Tag Archives: hyaluronic acid

New approach to cartilage regeneration

Not long after announcing their new work on cartilage and ‘dancing molecules’, Samuel I. Stupp and his team at Northwestern University (Chicago, Illinois) have announced work with a new material that does not have dancing molecules in a study using animal models. It’s here in an August 5, 02024 Northwestern University news release (also on EurekAlert and on SciTechDaily and received by email) by Amanda Morris, Note: Links have been removed,

Northwestern University scientists have developed a new bioactive material that successfully regenerated high-quality cartilage in the knee joints of a large-animal model.

Although it looks like a rubbery goo, the material is actually a complex network of molecular components, which work together to mimic cartilage’s natural environment in the body. 

In the new study, the researchers applied the material to damaged cartilage in the animals’ knee joints. Within just six months, the researchers observed evidence of enhanced repair, including the growth of new cartilage containing the natural biopolymers (collagen II and proteoglycans), which enable pain-free mechanical resilience in joints.

With more work, the researchers say the new material someday could potentially be used to prevent full knee replacement surgeries, treat degenerative diseases like osteoarthritis and repair sports-related injuries like ACL [anterior cruciate ligament] tears.

The study will be published during the week of August 5 [2024] in the Proceedings of the National Academy of Sciences.

“Cartilage is a critical component in our joints,” said Northwestern’s Samuel I. Stupp, who led the study. “When cartilage becomes damaged or breaks down over time, it can have a great impact on people’s overall health and mobility. The problem is that, in adult humans, cartilage does not have an inherent ability to heal. Our new therapy can induce repair in a tissue that does not naturally regenerate. We think our treatment could help address a serious, unmet clinical need.”

A pioneer of regenerative nanomedicine, Stupp is Board of Trustees Professor of Materials Science and Engineering, Chemistry, Medicine and Biomedical Engineering at Northwestern, where he is founding director of the Simpson Querrey Institute for BioNanotechnology and its affiliated center, the Center for Regenerative Nanomedicine. Stupp has appointments in the McCormick School of Engineering, Weinberg College of Arts and Sciences and Feinberg School of Medicine. Jacob Lewis, a former Ph.D. student in Stupp’s laboratory, is the paper’s first author.

What’s in the material?

The new study follows recently published work from the Stupp laboratory, in which the team used “dancing molecules” to activate human cartilage cells to boost the production of proteins that build the tissue matrix. Instead of using dancing molecules, the new study evaluates a hybrid biomaterial also developed in Stupp’s lab. The new biomaterial comprises two components: a bioactive peptide that binds to transforming growth factor beta-1 (TGFb-1) — an essential protein for cartilage growth and maintenance — and modified hyaluronic acid, a natural polysaccharide present in cartilage and the lubricating synovial fluid in joints. 

“Many people are familiar with hyaluronic acid because it’s a popular ingredient in skincare products,” Stupp said. “It’s also naturally found in many tissues throughout the human body, including the joints and brain. We chose it because it resembles the natural polymers found in cartilage.”

Stupp’s team integrated the bioactive peptide and chemically modified hyaluronic acid particles to drive the self-organization of nanoscale fibers into bundles that mimic the natural architecture of cartilage. The goal was to create an attractive scaffold for the body’s own cells to regenerate cartilage tissue. Using bioactive signals in the nanoscale fibers, the material encourages cartilage repair by the cells, which populate the scaffold.

Clinically relevant to humans

To evaluate the material’s effectiveness in promoting cartilage growth, the researchers tested it in sheep with cartilage defects in the stifle joint, a complex joint in the hind limbs similar to the human knee. This work was carried out in the laboratory of Mark Markel in the School of Veterinary Medicine at the University of Wisconsin–Madison. 

According to Stupp, testing in a sheep model was vital. Much like humans, sheep cartilage is stubborn and incredibly difficult to regenerate. Sheep stifles and human knees also have similarities in weight bearing, size and mechanical loads.

“A study on a sheep model is more predictive of how the treatment will work in humans,” Stupp said. “In other smaller animals, cartilage regeneration occurs much more readily.”

In the study, researchers injected the thick, paste-like material into cartilage defects, where it transformed into a rubbery matrix. Not only did new cartilage grow to fill the defect as the scaffold degraded, but the repaired tissue was consistently higher quality compared to the control.

A lasting solution

In the future, Stupp imagines the new material could be applied to joints during open-joint or arthroscopic surgeries. The current standard of care is microfracture surgery, during which surgeons create tiny fractures in the underlying bone to induce new cartilage growth.

“The main issue with the microfracture approach is that it often results in the formation of fibrocartilage — the same cartilage in our ears — as opposed to hyaline cartilage, which is the one we need to have functional joints,” Stupp said. “By regenerating hyaline cartilage, our approach should be more resistant to wear and tear, fixing the problem of poor mobility and joint pain for the long term while also avoiding the need for joint reconstruction with large pieces of hardware.”

The study, “A bioactive supramolecular and covalent polymer scaffold for cartilage repair in a sheep model,” was supported by the Mike and Mary Sue Shannon Family Fund for Bio-Inspired and Bioactive Materials Systems for Musculoskeletal Regeneration.

Here’s a link to and a citation for the paper,

A bioactive supramolecular and covalent polymer scaffold for cartilage repair in a sheep model by Jacob A. Lewis, Brett Nemke, Yan Lu, Nicholas A. Sather, Mark T. McClendon, Michael Mullen, Shelby C. Yuan, Sudheer K. Ravuri, Jason A. Bleedorn, Marc J. Philippon, Johnny Huard, Mark D. Markel, and Samuel I. Stupp. Proceedings ot the National Academy of Sciences (PNAS) 121 (33) e2405454121 DOI: https://doi.org/10.1073/pnas.2405454121 August 6, 2024

This paper is behind a paywall.

Cerium-containing nanoparticles in microneedle patches for hair regrowth (a treatment for baldness?)

It’s still being tested but according to an August 11, 2021 news item on ScienceDaily, this is a promising treatment for baldness,

Although some people say that baldness is the “new sexy,” for those losing their hair, it can be distressing. An array of over-the-counter remedies are available, but most of them don’t focus on the primary causes: oxidative stress and insufficient circulation. Now, researchers reporting in ACS Nano have designed a preliminary microneedle patch containing cerium nanoparticles to combat both problems, regrowing hair in a mouse model faster than a leading treatment.

An August 11, 2021 American Chemical Society (ACS) news release (also on EurekAlert) provides more detail (Note: Links have been removed),

The most common hair loss condition is called androgenic alopecia, also known as male- or female- pattern baldness. Hair loss is permanent for people with the condition because there aren’t enough blood vessels surrounding the follicles to deliver nutrients, cytokines and other essential molecules. In addition, an accumulation of reactive oxygen species in the scalp can trigger the untimely death of the cells that form and grow new hair. Previously, Fangyuan Li, Jianqing Gao and colleagues determined that cerium-containing nanoparticles can mimic enzymes that remove excess reactive oxygen species, which reduced oxidative stress in liver injuries, wounds and Alzheimer’s disease. However, these nanoparticles cannot cross the outermost layer of skin. So, the researchers wanted to design a minimally invasive way to deliver cerium-containing nanoparticles near hair roots deep under the skin to promote hair regrowth.

As a first step, the researchers coated cerium nanoparticles with a biodegradable polyethylene glycol-lipid compound. Then they made the dissolvable microneedle patch by pouring a mixture of hyaluronic acid — a substance that is naturally abundant in human skin — and cerium-containing nanoparticles into a mold. The team tested control patches and the cerium-containing ones on male mice with bald spots formed by a hair removal cream. Both applications stimulated the formation of new blood vessels around the mice’s hair follicles. However, those treated with the nanoparticle patch showed faster signs of hair undergoing a transition in the root, such as earlier skin pigmentation and higher levels of a compound found only at the onset of new hair development. These mice also had fewer oxidative stress compounds in their skin. Finally, the researchers found that the cerium-containing microneedle patches resulted in faster mouse hair regrowth with similar coverage, density and diameter compared with a leading topical treatment and could be applied less frequently. Microneedle patches that introduce cerium nanoparticles into the skin are a promising strategy to reverse balding for androgenetic alopecia patients, the researchers say.

The authors acknowledge funding from the Ten-thousand Talents Program of Zhejiang Province, National Key R&D Program of China, National Natural Science Foundation of China, One Belt and One Road International Cooperation Project from the Key Research and Development Program of Zhejiang Province, Fundamental Research Funds for the Central Universities and Zhejiang Provincial Natural Science Foundation of China.

Here’s a link to and a citation for the paper,

Ceria Nanozyme-Integrated Microneedles Reshape the Perifollicular Microenvironment for Androgenetic Alopecia Treatment by Anran Yuan, Fan Xia, Qiong Bian, Haibin Wu, Yueting Gu, Tao Wang, Ruxuan Wang, Lingling Huang, Qiaoling Huang, Yuefeng Rao, Daishun Ling, Fangyuan Li, and Jianqing Gao. ACS Nano 2021, XXXX, XXX, XXX-XXX DOI: https://doi.org/10.1021/acsnano.1c05272 Publication Date:July 19, 2021 © 2021 American Chemical Society

This paper is behind a paywall.

Nanofibrous fish skins for wrinkle-free skin (New Zealand’s biggest seafood company moves into skincare)

I am utterly enchanted by this venture employing fish skins and nanotechnology-based processes for a new line of skin care products and, they hope, medical applications,


For those who like text (from a May 21, 2018 Sanford media advisory),

Nanofibre magic turns fish skins into wrinkle busting skin care

Sanford partners with kiwi nanotech experts to help develop a wrinkle-busting skincare product made from Hoki skins.

New Zealand’s biggest and oldest seafood company is moving into the future of skincare and medicine by becoming supporting partner to West Auckland nanofibre producer Revolution Fibres, which is launching a potentially game-changing nanotech face mask.

The actiVLayr face masks use collagen extracted from fish skins as a base ingredient which is then combined with elements such as fruit extracts and hyaluronic acid to make a 100 percent natural and sustainably sourced product.

They have achieved stunning results in third party tests which show that the nanofiber masks can reduce wrinkles by up to 31.5%.*

Revolution Fibres CEO Iain Hosie says it is no exaggeration to say the masks could be revolutionary.

“The wayactiVLayr is produced, and the unique application method of placing it onto wet skin like a mask, means ingredients are absorbed quickly and efficiently into the skin to maximise the repair and protection of the skin.”

Sanford is delighted to support the work that Revolution Fibres is doing by supplying hoki fish skins. Hoki is a sustainably caught fish and its skin has some unique properties.

Sanford’s General Manager of Innovation, Andrew Stanley, says these properties make it ideal for the actiVLayr technology. “Hoki skins are rich in collagen, which is an essential part of our bodies. But their marine collagen is unique – it has a very low melt point, so when placed on the skin, it can dissolve completely and be absorbed in a way that collagen f rom other animals cannot.”

Sanford’s Chief Customer Officer, Andre Gargiulo, says working with the team at Revolution Fibres is a natural fit, because both company’s think about innovation and sustainability in the same way.

“We hope actiVLayr gets the global attention it deserves, and we’re delighted that our sustainably caught Hoki is part of this fantastic New Zealand product. It’s exactly what we’re all about at Sanford – making the most of the precious resources from the sea, working in a sustainable way and getting the most value out of the goodness we harvest from nature.”

Sanford’s Business Development Manager Adrian Grey says the focus on sustainability and value creation are so important for the seafood company.

“Previously we have been making use of these hoki skins, which is great, but they were being used only for fish meal or pet food products. Being able to supply and support a high tech company that is going to earn increased export revenue for New Zealand is just fantastic. And the product created is completely natural, harvested from a globally certified sustainable fishery.”

Sanford provides the hoki skins and then turns these skins into pure collagen using the science and skills of the team at Plant and Food in Nelson [New Zealand for those of us who associate Nelson with British Columbia]. Revolution Fibres transforms the Sanford product into nanofibre using a technique called electrospinning of which Revolution Fibres are the New Zealand pioneers.

During the electrospinning process natural ingredients known as “bioactives” (such as kiwifruit and grapes) and hyaluronic acid (an ingredient to help the skin retain moisture) are bonded to the nanofibres to create sheets of actiVLayr. When it is exposed to wet skin the nanofibres dissolve rapidly and release the bioactives deep into the skin.

The product is being launched at the China Beauty Fair in Shanghai on May 22 [2018] and will go on sale in China this month followed by Hong Kong and New Zealand later in the year.   Revolution Fibres CEO Iain Hosie says there is big demand for unique delivery systems of natural skin and beauty products such as actiVLayr in Asia, which was the key reason to launch the product in China. But his view of the future is even bigger.

“There are endless uses for actiVLayr and the one we’re most proud of is in the medical area with the ability for drug compounds or medicines to be added to the actiVLayr formula. It will enable a controlled dose to be delivered to a patient with skin lesions, burns or acne.”

Revolution Fibres is presenting at Techweek NZ as part of The Fourth Revolution event on May 25 [2018] in Christchurch which introduces high tech engineers who are building a better place.

*Testing conducted by Easy Care using VISIA Complexion Analysis

The media advisory also includes some ‘fascinating ‘facts’,

1kg of hoki skin produces 400 square meters of nanofibre material

Nanofibres are 1/500th the width of a human hair

Revolution Fibres is the only nanofibre producer in the world to meet aerospace industry standards with its AS9100d quality assurance certification

The marine collagen found in hoki skins is unique because of its relatively low melt point, meaning it can dissolve at a lower temperature which makes it perfect for human use

Revolution Fibres is based in West Auckland and employs 12 people, of which 4 have P hDs in science related to nanotechnology. There are also a number of employees with strong engineering backgrounds to complement the company’s Research & Development expertise

Sanford is New Zealand’s oldest and biggest seafood company. It was founded by Albert Sanford in Auckland in 1904

New Zealand’s hoki fishery is certified as sustainable by the London-based Marine Stewardship Council, which audits fisheries all over the world

You can find Sanford here and Revolution Fibres here.

For some perspective on the business side of things, there’s a May 21, 2018 article by Nikki Mandow for newsroom.co.nz,

Revolution Fibres first started talking about the possibility of a collagen nanofibre made from hoki almost a decade ago, as part of a project with Plant & Food’s Seafood Research Centre in Nelson, Hosie [Revolution Fibres CEO Iain Hosie] said, and the company got serious about making a product in 2013.

Previously, the hoki waste skins were used for fish meal and pet food, said Sanford business development manager Adrian Grey.

“Being able to supply and support a high tech company that is going to earn increased export revenue for New Zealand is just fantastic.”

Revolution Fibres also manufactures nanofibres for a number of other uses. These include anti-dust mite pillow coverings, anti-pollution protective face masks, filters for pumps for HRV’s home ventilation systems, and reinforcing material for carbon fibre for fishing rods. The latter product is made from recycled fishing nets collected from South America.

He [Revolution Fibres CEO Iain Hosie] said the company could be profitable, but instead has chosen to continue to invest heavily in research and development.

About 75 percent of revenue comes from selling proprietary products, but increasingly Hosie said the company is working on “co-innovation” projects, where Revolution Fibres manufactures bespoke materials for outside companies.

Revolution Fibres completed its first external funding round last year, raising $1.5 million from the US, and it has just completed another round worth approximately $1million. Hosie, one of the founders, still holds around 20 percent of the company.

He said he hopes to keep the intellectual property in New Zealand, although manufacturing of some products is likely to move closer to their markets – China and the US potentially. However, he said actiVLayr manufacture will remain in New Zealand, because that’s where the raw hoki comes from.

I wonder if we’ll see this product in Canada.

One other thing,  I was curious about this ” … the nanofiber masks can reduce wrinkles by up to 31.5%”  and Visia Complexion Analysis, which is a product from Canfield Scientific, a company specializing in imaging.  Here’s some of what Visia can do (from the Visia product page),

Percentile Scores

Percentile Scores

VISIA’s patented comparison to norms analysis uses the world’s largest skin feature database to grade your patient’s skin relative to others of the same age and skin type. Measure spots, wrinkles, texture, pores, UV spots, brown spots, red areas, and porphyrins.

Meaningful Comparisons

Meaningful Comparisons

Compare results side by side for any combination of views, features or time points, including graphs and numerical data. Zoom and pan images in tandem for clear and easy comparisons.

And, there’s my personal favourite (although it has nothing to do with the topic of this posting0,

Eyelash Analysis

Eyelash Analysis

Evaluates the results of lash improvement treatments with numerical assessments and graphic visualizations.

For anyone who wondered about why the press release has both ‘nanofibre’ and ‘nanofiber’, It’s the difference between US and UK spelling. Perhaps the complexion analysis information came from a US company or one that uses US spellings.