Tag Archives: honey bees

ZomBee Hunters! a citizen science project for finding zombified honey bees

It seems honey bees, in addition to the colony collapse disorder, have a new problem: being turned into ‘zombies’.  From the July 24, 2012 news release on EurekAlert,

The San Francisco State University researchers who accidentally discovered “zombie-like” bees infected with a deadly fly parasite want people across the United States and Canada to look for similar bees in their own backyards.

Today SF State Professor of Biology John Hafernik and colleagues from the SF State Department of Biology and the Center for Computing for the Life Sciences launched ZomBeeWatch.org, a citizen science project to report possible sightings of the parasitized bees.

According to the website, ZomBeeWatch, the ‘Zombie’ or Apocephalis boralis fly lays its eggs (infects) in a honey bee, which parasitizes the honey bee with this consequence (from the news release),

… the “zombees” abandon their hives and congregate near outside lights, moving in increasingly erratic circles before dying. The phenomenon was first discovered on the SF State campus by Hafernik and colleagues, and reported last year in the research journal PLoS ONE.

Here’s the help researchers are asking for (from the news release),

The ZomBeeWatch site asks people to collect bees that appear to have died underneath outside lights, or appear to be behaving strangely under the lights, in a container. They can then watch for signs that indicate the bee was parasitized by the fly, which usually deposits its eggs into a bee’s abdomen. About seven days after the bee dies, fly larvae push their way into the world from between the bee’s head and thorax and form brown, pill-shaped pupae that are equivalent to a butterfly’s chrysalis.

If it looks like their sample contains hatched parasites, “zombee hunters” can upload photos of their sample’s contents to confirm whether they have found a parasitized bee. Along with information about the location of the photographed bee, the images will help the scientists build a better map of the honeybee infection.

ZombeeWatch offers tutorials on how to become a zombee hunter, complete with step-by-step instructions for monitoring and collecting bees, building a light trap and uploading data.

According to the map on ZombeeWatch, there have been reports of the zombified bees in California and South Dakota but no other sightings,yet. From the news release,

Hafernik says he has timed the launch of the site for when the parasitized population begins its seasonal rise. “Right now is still the low season for parasitized bees,” he explained, “but they will start ramping up in August. In the San Francisco Bay Area, infections peak in September through January. We hope to learn about the timing of infections in other areas of North America.”

Since last year’s report, Hafernik and his colleagues have embarked on an ambitious set of experiments to learn more about the plight of the infected honeybees. In one key project, the researchers, led by graduate student Christopher Quock, will tag infected bees with tiny radio frequency trackers to monitor their movements in and out of a specially designed hive. They hope the tracking system will tell them more about how the infection affects the bees’ foraging behavior and why they eventually abandon their hives.

Hafernik and his collaborators are eager to learn as much as they can about the parasite, since it may be an emerging and potentially costly threat to honeybee colonies, especially those that cross from state to state to be used in commercial pollination.

Finally,

The researchers hope the intense public interest in the parasitized bees earlier this year will encourage people to visit and contribute to the ZomBeeWatch site. “We’re sort of a mom and pop operation at this point,” Hafernik said, “but if we can enlist a dedicated group of citizen scientists to help us, together, we can answer important questions and help honeybees at the same time.”

Nanoparticles in diesel pollution and honeybees

The honey bee collapse, more properly colony collapse disorder (CCD), has been news in North America and Europe  for quite some time. There are any number of reasons for the disorder being suggested. (As I understand the current thinking on this issue, the collapse is a consequence of a number of different factors.) Recently, scientists at the United Nations have suggested CCD is becoming a global problem. From a March 10, 2011 news article by Michael McCarthy for The Independent,

Declines in bee colonies date back to the mid 1960s in Europe, but have accelerated since 1998, while in North America, losses of colonies since 2004 have left the continent with fewer managed pollinators than at any time in the past 50 years, says the report [Global Honey Bee Colony Disorders and Other Threats to Insect Pollinators {a United Nations Environment Programme Emerging Issues Report}].

Now Chinese beekeepers have recently “faced several inexplicable and complex symptoms of colony losses in both species”, the report says. And it has been reported elsewhere that some Chinese farmers have had to resort to pollinating fruit trees by hand because of the lack of insects.

Furthermore, a quarter of beekeepers in Japan “have recently been confronted with sudden losses of their bee colonies”, while in Africa, beekeepers along the Egyptian Nile have been reporting signs of “colony collapse disorder” – although to date there are no other confirmed reports from the rest of the continent.

The report lists a number of factors which may be coming together to cause the decline and they include:

* Habitat degradation, including the loss of flowering plant species that provide food for bees;

* Some insecticides, including the so-called “systemic” insecticides which can migrate to the entire plant as it grows and be taken in by bees in nectar and pollen;

* Parasites and pests, such as the well-known Varroa mite;

* Air pollution, which may be interfering with the ability of bees to find flowering plants and thus food – scents that could travel more than 800 metres in the 1800s now reach less than 200 metres from a plant.

Here’s one more possibility: scientists from the University of Southampton are suggesting nanoparticles in diesel fuel may be a contributing factor in CCD. From the Oct. 7, 2011 news item on Nanowerk,

Professor Guy Poppy, an ecologist, Dr Tracey Newman, a neuroscientist, and their team from the University of Southampton believe that minuscule particles, or ‘nanoparticles’, emitted from diesel engines could be affecting bees’ brains and damaging their inbuilt ‘sat-navs’. They believe this may stop worker bees finding their way back to the hive.

The team is also investigating the possibility that nanoparticles are one of a number of stress factors that could lead to a tipping point in bee health, which in turn could contribute to bee colony collapse.

“Diesel road-traffic is increasing in the UK and research from the US has shown that nanoparticles found in its fumes can be detrimental to the brains of animals when they are exposed to large doses. We want to find out if bees are affected in the same way – and answer the question of why bees aren’t finding their way back to the hive when they leave to find food,” explains Professor Poppy.

The team from the University of Southampton, including biologists, nanotechnology researchers and ecologists will test the behavioural and neurological changes in honey bees, after exposure to diesel nanoparticles.

If I understand this correctly, the nanoparticles have not been added to the diesel fuel; they are a by-product of its use, which means we’ve been emitting diesel fuel nanoparticles for quite some time.

In any event, having a number of contributing factors for CCD suggests that a comprehensive strategy will be needed to solve the problems. In short, international cooperation will be required to ban chemicals, change habitat use, etc.