quantum annealing’s unrivaled performance, this work offers definitive proof.

This work supports D-Wave’s ongoing commitment to relentless scientific innovation and product delivery, as the company continues development on its future annealing and gate model quantum computers. To date, D-Wave has brought to market five generations of quantum computers and launched an experimental prototype of its sixth-generation machine, the Advantage2™ system, in June 2022. The full Advantage2 system is expected to feature 7,000+ qubits, 20-way connectivity and higher coherence to solve even larger and more complex problems. Read more about the research in our Medium post here.

Paper’s Authors and Leading Industry Voices Echo Support

“This is an important advance in the study of quantum phase transitions on quantum annealers. It heralds a revolution in experimental many-body physics and bodes well for practical applications of quantum computing,” said Wojciech Zurek, theoretical physicist at Los Alamos National Laboratory and leading authority on quantum theory. Dr. Zurek is widely renowned for his groundbreaking contribution to our understanding of the early universe as well as condensed matter systems through the discovery of the celebrated Kibble-Zurek mechanism. This mechanism underpins the physics behind the experiment reported in this paper. “The same hardware that has already provided useful experimental proving ground for quantum critical dynamics can be also employed to seek low-energy states that assist in finding solutions to optimization problems.”

“Disordered magnets, such as spin glasses, have long functioned as model systems for testing solvers of complex optimization problems,” said Gabriel Aeppli, professor of physics at ETH Zürich and EPF Lausanne, and head of the Photon Science Division of the Paul Scherrer Institut. Professor Aeppli coauthored the first experimental paper demonstrating advantage of quantum annealing over thermal annealing in reaching ground state of disordered magnets. “This paper gives evidence that the quantum dynamics of a dedicated hardware platform are faster than for known classical algorithms to find the preferred, lowest energy state of a spin glass, and so promises to continue to fuel the further development of quantum annealers for dealing with practical problems.”

“As a physicist who has built my career on computer simulations of quantum systems, it has been amazing to experience first-hand the transformative capabilities of quantum annealing devices,” said Anders Sandvik, professor of physics at Boston University and a coauthor of the paper. “This paper already demonstrates complex quantum dynamics on a scale beyond any classical simulation method, and I’m very excited about the expected enhanced performance of future devices. I believe we are now entering an era when quantum annealing becomes an essential tool for research on complex systems.”

“This work marks a major step towards large-scale quantum simulations of complex materials,” said Hidetoshi Nishimori, Professor, Institute of Innovative Research, Tokyo Institute of Technology and one of the original inventors of quantum annealing. “We can now expect novel physical phenomena to be revealed by quantum simulations using quantum annealing, ultimately leading to the design of materials of significant societal value.”

“This represents some of the most important experimental work ever performed in quantum optimization,” said Dr. Andrew King, director of performance research at D-Wave. “We’ve demonstrated a speedup over simulated annealing, in strong agreement with theory, providing high-quality solutions for large-scale problems. This work shows clear evidence of quantum dynamics in optimization, which we believe paves the way for even more complex problem-solving using quantum annealing in the future. The work exhibits a programmable realization of lab experiments that originally motivated quantum annealing 25 years ago.”

“Not only is this the largest demonstration of quantum simulation to date, but it also provides the first experimental evidence, backed by theory, that coherent quantum dynamics can accelerate the attainment of better solutions in quantum annealing,” said Mohammad Amin, fellow, quantum algorithms and systems, at D-Wave. “The observed speedup can be attributed to complex critical dynamics during quantum phase transition, which cannot be replicated by classical annealing algorithms, and the agreement between theory and experiment is remarkable. We believe these findings have significant implications for quantum optimization, with practical applications in addressing real-world problems.”

About D-Wave Quantum Inc.

D-Wave is a leader in the development and delivery of quantum computing systems, software, and services, and is the world’s first commercial supplier of quantum computers—and the only company building both annealing quantum computers and gate-model quantum computers. Our mission is to unlock the power of quantum computing today to benefit business and society. We do this by delivering customer value with practical quantum applications for problems as diverse as logistics, artificial intelligence, materials sciences, drug discovery, scheduling, cybersecurity, fault detection, and financial modeling. D-Wave’s technology is being used by some of the world’s most advanced organizations, including Volkswagen, Mastercard, Deloitte, Davidson Technologies, ArcelorMittal, Siemens Healthineers, Unisys, NEC Corporation, Pattison Food Group Ltd., DENSO, Lockheed Martin, Forschungszentrum Jülich, University of Southern California, and Los Alamos National Laboratory.

Forward-Looking Statements

This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, which statements are based on beliefs and assumptions and on information currently available. In some cases, you can identify forward-looking statements by the following words: “may,” “will,” “could,” “would,” “should,” “expect,” “intend,” “plan,” “anticipate,” “believe,” “estimate,” “predict,” “project,” “potential,” “continue,” “ongoing,” or the negative of these terms or other comparable terminology, although not all forward-looking statements contain these words. These statements involve risks, uncertainties, and other factors that may cause actual results, levels of activity, performance, or achievements to be materially different from the information expressed or implied by these forward-looking statements. We caution you that these statements are based on a combination of facts and factors currently known by us and our projections of the future, which are subject to a number of risks. Forward-looking statements in this press release include, but are not limited to, statements regarding the impact of the results of this study; the company’s Advantage2™ experimental prototype; and the potential for future problem-solving using quantum annealing. We cannot assure you that the forward-looking statements in this press release will prove to be accurate. These forward-looking statements are subject to a number of risks and uncertainties, including, among others, various factors beyond management’s control, including general economic conditions and other risks, our ability to expand our customer base and the customer adoption of our solutions, and the uncertainties and factors set forth in the sections entitled “Risk Factors” and “Cautionary Note Regarding Forward-Looking Statements” in D-Wave Quantum Inc.’s Form S-4 Registration Statement, as amended, previously filed with the Securities and Exchange Commission, as well as factors associated with companies, such as D-Wave, that are engaged in the business of quantum computing, including anticipated trends, growth rates, and challenges in those businesses and in the markets in which they operate; the outcome of any legal proceedings that may be instituted against us; risks related to the performance of our business and the timing of expected business or financial milestones; unanticipated technological or project development challenges, including with respect to the cost and or timing thereof; the performance of the our products; the effects of competition on our business; the risk that we will need to raise additional capital to execute our business plan, which may not be available on acceptable terms or at all; the risk that we may never achieve or sustain profitability; the risk that we are unable to secure or protect our intellectual property; volatility in the price of our securities; and the risk that our securities will not maintain the listing on the NYSE. Furthermore, if the forward-looking statements contained in this press release prove to be inaccurate, the inaccuracy may be material. In addition, you are cautioned that past performance may not be indicative of future results. In light of the significant uncertainties in these forward-looking statements, you should not place undue reliance on these statements in making an investment decision or regard these statements as a representation or warranty by any person we will achieve our objectives and plans in any specified time frame, or at all. The forward-looking statements in this press release represent our views as of the date of this press release. We anticipate that subsequent events and developments will cause our views to change. However, while we may elect to update these forward-looking statements at some point in the future, we have no current intention of doing so except to the extent required by applicable law. You should, therefore, not rely on these forward-looking statements as representing our views as of any date subsequent to the date of this press release.

Here’s a link to and a citation for the paper,

Quantum critical dynamics in a 5,000-qubit programmable spin glass by Andrew D. King, Jack Raymond, Trevor Lanting, Richard Harris, Alex Zucca, Fabio Altomare, Andrew J. Berkley, Kelly Boothby, Sara Ejtemaee, Colin Enderud, Emile Hoskinson, Shuiyuan Huang, Eric Ladizinsky, Allison J. R. MacDonald, Gaelen Marsden, Reza Molavi, Travis Oh, Gabriel Poulin-Lamarre, Mauricio Reis, Chris Rich, Yuki Sato, Nicholas Tsai, Mark Volkmann, Jed D. Whittaker, Jason Yao, Anders W. Sandvik & Mohammad H. Amin. Nature volume 617, pages 61–66 (2023) DOI: https://doi.org/10.1038/s41586-023-05867-2 Published: 19 April 2023 Issue Date: 04 May 2023

This paper is behind a paywall but there is an open access version on the arxiv website which means that it has had some peer review but may differ from the version in Nature.

Exotic magnetism: a quantum simulation from D-Wave Sytems

Vancouver (Canada) area company, D-Wave Systems is trumpeting itself (with good reason) again. This 2021 ‘milestone’ achievement builds on work from 2018 (see my August 23, 2018 posting for the earlier work). For me, the big excitement was finding the best explanation for quantum annealing and D-Wave’s quantum computers that I’ve seen yet (that explanation and a link to more is at the end of this posting).

A February 18, 2021 news item on phys.org announces the latest achievement,

D-Wave Systems Inc. today [February 18, 2021] published a milestone study in collaboration with scientists at Google, demonstrating a computational performance advantage, increasing with both simulation size and problem hardness, to over 3 million times that of corresponding classical methods. Notably, this work was achieved on a practical application with real-world implications, simulating the topological phenomena behind the 2016 Nobel Prize in Physics. This performance advantage, exhibited in a complex quantum simulation of materials, is a meaningful step in the journey toward applications advantage in quantum computing.

A February 18, 2021 D-Wave Systems press release (also on EurekAlert), which originated the news item, describes the work in more detail,

The work by scientists at D-Wave and Google also demonstrates that quantum effects can be harnessed to provide a computational advantage in D-Wave processors, at problem scale that requires thousands of qubits. Recent experiments performed on multiple D-Wave processors represent by far the largest quantum simulations carried out by existing quantum computers to date.

The paper, entitled “Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets”, was published in the journal Nature Communications (DOI 10.1038/s41467-021-20901-5, February 18, 2021). D-Wave researchers programmed the D-Wave 2000Q™ system to model a two-dimensional frustrated quantum magnet using artificial spins. The behavior of the magnet was described by the Nobel-prize winning work of theoretical physicists Vadim Berezinskii, J. Michael Kosterlitz and David Thouless. They predicted a new state of matter in the 1970s characterized by nontrivial topological properties. This new research is a continuation of previous breakthrough work published by D-Wave’s team in a 2018 Nature paper entitled “Observation of topological phenomena in a programmable lattice of 1,800 qubits” (Vol. 560, Issue 7719, August 22, 2018). In this latest paper, researchers from D-Wave, alongside contributors from Google, utilize D-Wave’s lower noise processor to achieve superior performance and glean insights into the dynamics of the processor never observed before.

“This work is the clearest evidence yet that quantum effects provide a computational advantage in D-Wave processors,” said Dr. Andrew King, principal investigator for this work at D-Wave. “Tying the magnet up into a topological knot and watching it escape has given us the first detailed look at dynamics that are normally too fast to observe. What we see is a huge benefit in absolute terms, with the scaling advantage in temperature and size that we would hope for. This simulation is a real problem that scientists have already attacked using the algorithms we compared against, marking a significant milestone and an important foundation for future development. This wouldn’t have been possible today without D-Wave’s lower noise processor.”

“The search for quantum advantage in computations is becoming increasingly lively because there are special problems where genuine progress is being made. These problems may appear somewhat contrived even to physicists, but in this paper from a collaboration between D-Wave Systems, Google, and Simon Fraser University [SFU], it appears that there is an advantage for quantum annealing using a special purpose processor over classical simulations for the more ‘practical’ problem of finding the equilibrium state of a particular quantum magnet,” said Prof. Dr. Gabriel Aeppli, professor of physics at ETH Zürich and EPF Lausanne, and head of the Photon Science Division of the Paul Scherrer Institute. “This comes as a surprise given the belief of many that quantum annealing has no intrinsic advantage over path integral Monte Carlo programs implemented on classical processors.”

“Nascent quantum technologies mature into practical tools only when they leave classical counterparts in the dust in solving real-world problems,” said Hidetoshi Nishimori, Professor, Institute of Innovative Research, Tokyo Institute of Technology. “A key step in this direction has been achieved in this paper by providing clear evidence of a scaling advantage of the quantum annealer over an impregnable classical computing competitor in simulating dynamical properties of a complex material. I send sincere applause to the team.”

“Successfully demonstrating such complex phenomena is, on its own, further proof of the programmability and flexibility of D-Wave’s quantum computer,” said D-Wave CEO Alan Baratz. “But perhaps even more important is the fact that this was not demonstrated on a synthetic or ‘trick’ problem. This was achieved on a real problem in physics against an industry-standard tool for simulation–a demonstration of the practical value of the D-Wave processor. We must always be doing two things: furthering the science and increasing the performance of our systems and technologies to help customers develop applications with real-world business value. This kind of scientific breakthrough from our team is in line with that mission and speaks to the emerging value that it’s possible to derive from quantum computing today.”

The scientific achievements presented in Nature Communications further underpin D-Wave’s ongoing work with world-class customers to develop over 250 early quantum computing applications, with a number piloting in production applications, in diverse industries such as manufacturing, logistics, pharmaceutical, life sciences, retail and financial services. In September 2020, D-Wave brought its next-generation Advantage™ quantum system to market via the Leap™ quantum cloud service. The system includes more than 5,000 qubits and 15-way qubit connectivity, as well as an expanded hybrid solver service capable of running business problems with up to one million variables. The combination of Advantage’s computing power and scale with the hybrid solver service gives businesses the ability to run performant, real-world quantum applications for the first time.

That last paragraph seems more sales pitch than research oriented. It’s not unexpected in a company’s press release but I was surprised that the editors at EurekAlert didn’t remove it.

Here’s a link to and a citation for the latest paper,

Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets by Andrew D. King, Jack Raymond, Trevor Lanting, Sergei V. Isakov, Masoud Mohseni, Gabriel Poulin-Lamarre, Sara Ejtemaee, William Bernoudy, Isil Ozfidan, Anatoly Yu. Smirnov, Mauricio Reis, Fabio Altomare, Michael Babcock, Catia Baron, Andrew J. Berkley, Kelly Boothby, Paul I. Bunyk, Holly Christiani, Colin Enderud, Bram Evert, Richard Harris, Emile Hoskinson, Shuiyuan Huang, Kais Jooya, Ali Khodabandelou, Nicolas Ladizinsky, Ryan Li, P. Aaron Lott, Allison J. R. MacDonald, Danica Marsden, Gaelen Marsden, Teresa Medina, Reza Molavi, Richard Neufeld, Mana Norouzpour, Travis Oh, Igor Pavlov, Ilya Perminov, Thomas Prescott, Chris Rich, Yuki Sato, Benjamin Sheldan, George Sterling, Loren J. Swenson, Nicholas Tsai, Mark H. Volkmann, Jed D. Whittaker, Warren Wilkinson, Jason Yao, Hartmut Neven, Jeremy P. Hilton, Eric Ladizinsky, Mark W. Johnson, Mohammad H. Amin. Nature Communications volume 12, Article number: 1113 (2021) DOI: https://doi.org/10.1038/s41467-021-20901-5 Published: 18 February 2021

This paper is open access.

Quantum annealing and more

Dr. Andrew King, one of the D-Wave researchers, has written a February 18, 2021 article on Medium explaining some of the work. I’ve excerpted one of King’s points,

Insight #1: We observed what actually goes on under the hood in the processor for the first time

Quantum annealing — the approach adopted by D-Wave from the beginning — involves setting up a simple but purely quantum initial state, and gradually reducing the “quantumness” until the system is purely classical. This takes on the order of a microsecond. If you do it right, the classical system represents a hard (NP-complete) computational problem, and the state has evolved to an optimal, or at least near-optimal, solution to that problem.

What happens at the beginning and end of the computation are about as simple as quantum computing gets. But the action in the middle is hard to get a handle on, both theoretically and experimentally. That’s one reason these experiments are so important: they provide high-fidelity measurements of the physical processes at the core of quantum annealing. Our 2018 Nature article introduced the same simulation, but without measuring computation time. To benchmark the experiment this time around, we needed lower-noise hardware (in this case, we used the D-Wave 2000Q lower noise quantum computer), and we needed, strangely, to slow the simulation down. Since the quantum simulation happens so fast, we actually had to make things harder. And we had to find a way to slow down both quantum and classical simulation in an equitable way. The solution? Topological obstruction.

If you have time and the inclination, I encourage you to read King’s piece.