Tag Archives: hockey

Is chemistry at the nanoscale applicable to hockey?

If the Carolina Hurricanes, a national hockey league (NHL) team, are to be believed the answer is a qualified yes. The connection between chemistry at the nanoscale and hockey is in the person of Eric Tulsky. A Sept. 8, 2015 article by James Mirtle for the Globe and Mail spells out the details,

Tulsky, 40, is a Harvard- and Berkeley-educated chemist whose field up until two months ago was nanotechnology, which essentially means he’s an expert in the manipulation of matter on a molecular level. Now he’ll be trying to help an NHL team win hockey games.

“He’s an extremely bright guy,” Hurricanes general manager Ron Francis said of his new hire, who is widely regarded as one of the top minds in hockey analytics. “We’re very excited that he decided to join us full-time and move to Raleigh.”

Tulsky spent the last few seasons working part-time for different NHL teams, including last year for Carolina. That the Hurricanes were able to woo him away from a high-paying tech job in the San Francisco Bay Area speaks to how far the league has come in terms of investment in data.

His promotion was one of nearly a dozen such personnel moves teams made over the off-season, building on what was an even busier hiring spree in 2014.

Canadian teams are also investing in data (from Mirtle’s article),

Last week, the Toronto Maple Leafs added Bruce Peter as a hockey research and development analyst, giving them four full-timers in a department that was created by assistant GM Kyle Dubas last season. Peter had been working for the Saskatoon Blades of the Western Hockey League, and is expected to have a key role in improving the Toronto Marlies’ use of analytics in a league where few statistics are widely kept.

Mirtle provides further insight into why Tulsky was hired,

It’s a movement [hockey analytics] Francis – one of the highest-scoring players in NHL history – has embraced.

“There’s [sic] little, subtle things the analytics will tell you,” said Francis, who began studying advanced statistics after retiring in 2004. “There are certainly things in the analytics that go against the way that I was brought up to think the game at times, which is interesting. So you watch the games, you think you see things, and it’s another balance and check in the process.”

NHL teams are often secretive about these hires and the work these people do. But Tulsky wrote extensively in the public domain for a variety of publications prior to 2014, and the base principles he believes in are on record.

Much of his work concentrated on puck possession – through a statistic called Corsi – but he also made innovative gains in measuring the most effective way for teams to enter the offensive zone. That became part of a paper presented at the MIT Sloan Sports Analytics Conference in Boston that ultimately caught the attention of NHL players such as Zach Parise.

In short, Tulsky’s analysis quantified that dumping the puck into the opponent’s end was a much less effective way to generate scoring chances than attempting to retain possession.

In Carolina, he will be asked to push his work into uncharted territory, attempting to give the small-budget Hurricanes an advantage over other teams by dissecting the game in new ways. …

It’s an interesting story and while the nano connection is tangential at best, I’m Canadian and hockey season is almost with us. What more needs to be said?

Hockey and nanotechnology; size issues in Australia

The snippet was intriguing, I mean just how does hockey, Australia, and nanotechnology link together? Anyway, there aren’t many Canadians who could resist the urge to check it out. From the Oct. 19, 2011 article by Guy Hand for ninemsn.com,

Imagine a pro golfer being told the hole will be made smaller, or a tennis player who finds his racquet has been swapped for a table tennis bat.

That’s the scenario facing new Kookaburras goalkeeper Tristan Clemons in this week’s four-nations hockey tournament in Perth with new rules in which the goals have been made a metre wider.

Hold on, the nanotechnology is coming,

For a player who will be confronted with size issues for the remainder of this week, strangely in his day job, Clemons works with the smallest of the small.

He is involved in nanotechnology, doing a PhD in developing medical technology from the tiniest of particles that can be absorbed into the bloodstream, aimed at finding cures for diseases such as cancer.

This tournament will also be attracting teams from Pakistan, New Zealand, and India. Another hockey tournament taking place at this time features Australian and Malaysian hockey players. Oh, they’re playing field hockey. (Yes, it took me until this morning [Oct. 21, 2011] before I remembered that hockey isn’t always played on ice.)

Transcript of nanocellulose fibre podcast interview with Alcides Leão, Ph.D., from São Paulo State University

The American Chemical Society (ACS) has a podcast and transcript of an interview with Alcides Leão, Ph.D., from São Paulo State University College of Agricultural Sciences, São Paulo, Brazil. (I last mentiioned Leão in my March 28, 2011 posting where I profiled his and his colleagues’ work on using nanocellulose fibres in automotive plastics as a greener alternative to the plastics currently used.) You might prefer to listen to the podcast (made available through the ACS’s Global Challenges/Chemistry Solutions project)  or you can read the transcript,

Global Challenges/Chemistry Solutions
Promoting Public Health: “Green” cars made from pineapples and bananas

Combating disease . . .  promoting public health … providing clean water and safe food . . . developing new sources of energy . . . confronting climate change. Hello, from the American Chemical Society — the ACS. Our more than 163,000 members make up the world’s largest scientific society. This is “Global Challenges/Chemistry Solutions: New Solutions 2011.” Global Challenges 2011 updates the ACS’ award-winning podcast series. In 2011, we are focusing on the four themes of the International Year of Chemistry: Health, energy, environment and materials. Today’s solution addressed the desirability of developing more “green” cars.

With manufacturers building hybrids that have excellent gas mileage, the next step appears to be new vehicles that are created through the fruits of workers’ labors, literally –– cars made, in part, out of bananas or pineapples. Their study, explaining how they can create stronger, lighter, and more sustainable materials for cars and other products, was presented this spring at the ACS 241st National Meeting & Exposition in Anaheim.Here’s study lead author Alcides Leão, Ph.D., with São Paulo State University College of Agricultural Sciences São Paulo, Brazil.

“The properties of these plastics are incredible. They are light, but very strong — 30 per cent lighter and 3-to-4 times stronger than the materials used today. We believe that a lot of car parts, including dashboards, bumpers, side panels, will be made of nano-sized fruit fibers in the future. For one thing, they will help reduce the weight of cars and that will improve fuel economy. They also will help us make more sturdy vehicles.”

Besides cutting down on weight and improving gas mileage, nano-cellulose reinforced plastics have mechanical advantages over conventional automotive plastics. These new plastics can reduce damage from heat and spilled gasoline [emphasis mine], for example.

“These new polymers can replace certain plastics used today or can be used to reinforce materials and this is a real advantage because the fruit plastics are biodegradable. Any source of cellulose-related material could be used. In fact, sludge from pulp and paper cellulose plants could be used. This sludge pulp accounts for a huge amount of waste in Brazil and other countries. How could you use fruit to build sturdier cars, some people have asked? The fact is that the nano-cellulose fibers that go into the plastics are almost as stiff as Kevlar, the renowned super-strong material used in armor and bulletproof vests. Unlike Kevlar and other traditional plastics, which are made from petroleum or natural gas, nano-cellulose fibers are completely renewable. We now have a partnership with a Malaysian company to use these fibers to develop a bullet-proof vest.”

The process, though expensive, has a major advantage which offsets the cost, and the approach looks promising for manufacturing other products in the future. Increasing production certainly will reduce the cost.“To prepare the nano-fibers, we inserted the leaves and stems of pineapples or other plants into a device similar to a pressure cooker. We then added certain chemicals to the plants and heated the mixture over several cycles, producing a fine material that resembles talcum powder. The process is costly, but it takes just one pound of nano-cellulose to produce 100 pounds of super-strong, lightweight plastic. So far, we’re focusing on replacing automotive plastics. But in the future, we may be able to replace steel and aluminum automotive parts using these plant-based nanocellulose materials. In addition, the new plastic could be used to build airplanes.”

Smart Chemists/Innovative Thinking

Smart chemists. Innovative thinking. That’s the key to solving global challenges of the 21st Century. Please check out more of our full-length podcasts on wide-ranging issues facing chemistry and science, such as promoting public health, developing new fuels and confronting climate change, at www.acs.org/GlobalChallenges.Today’s podcast was written by Michael Bernstein. I’m Adam Dylewski at the American Chemical Society in Washington.

I applaud the interest in providing solutions to our global challenges but let’s not forget that some of these challenges were created as a consequence of a failure to anticipate negative outcomes from  previous chemical solutions to challenges.

On a personal note, I’m intrigued to see that these new plastics could reduce damage from heat and spilled gasoline in light of last night’s events in Vancouver where after losing the Stanley Cup, some Canuck fans overturned and burned a few vehicles as well as smashing window storefronts and looting stores. Here’s a bit of a commentary from Elaine Lui (Lainey’s Gossip) on last night’s events and what’s happening today (Note: her language is a bit saltier than mine so I’ve compromised by replacing vowels with asterisks),

There’s nothing like running to your car to make sure it’s not vandalised. The crowd was already pretty angry when we went past. And we were early. We darted across the street to avoid a fight, were fortunate to find the car unharmed, and got out of there quickly, safely home to our dogs. Others, as you’ve probably seen, were not so lucky.

It sucks that the Canucks lost the Stanley Cup. But it sucks even more that this is the image you have of Vancouver today. They keep saying that a small group of d*ckh**ds deliberately destroyed the city and that their efforts should not represent who and what we are. But what about all those people just standing there, not leaving, so that they could photo bomb a fight, and post that sh*t on Facebook?

While you shake your head at the idiocy that went down last night, I wonder if you could take a moment to consider that there is profound heartbreak today for the people who love Vancouver to see, to know, that these *ssh*l*s, who are not true fans, have p*ss*d on the face of our awesome town.

The people of our awesome town are already trying to restore it. Thousands of Vancouver residents have already volunteered to assist with clean up efforts. Click here for more information and follow @vancouverclean for updates on how and where you can help.

Lui is a gossip columnist who generally concentrates on movie, television, and fashion industry gossip with an occasional foray into film and literary criticism.

ETA: I should credit Cameron Chai’s June 16, 2011 news item at Azonano for providing me with the information about the ACS podcast.