Tag Archives: Ian MacLachlan

2023 Nobel prizes (medicine, physics, and chemistry)

For the first time in the 15 years this blog has been around, the Nobel prizes awarded in medicine, physics, and chemistry all are in areas discussed here at one or another. As usual where people are concerned, some of these scientists had a tortuous journey to this prestigious outcome.

Medicine

Two people (Katalin Karikó and Drew Weissman) were awarded the prize in medicine according to the October 2, 2023 Nobel Prize press release, Note: Links have been removed,

The Nobel Assembly at Karolinska Institutet [Sweden]

has today decided to award

the 2023 Nobel Prize in Physiology or Medicine

jointly to

Katalin Karikó and Drew Weissman

for their discoveries concerning nucleoside base modifications that enabled the development of effective mRNA vaccines against COVID-19

The discoveries by the two Nobel Laureates were critical for developing effective mRNA vaccines against COVID-19 during the pandemic that began in early 2020. Through their groundbreaking findings, which have fundamentally changed our understanding of how mRNA interacts with our immune system, the laureates contributed to the unprecedented rate of vaccine development during one of the greatest threats to human health in modern times.

Vaccines before the pandemic

Vaccination stimulates the formation of an immune response to a particular pathogen. This gives the body a head start in the fight against disease in the event of a later exposure. Vaccines based on killed or weakened viruses have long been available, exemplified by the vaccines against polio, measles, and yellow fever. In 1951, Max Theiler was awarded the Nobel Prize in Physiology or Medicine for developing the yellow fever vaccine.

Thanks to the progress in molecular biology in recent decades, vaccines based on individual viral components, rather than whole viruses, have been developed. Parts of the viral genetic code, usually encoding proteins found on the virus surface, are used to make proteins that stimulate the formation of virus-blocking antibodies. Examples are the vaccines against the hepatitis B virus and human papillomavirus. Alternatively, parts of the viral genetic code can be moved to a harmless carrier virus, a “vector.” This method is used in vaccines against the Ebola virus. When vector vaccines are injected, the selected viral protein is produced in our cells, stimulating an immune response against the targeted virus.

Producing whole virus-, protein- and vector-based vaccines requires large-scale cell culture. This resource-intensive process limits the possibilities for rapid vaccine production in response to outbreaks and pandemics. Therefore, researchers have long attempted to develop vaccine technologies independent of cell culture, but this proved challenging.

Illustration of methods for vaccine production before the COVID-19 pandemic.
Figure 1. Methods for vaccine production before the COVID-19 pandemic. © The Nobel Committee for Physiology or Medicine. Ill. Mattias Karlén

mRNA vaccines: A promising idea

In our cells, genetic information encoded in DNA is transferred to messenger RNA (mRNA), which is used as a template for protein production. During the 1980s, efficient methods for producing mRNA without cell culture were introduced, called in vitro transcription. This decisive step accelerated the development of molecular biology applications in several fields. Ideas of using mRNA technologies for vaccine and therapeutic purposes also took off, but roadblocks lay ahead. In vitro transcribed mRNA was considered unstable and challenging to deliver, requiring the development of sophisticated carrier lipid systems to encapsulate the mRNA. Moreover, in vitro-produced mRNA gave rise to inflammatory reactions. Enthusiasm for developing the mRNA technology for clinical purposes was, therefore, initially limited.

These obstacles did not discourage the Hungarian biochemist Katalin Karikó, who was devoted to developing methods to use mRNA for therapy. During the early 1990s, when she was an assistant professor at the University of Pennsylvania, she remained true to her vision of realizing mRNA as a therapeutic despite encountering difficulties in convincing research funders of the significance of her project. A new colleague of Karikó at her university was the immunologist Drew Weissman. He was interested in dendritic cells, which have important functions in immune surveillance and the activation of vaccine-induced immune responses. Spurred by new ideas, a fruitful collaboration between the two soon began, focusing on how different RNA types interact with the immune system.

The breakthrough

Karikó and Weissman noticed that dendritic cells recognize in vitro transcribed mRNA as a foreign substance, which leads to their activation and the release of inflammatory signaling molecules. They wondered why the in vitro transcribed mRNA was recognized as foreign while mRNA from mammalian cells did not give rise to the same reaction. Karikó and Weissman realized that some critical properties must distinguish the different types of mRNA.

RNA contains four bases, abbreviated A, U, G, and C, corresponding to A, T, G, and C in DNA, the letters of the genetic code. Karikó and Weissman knew that bases in RNA from mammalian cells are frequently chemically modified, while in vitro transcribed mRNA is not. They wondered if the absence of altered bases in the in vitro transcribed RNA could explain the unwanted inflammatory reaction. To investigate this, they produced different variants of mRNA, each with unique chemical alterations in their bases, which they delivered to dendritic cells. The results were striking: The inflammatory response was almost abolished when base modifications were included in the mRNA. This was a paradigm change in our understanding of how cells recognize and respond to different forms of mRNA. Karikó and Weissman immediately understood that their discovery had profound significance for using mRNA as therapy. These seminal results were published in 2005, fifteen years before the COVID-19 pandemic.

Illustration of the four different bases mRNA contains.
Figure 2. mRNA contains four different bases, abbreviated A, U, G, and C. The Nobel Laureates discovered that base-modified mRNA can be used to block activation of inflammatory reactions (secretion of signaling molecules) and increase protein production when mRNA is delivered to cells.  © The Nobel Committee for Physiology or Medicine. Ill. Mattias Karlén

In further studies published in 2008 and 2010, Karikó and Weissman showed that the delivery of mRNA generated with base modifications markedly increased protein production compared to unmodified mRNA. The effect was due to the reduced activation of an enzyme that regulates protein production. Through their discoveries that base modifications both reduced inflammatory responses and increased protein production, Karikó and Weissman had eliminated critical obstacles on the way to clinical applications of mRNA.

mRNA vaccines realized their potential

Interest in mRNA technology began to pick up, and in 2010, several companies were working on developing the method. Vaccines against Zika virus and MERS-CoV were pursued; the latter is closely related to SARS-CoV-2. After the outbreak of the COVID-19 pandemic, two base-modified mRNA vaccines encoding the SARS-CoV-2 surface protein were developed at record speed. Protective effects of around 95% were reported, and both vaccines were approved as early as December 2020.

The impressive flexibility and speed with which mRNA vaccines can be developed pave the way for using the new platform also for vaccines against other infectious diseases. In the future, the technology may also be used to deliver therapeutic proteins and treat some cancer types.

Several other vaccines against SARS-CoV-2, based on different methodologies, were also rapidly introduced, and together, more than 13 billion COVID-19 vaccine doses have been given globally. The vaccines have saved millions of lives and prevented severe disease in many more, allowing societies to open and return to normal conditions. Through their fundamental discoveries of the importance of base modifications in mRNA, this year’s Nobel laureates critically contributed to this transformative development during one of the biggest health crises of our time.

Read more about this year’s prize

Scientific background: Discoveries concerning nucleoside base modifications that enabled the development of effective mRNA vaccines against COVID-19

Katalin Karikó was born in 1955 in Szolnok, Hungary. She received her PhD from Szeged’s University in 1982 and performed postdoctoral research at the Hungarian Academy of Sciences in Szeged until 1985. She then conducted postdoctoral research at Temple University, Philadelphia, and the University of Health Science, Bethesda. In 1989, she was appointed Assistant Professor at the University of Pennsylvania, where she remained until 2013. After that, she became vice president and later senior vice president at BioNTech RNA Pharmaceuticals. Since 2021, she has been a Professor at Szeged University and an Adjunct Professor at Perelman School of Medicine at the University of Pennsylvania.

Drew Weissman was born in 1959 in Lexington, Massachusetts, USA. He received his MD, PhD degrees from Boston University in 1987. He did his clinical training at Beth Israel Deaconess Medical Center at Harvard Medical School and postdoctoral research at the National Institutes of Health. In 1997, Weissman established his research group at the Perelman School of Medicine at the University of Pennsylvania. He is the Roberts Family Professor in Vaccine Research and Director of the Penn Institute for RNA Innovations.

The University of Pennsylvania October 2, 2023 news release is a very interesting announcement (more about why it’s interesting afterwards), Note: Links have been removed,

The University of Pennsylvania messenger RNA pioneers whose years of scientific partnership unlocked understanding of how to modify mRNA to make it an effective therapeutic—enabling a platform used to rapidly develop lifesaving vaccines amid the global COVID-19 pandemic—have been named winners of the 2023 Nobel Prize in Physiology or Medicine. They become the 28th and 29th Nobel laureates affiliated with Penn, and join nine previous Nobel laureates with ties to the University of Pennsylvania who have won the Nobel Prize in Medicine.

Nearly three years after the rollout of mRNA vaccines across the world, Katalin Karikó, PhD, an adjunct professor of Neurosurgery in Penn’s Perelman School of Medicine, and Drew Weissman, MD, PhD, the Roberts Family Professor of Vaccine Research in the Perelman School of Medicine, are recipients of the prize announced this morning by the Nobel Assembly in Solna, Sweden.

After a chance meeting in the late 1990s while photocopying research papers, Karikó and Weissman began investigating mRNA as a potential therapeutic. In 2005, they published a key discovery: mRNA could be altered and delivered effectively into the body to activate the body’s protective immune system. The mRNA-based vaccines elicited a robust immune response, including high levels of antibodies that attack a specific infectious disease that has not previously been encountered. Unlike other vaccines, a live or attenuated virus is not injected or required at any point.

When the COVID-19 pandemic struck, the true value of the pair’s lab work was revealed in the most timely of ways, as companies worked to quickly develop and deploy vaccines to protect people from the virus. Both Pfizer/BioNTech and Moderna utilized Karikó and Weissman’s technology to build their highly effective vaccines to protect against severe illness and death from the virus. In the United States alone, mRNA vaccines make up more than 655 million total doses of SARS-CoV-2 vaccines that have been administered since they became available in December 2020.

Editor’s Note: The Pfizer/BioNTech and Moderna COVID-19 mRNA vaccines both use licensed University of Pennsylvania technology. As a result of these licensing relationships, Penn, Karikó and Weissman have received and may continue to receive significant financial benefits in the future based on the sale of these products. BioNTech provides funding for Weissman’s research into the development of additional infectious disease vaccines.

Science can be brutal

Now for the interesting bit: it’s in my March 5, 2021 posting (mRNA, COVID-19 vaccines, treating genetic diseases before birth, and the scientist who started it all),

Before messenger RNA was a multibillion-dollar idea, it was a scientific backwater. And for the Hungarian-born scientist behind a key mRNA discovery, it was a career dead-end.

Katalin Karikó spent the 1990s collecting rejections. Her work, attempting to harness the power of mRNA to fight disease, was too far-fetched for government grants, corporate funding, and even support from her own colleagues.

“Every night I was working: grant, grant, grant,” Karikó remembered, referring to her efforts to obtain funding. “And it came back always no, no, no.”

By 1995, after six years on the faculty at the University of Pennsylvania, Karikó got demoted. [emphasis mine] She had been on the path to full professorship, but with no money coming in to support her work on mRNA, her bosses saw no point in pressing on.

She was back to the lower rungs of the scientific academy.

“Usually, at that point, people just say goodbye and leave because it’s so horrible,” Karikó said.

There’s no opportune time for demotion, but 1995 had already been uncommonly difficult. Karikó had recently endured a cancer scare, and her husband was stuck in Hungary sorting out a visa issue. Now the work to which she’d devoted countless hours was slipping through her fingers.

In time, those better experiments came together. After a decade of trial and error, Karikó and her longtime collaborator at Penn — Drew Weissman [emphasis mine], an immunologist with a medical degree and Ph.D. from Boston University — discovered a remedy for mRNA’s Achilles’ heel.

You can get the whole story from my March 5, 2021 posting, scroll down to the “mRNA—it’s in the details, plus, the loneliness of pioneer researchers, a demotion, and squabbles” subhead. If you are very curious about mRNA and the rough and tumble of the world of science, there’s my August 20, 2021 posting “Getting erased from the mRNA/COVID-19 story” where Ian MacLachlan is featured as a researcher who got erased and where Karikó credits his work.

‘Rowing Mom Wins Nobel’ (credit: rowing website Row 2K)

Karikó’s daughter is a two-time gold medal Olympic athlete as the Canadian Broadcasting Corporation’s (CBC) radio programme, As It Happens, notes in an interview with the daughter (Susan Francia). From an October 4, 2023 As It Happens article (with embedded audio programme excerpt) by Sheena Goodyear,

Olympic gold medallist Susan Francia is coming to terms with the fact that she’s no longer the most famous person in her family.

That’s because the retired U.S. rower’s mother, Katalin Karikó, just won a Nobel Prize in Medicine. The biochemist was awarded alongside her colleague, vaccine researcher Drew Weissman, for their groundbreaking work that led to the development of COVID-19 vaccines. 

“Now I’m like, ‘Shoot! All right, I’ve got to work harder,'” Francia said with a laugh during an interview with As It Happens host Nil Köksal. 

But in all seriousness, Francia says she’s immensely proud of her mother’s accomplishments. In fact, it was Karikó’s fierce dedication to science that inspired Francia to win Olympic gold medals in 2008 and 2012.

“Sport is a lot like science in that, you know, you have a passion for something and you just go and you train, attain your goal, whether it be making this discovery that you truly believe in, or for me, it was trying to be the best in the world,” Francia said.

“It’s a grind and, honestly, I love that grind. And my mother did too.”

… one of her [Karikó] favourite headlines so far comes from a little blurb on the rowing website Row 2K: “Rowing Mom Wins Nobel.”

Nowadays, scientists are trying to harness the power of mRNA to fight cancer, malaria, influenza and rabies. But when Karikó first began her work, it was a fringe concept. For decades, she toiled in relative obscurity, struggling to secure funding for her research.

“That’s also that same passion that I took into my rowing,” Francia said.

But even as Karikó struggled to make a name for herself, she says her own mother, Zsuzsanna, always believed she would earn a Nobel Prize one day.

Every year, as the Nobel Prize announcement approached, she would tell Karikó she’d be watching for her name. 

“I was laughing [and saying] that, ‘Mom, I am not getting anything,'” she said. 

But her mother, who died a few years ago, ultimately proved correct. 

Congratulations to both Katalin Karikó and Drew Weissman and thank you both for persisting!

Physics

This prize is for physics at the attoscale.

Aaron W. Harrison (Assistant Professor of Chemistry, Austin College, Texas, US) attempts an explanation of an attosecond in his October 3, 2023 essay (in English “What is an attosecond? A physical chemist explains the tiny time scale behind Nobel Prize-winning research” and in French “Nobel de physique : qu’est-ce qu’une attoseconde?”) for The Conversation, Note: Links have been removed,

“Atto” is the scientific notation prefix that represents 10-18, which is a decimal point followed by 17 zeroes and a 1. So a flash of light lasting an attosecond, or 0.000000000000000001 of a second, is an extremely short pulse of light.

In fact, there are approximately as many attoseconds in one second as there are seconds in the age of the universe.

Previously, scientists could study the motion of heavier and slower-moving atomic nuclei with femtosecond (10-15) light pulses. One thousand attoseconds are in 1 femtosecond. But researchers couldn’t see movement on the electron scale until they could generate attosecond light pulses – electrons move too fast for scientists to parse exactly what they are up to at the femtosecond level.

Harrison does a very good job of explaining something that requires a leap of imagination. He also explains why scientists engage in attosecond research. h/t October 4, 2023 news item on phys.org

Amelle Zaïr (Imperial College London) offers a more technical explanation in her October 4, 2023 essay about the 2023 prize winners for The Conversation. h/t October 4, 2023 news item on phys.org

Main event

Here’s the October 3, 2023 Nobel Prize press release, Note: A link has been removed,

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics 2023 to

Pierre Agostini
The Ohio State University, Columbus, USA

Ferenc Krausz
Max Planck Institute of Quantum Optics, Garching and Ludwig-Maximilians-Universität München, Germany

Anne L’Huillier
Lund University, Sweden

“for experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter”

Experiments with light capture the shortest of moments

The three Nobel Laureates in Physics 2023 are being recognised for their experiments, which have given humanity new tools for exploring the world of electrons inside atoms and molecules. Pierre Agostini, Ferenc Krausz and Anne L’Huillier have demonstrated a way to create extremely short pulses of light that can be used to measure the rapid processes in which electrons move or change energy.

Fast-moving events flow into each other when perceived by humans, just like a film that consists of still images is perceived as continual movement. If we want to investigate really brief events, we need special technology. In the world of electrons, changes occur in a few tenths of an attosecond – an attosecond is so short that there are as many in one second as there have been seconds since the birth of the universe.

The laureates’ experiments have produced pulses of light so short that they are measured in attoseconds, thus demonstrating that these pulses can be used to provide images of processes inside atoms and molecules.

In 1987, Anne L’Huillier discovered that many different overtones of light arose when she transmitted infrared laser light through a noble gas. Each overtone is a light wave with a given number of cycles for each cycle in the laser light. They are caused by the laser light interacting with atoms in the gas; it gives some electrons extra energy that is then emitted as light. Anne L’Huillier has continued to explore this phenomenon, laying the ground for subsequent breakthroughs.

In 2001, Pierre Agostini succeeded in producing and investigating a series of consecutive light pulses, in which each pulse lasted just 250 attoseconds. At the same time, Ferenc Krausz was working with another type of experiment, one that made it possible to isolate a single light pulse that lasted 650 attoseconds.

The laureates’ contributions have enabled the investigation of processes that are so rapid they were previously impossible to follow.

“We can now open the door to the world of electrons. Attosecond physics gives us the opportunity to understand mechanisms that are governed by electrons. The next step will be utilising them,” says Eva Olsson, Chair of the Nobel Committee for Physics.

There are potential applications in many different areas. In electronics, for example, it is important to understand and control how electrons behave in a material. Attosecond pulses can also be used to identify different molecules, such as in medical diagnostics.

Read more about this year’s prize

Popular science background: Electrons in pulses of light (pdf)
Scientific background: “For experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter” (pdf)

Pierre Agostini. PhD 1968 from Aix-Marseille University, France. Professor at The Ohio State University, Columbus, USA.

Ferenc Krausz, born 1962 in Mór, Hungary. PhD 1991 from Vienna University of Technology, Austria. Director at Max Planck Institute of Quantum Optics, Garching and Professor at Ludwig-Maximilians-Universität München, Germany.

Anne L’Huillier, born 1958 in Paris, France. PhD 1986 from University Pierre and Marie Curie, Paris, France. Professor at Lund University, Sweden.

A Canadian connection?

An October 3, 2023 CBC online news item from the Associated Press reveals a Canadian connection of sorts ,

Three scientists have won the Nobel Prize in physics Tuesday for giving us the first split-second glimpse into the superfast world of spinning electrons, a field that could one day lead to better electronics or disease diagnoses.

The award went to French-Swedish physicist Anne L’Huillier, French scientist Pierre Agostini and Hungarian-born Ferenc Krausz for their work with the tiny part of each atom that races around the centre, and that is fundamental to virtually everything: chemistry, physics, our bodies and our gadgets.

Electrons move around so fast that they have been out of reach of human efforts to isolate them. But by looking at the tiniest fraction of a second possible, scientists now have a “blurry” glimpse of them, and that opens up whole new sciences, experts said.

“The electrons are very fast, and the electrons are really the workforce in everywhere,” Nobel Committee member Mats Larsson said. “Once you can control and understand electrons, you have taken a very big step forward.”

L’Huillier is the fifth woman to receive a Nobel in Physics.

L’Huillier was teaching basic engineering physics to about 100 undergraduates at Lund when she got the call that she had won, but her phone was on silent and she didn’t pick up. She checked it during a break and called the Nobel Committee.

Then she went back to teaching.

Agostini, an emeritus professor at Ohio State University, was in Paris and could not be reached by the Nobel Committee before it announced his win to the world

Here’s the Canadian connection (from the October 3, 2023 CBC online news item),

Krausz, of the Max Planck Institute of Quantum Optics and Ludwig Maximilian University of Munich, told reporters that he was bewildered.

“I have been trying to figure out since 11 a.m. whether I’m in reality or it’s just a long dream,” the 61-year-old said.

Last year, Krausz and L’Huillier won the prestigious Wolf prize in physics for their work, sharing it with University of Ottawa scientist Paul Corkum [emphasis mine]. Nobel prizes are limited to only three winners and Krausz said it was a shame that it could not include Corkum.

Corkum was key to how the split-second laser flashes could be measured [emphasis mine], which was crucial, Krausz said.

Congratulations to Pierre Agostini, Ferenc Krausz and Anne L’Huillier and a bow to Paul Corkum!

For those who are curious. a ‘Paul Corkum’ search should bring up a few postings on this blog but I missed this piece of news, a May 4, 2023 University of Ottawa news release about Corkum and the 2022 Wolf Prize, which he shared with Krausz and L’Huillier,

Chemistry

There was a little drama where this prize was concerned, It was announced too early according to an October 4, 2023 news item on phys.org and, again, in another October 4, 2023 news item on phys.org (from the Oct. 4, 2023 news item by Karl Ritter for the Associated Press),

Oops! Nobel chemistry winners are announced early in a rare slip-up

The most prestigious and secretive prize in science ran headfirst into the digital era Wednesday when Swedish media got an emailed press release revealing the winners of the Nobel Prize in chemistry and the news prematurely went public.

Here’s the fully sanctioned October 4, 2023 Nobel Prize press release, Note: A link has been removed,

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Chemistry 2023 to

Moungi G. Bawendi
Massachusetts Institute of Technology (MIT), Cambridge, MA, USA

Louis E. Brus
Columbia University, New York, NY, USA

Alexei I. Ekimov
Nanocrystals Technology Inc., New York, NY, USA

“for the discovery and synthesis of quantum dots”

They planted an important seed for nanotechnology

The Nobel Prize in Chemistry 2023 rewards the discovery and development of quantum dots, nanoparticles so tiny that their size determines their properties. These smallest components of nanotechnology now spread their light from televisions and LED lamps, and can also guide surgeons when they remove tumour tissue, among many other things.

Everyone who studies chemistry learns that an element’s properties are governed by how many electrons it has. However, when matter shrinks to nano-dimensions quantum phenomena arise; these are governed by the size of the matter. The Nobel Laureates in Chemistry 2023 have succeeded in producing particles so small that their properties are determined by quantum phenomena. The particles, which are called quantum dots, are now of great importance in nanotechnology.

“Quantum dots have many fascinating and unusual properties. Importantly, they have different colours depending on their size,” says Johan Åqvist, Chair of the Nobel Committee for Chemistry.

Physicists had long known that in theory size-dependent quantum effects could arise in nanoparticles, but at that time it was almost impossible to sculpt in nanodimensions. Therefore, few people believed that this knowledge would be put to practical use.

However, in the early 1980s, Alexei Ekimov succeeded in creating size-dependent quantum effects in coloured glass. The colour came from nanoparticles of copper chloride and Ekimov demonstrated that the particle size affected the colour of the glass via quantum effects.

A few years later, Louis Brus was the first scientist in the world to prove size-dependent quantum effects in particles floating freely in a fluid.

In 1993, Moungi Bawendi revolutionised the chemical production of quantum dots, resulting in almost perfect particles. This high quality was necessary for them to be utilised in applications.

Quantum dots now illuminate computer monitors and television screens based on QLED technology. They also add nuance to the light of some LED lamps, and biochemists and doctors use them to map biological tissue.

Quantum dots are thus bringing the greatest benefit to humankind. Researchers believe that in the future they could contribute to flexible electronics, tiny sensors, thinner solar cells and encrypted quantum communication – so we have just started exploring the potential of these tiny particles.

Read more about this year’s prize

Popular science background: They added colour to nanotechnology (pdf)
Scientific background: Quantum dots – seeds of nanoscience (pdf)

Moungi G. Bawendi, born 1961 in Paris, France. PhD 1988 from University of Chicago, IL, USA. Professor at Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.

Louis E. Brus, born 1943 in Cleveland, OH, USA. PhD 1969 from Columbia University, New York, NY, USA. Professor at Columbia University, New York, NY, USA.

Alexei I. Ekimov, born 1945 in the former USSR. PhD 1974 from Ioffe Physical-Technical Institute, Saint Petersburg, Russia. Formerly Chief Scientist at Nanocrystals Technology Inc., New York, NY, USA.


The most recent ‘quantum dot’ (a particular type of nanoparticle) story here is a January 5, 2023 posting, “Can I have a beer with those carbon quantum dots?

Proving yet again that scientists can have a bumpy trip to a Nobel prize, an October 4, 2023 news item on phys.org describes how one of the winners flunked his first undergraduate chemistry test, Note: Links have been removed,

Talk about bouncing back. MIT professor Moungi Bawendi is a co-winner of this year’s Nobel chemistry prize for helping develop “quantum dots”—nanoparticles that are now found in next generation TV screens and help illuminate tumors within the body.

But as an undergraduate, he flunked his very first chemistry exam, recalling that the experience nearly “destroyed” him.

The 62-year-old of Tunisian and French heritage excelled at science throughout high school, without ever having to break a sweat.

But when he arrived at Harvard University as an undergraduate in the late 1970s, he was in for a rude awakening.

You can find more about the winners and quantum dots in an October 4, 2023 news item on Nanowerk and in Dr. Andrew Maynard’s (Professor of Advanced Technology Transitions, Arizona State University) October 4, 2023 essay for The Conversation (h/t October 4, 2023 news item on phys.org), Note: Links have been removed,

This year’s prize recognizes Moungi Bawendi, Louis Brus and Alexei Ekimov for the discovery and development of quantum dots. For many years, these precisely constructed nanometer-sized particles – just a few hundred thousandths the width of a human hair in diameter – were the darlings of nanotechnology pitches and presentations. As a researcher and adviser on nanotechnology [emphasis mine], I’ve [Dr. Andrew Maynard] even used them myself when talking with developers, policymakers, advocacy groups and others about the promise and perils of the technology.

The origins of nanotechnology predate Bawendi, Brus and Ekimov’s work on quantum dots – the physicist Richard Feynman speculated on what could be possible through nanoscale engineering as early as 1959, and engineers like Erik Drexler were speculating about the possibilities of atomically precise manufacturing in the the 1980s. However, this year’s trio of Nobel laureates were part of the earliest wave of modern nanotechnology where researchers began putting breakthroughs in material science to practical use.

Quantum dots brilliantly fluoresce: They absorb one color of light and reemit it nearly instantaneously as another color. A vial of quantum dots, when illuminated with broad spectrum light, shines with a single vivid color. What makes them special, though, is that their color is determined by how large or small they are. Make them small and you get an intense blue. Make them larger, though still nanoscale, and the color shifts to red.

The wavelength of light a quantum dot emits depends on its size. Maysinger, Ji, Hutter, Cooper, CC BY

There’s also an October 4, 2023 overview article by Tekla S. Perry and Margo Anderson for the IEEE Spectrum about the magazine’s almost twenty-five years of reporting on quantum dots

Red blue and green dots mass in rows, with some dots moving away

Image credit: Brandon Palacio/IEEE Spectrum

Your Guide to the Newest Nobel Prize: Quantum Dots

What you need to know—and what we’ve reported—about this year’s Chemistry award

It’s not a long article and it has a heavy focus on the IEEEE’s (Institute of Electrical and Electtronics Engineers) the road quantum dots have taken to become applications and being commercialized.

Congratulations to Moungi Bawendi, Louis Brus, and Alexei Ekimov!

FrogHeart casts an eye back to 2021 then looks forward to 2022 and contronyms

Casting an eye back isn’t one of my strong points. Thankfully I can’t be forced into making a top 10 list of some kind. Should someone be deeply disappointed (tongue in cheek) that I failed to mention one of the big 2021 stories featured here, please leave a note in the Comments for this blog and I’ll do my best to add it.

Note: I very rarely feature space exploration unless there’s a nanotechnology or other emerging technology angle to it. There are a lot of people who do a much better job of covering space exploration than I can. (If you’re interested in an overview from a Canadian on the international race to space, you can start with this December 29, 2021 posting “Looking back at a booming year in space” by Bob McDonald of CBC’s [Canadian Broadcasting Corporation] Quirks & Quarks science radio programme.)

Now, onto FrogHeart’s latest year.

2021

One of the standout stories in 2020/21 here and many, many places was the rise of the biotechnology community in British Columbia and elsewhere in Canada. Lipid nanoparticles used in COVID-19 vaccines became far better known than they ever had before and AbCellera took the business world by storm as its founder became a COVID billionaire.

Here is a sampling of the BC biotechnology/COVID-19 stories featured here,

  • “Avo Media, Science Telephone, and a Canadian COVID-19 billionaire scientist” December 30, 2020 posting
  • “Why is Precision Nanosystems Inc. in the local (Vancouver, Canada) newspaper?” January 22, 2021 posting Note: The company is best known for its work on lipid nanoparticles
  • “mRNA, COVID-19 vaccines, treating genetic diseases before birth, and the scientist who started it all” March 5, 2021 posting Note: This posting also notes a Canadian connection in relation mRNA in the subsection titled “Entrepreneurs rush in”
  • “Getting erased from the mRNA/COVID-19 story” August 20, 2021 posting Note: This features a fascinating story from Nathan Vardi (for Forbes) of professional jealousies, competitiveness, and a failure to recognize opportunity when she comes visiting.
  • “Who’s running the life science companies’ public relations campaign in British Columbia (Vancouver, Canada)?” August 23, 2021 posting Note: This explores the biotech companies, the network, and provincial and federal funding, as well as, municipal (City of Vancouver) support and more.

Sadly, I did not have time to feature this September 14, 2021 article (The tangled history of mRNA vaccines; Hundreds of scientists had worked on mRNA vaccines for decades before the coronavirus pandemic brought a breakthrough.) by Elie Dolgin for Nature magazine.

Dolgin starts the story in 1987 and covers many players that were new to me although I did recognize some of the more recent and Canadian players such as Pieter Cullis and Ian MacLachlan. *ETA January 3 ,2021: Cullis and MacLachlan are both mentioned in my ‘Getting erased ..” August 20, 2021 posting.* Fun fact: Pieter Cullis was just named an Officer to the Order of Canada (from the Governor General’s December 29, 2021 news release),

Pieter Cullis, O.C.
Vancouver, British Columbia

For his contributions to the advancement of biomedical research and drug development, and for his mentorship of the next generation of scientists and entrepreneurs.

Back to this roundup, I got interested in greener lithium mining, given its importance for batteries in electric vehicles and elsewhere,

2021 seems to have been the year when the science community started podcasting in a big way. Either the podcast was started this year or I stumbled across it this year (meaning it’s likely a podcast that is getting publicized because they had a good first year and they want more listeners for their second year),

  • “New podcast—Mission: Interplanetary and Event Rap: a one-stop custom rap shop Kickstarter” April 30, 2021 posting
  • “Superstar engineers and fantastic fiction writers podcast series” June 28, 2021 posting
  • “Periodically Political: a Canadian podcast from Elect STEM” August 16, 2021 posting
  • “Unlocking Science: a new podcast series launches on November 16, 2021” November 16, 2021 posting
  • “Lost Women of Science” December 2, 2021 posting
  • “Nerdin’ About and Science Diction: a couple of science podcasts” Note: Not posted but maybe one day. Meanwhile, here they are:
    • Nerdin’ About describes itself as, “… a podcast where passionate nerds tell us about their research, their interests, and what they’ve been Nerdin’ About lately. A spin-off of Nerd Nite Vancouver, a community lecture series held in a bar, Nerdin’ About is here to explore these questions with you. Hosted by rat researcher Kaylee Byers (she/her) and astronomy educator Michael Unger (he/him). Elise Lane (she/her) is our Mixing Engineer. Music by Jay Arner. Artwork by Armin Mortazavi.”
    • Science Diction is a podcast offshoot of Science Friday (SciFri), a US National Public Radio (NPR) programme. “… Hosted by SciFri producer and self-proclaimed word nerd Johanna Mayer, each episode of Science Diction digs into the origin of a single word or phrase, and, with the help of historians, authors, etymologists, and scientists, reveals a surprising science connection. Did you know the origin of the word meme has more to do with evolutionary biology than lolcats? Or that the element cobalt takes its name from a very cheeky goblin from German folklore? …”
  • Podcast episode from the Imperial College London features women’s hearts, psychedelic worldviews, and nanotechnology for children” Note: Not posted but maybe one day.
  • Alberta-based podcast explores AI (Artificial Intelligence)” Note 1: You’ll find season one and two on the page I’ve linked to; just keep scrolling. Note 2: Not posted but maybe one day.
  • Own the Science Podcast/À vous la science balado” Note: Not posted but maybe one day.

Integrating the body with machines is an ongoing interest of mine, these particular 2021 postings stood out but there are other postings (click on the Human Enhancement category or search the tag ‘machine/flesh’),

I wrote a few major (long) pieces this year,

  • “Interior Infinite: carnival & chaos, a June 26 – September 5, 2021 show at Polygon Art Gallery (North Vancouver, Canada)” July 26, 2021 posting Note: While this isn’t an art/sci posting it does touch on a topic near and dear to my heart, writers. In particular, the literary theorist, Mikhail Mikhailovich Bakhtin.
  • “The metaverse or not” October 22, 2021 posting Note: What can I say? The marketing hype got to me.
  • “True love with AI (artificial intelligence): The Nature of Things explores emotional and creative AI (long read)” December 3, 2021 posting

2022 and contronyms

I don’t make psychic predictions. As far as I’m concerned, 2022 will be a continuation of 2021, albeit with a few surprises.

My focus on nanotechnology and emerging technologies will remain. I expect artificial intelligence, CRISPR and gene editing (in general), quantum computing (technical work and commercialization), and neuromorphic computing will continue to make news. As for anything else, well, it wouldn’t be a surprise if you knew it was coming.

With regard to this blog, I keep thinking about cutting back so I can focus on other projects. Whether I finally follow through this year is a mystery to me.

Because words and writing are important to me, I’d like to end the year with this, which I found in early December 2021. From “25 Words That Are Their Own Opposites” on getpocket.com by Judith Herman originally written for “Mental Floss and … published June 15, 2018,”

Here’s an ambiguous sentence for you: “Because of the agency’s oversight, the corporation’s behavior was sanctioned.” Does that mean, “Because the agency oversaw the company’s behavior, they imposed a penalty for some transgression,” or does it mean, “Because the agency was inattentive, they overlooked the misbehavior and gave it their approval by default”? We’ve stumbled into the looking-glass world of contronyms—words that are their own antonyms.

1. Sanction (via French, from Latin sanctio(n-), from sancire ‘ratify,’) can mean “give official permission or approval for (an action)” or conversely, “impose a penalty on.”

2. Oversight is the noun form of two verbs with contrary meanings, “oversee” and “overlook.” Oversee, from Old English ofersēon (“look at from above”) means “supervise” (medieval Latin for the same thing: super-, “over” plus videre, “to see.”) Overlook usually means the opposite: “to fail to see or observe; to pass over without noticing; to disregard, ignore.”

3. Left can mean either remaining or departed. If the gentlemen have withdrawn to the drawing room for after-dinner cigars, who’s left? (The gentlemen have left and the ladies are left.)

4. Dust, along with the next two words, is a noun turned into a verb meaning either to add or to remove the thing in question. Only the context will tell you which it is. When you dust are you applying dust or removing it? It depends whether you’re dusting the crops or the furniture.

The contronym (also spelled “contranym”) goes by many names, including auto-antonym, antagonym, enantiodrome, self-antonym, antilogy and Janus word (from the Roman god of beginnings and endings, often depicted with two faces looking in opposite directions). …

Herman made liberal use, which she acknowledged, of the Mark Nichol article/list, “75 Contronyms (Words with Contradictory Meanings)” on Daily Writing Tips (Note: Based on the ‘comments’, Nichol’s list appears to be have been posted sometime in 2011),

3. Bill: A payment, or an invoice for payment

4. Bolt: To secure, or to flee

46. Quantum: Significantly large, or a minuscule part

47. Quiddity: Essence, or a trifling point of contention

68. Trim: To decorate, or to remove excess from

69. Trip: A journey, or a stumble

Happy 2022!

Science policy updates (INGSA in Canada and SCWIST)

I had just posted my Aug. 30, 2021 piece (4th International Conference on Science Advice to Governments (INGSA2021) August 30 – September 2, 2021) when the organization issued a news release, which was partially embargoed. By the time this is published (after 8 am ET on Wednesday, Sept. 1, 2021), the embargo will have lifted and i can announce that Rémi Quirion, Chief Scientist of Québec (Canada), has been selected to replace Sir Peter Gluckman (New Zealand) as President of INGSA.

Here’s the whole August 30, 2021 International Network for Government Science Advice (INGSA) news release on EurekAlert, Note: This looks like a direct translation from a French language news release, which may account for some unusual word choices and turns of phrase,

What? 4th International Conference on Science Advice to Governments, INGSA2021.

Where? Palais des Congrès de Montréal, Québec, Canada and online at www.ingsa2021.org

When? 30 August – 2 September, 2021.

CONTEXT: The largest ever independent gathering of interest groups, thought-leaders, science advisors to governments and global institutions, researchers, academics, communicators and diplomats is taking place in Montreal and online. Organized by Prof Rémi Quirion, Chief Scientist of Québec, speakers from over 50 countries[1] from Brazil to Burkina Faso and from Ireland to Indonesia, plus over 2000 delegates from over 130 countries, will spotlight what is really at stake in the relationship between science and policy-making, both during crises and within our daily lives. From the air we breathe, the food we eat and the cars we drive, to the medical treatments or the vaccines we take, and the education we provide to children, this relationship, and the decisions it can influence, matter immensely.  

Prof Rémi Quirion, Conference Organizer, Chief Scientist of Québec and incoming President of INGSA added: “For those of us who believe wholeheartedly in evidence and the integrity of science, the past 18 months have been challenging. Information, correct and incorrect, can spread like a virus. The importance of open science and access to data to inform our UN sustainable development goals discussions or domestically as we strengthen the role of cities and municipalities, has never been more critical. I have no doubt that this transparent and honest platform led from Montréal will act as a carrier-wave for greater engagement”.

Chief Science Advisor of Canada and Conference co-organizer, Dr Mona Nemer, stated that: “Rapid scientific advances in managing the Covid pandemic have generated enormous public interest in evidence-based decision making. This attention comes with high expectations and an obligation to achieve results. Overcoming the current health crisis and future challenges will require global coordination in science advice, and INGSA is well positioned to carry out this important work. Canada and our international peers can benefit greatly from this collaboration.”

Sir Peter Gluckman, founding Chair of INGSA stated that: “This is a timely conference as we are at a turning point not just in the pandemic, but globally in our management of longer-term challenges that affect us all. INGSA has helped build and elevate open and ongoing public and policy dialogue about the role of robust evidence in sound policy making”.

He added that: “Issues that were considered marginal seven years ago when the network was created are today rightly seen as central to our social, environmental and economic wellbeing. The pandemic highlights the strengths and weaknesses of evidence-based policy-making at all levels of governance. Operating on all continents, INGSA demonstrates the value of a well-networked community of emerging and experienced practitioners and academics, from countries at all levels of development. Learning from each other, we can help bring scientific evidence more centrally into policy-making. INGSA has achieved much since its formation in 2014, but the energy shown in this meeting demonstrates our potential to do so much more”.

Held previously in Auckland 2014, Brussels 2016, Tokyo 2018 and delayed for one year due to Covid, the advantage of the new hybrid and virtual format is that organizers have been able to involve more speakers, broaden the thematic scope and offer the conference as free to view online, reaching thousands more people. Examining the complex interactions between scientists, public policy and diplomatic relations at local, national, regional and international levels, especially in times of crisis, the overarching INGSA2021 theme is: “Build back wiser: knowledge, policy & publics in dialogue”.

The first three days will scrutinize everything from concrete case-studies outlining successes and failures in our advisory systems to how digital technologies and AI are reshaping the profession itself. The final day targets how expertize and action in the cultural context of the French-speaking world is encouraging partnerships and contributing to economic and social development. A highlight of the conference is the 2 September announcement of a new ‘Francophonie Science Advisory Network’.       

Prof. Salim Abdool Karim, a member of the World Health Organization’s Science Council, and the face of South Africa’s Covid-19 science, speaking in the opening plenary outlined that: “As a past anti-apartheid activist now providing scientific advice to policy-makers, I have learnt that science and politics share common features. Both operate at the boundaries of knowledge and uncertainty, but approach problems differently. We scientists constantly question and challenge our assumptions, constantly searching for empiric evidence to determine the best options. In contrast, politicians are most often guided by the needs or demands of voters and constituencies, and by ideology”.

He added: “What is changing is that grass-roots citizens worldwide are no longer ill-informed and passive bystanders. And they are rightfully demanding greater transparency and accountability. This has brought the complex contradictions between evidence and ideology into the public eye. Covid-19 is not just a disease, its social fabric exemplifies humanity’s interdependence in slowing global spread and preventing new viral mutations through global vaccine equity. This starkly highlights the fault-lines between the rich and poor countries, especially the maldistribution of life-saving public health goods like vaccines. I will explore some of the key lessons from Covid-19 to guide a better response to the next pandemic”.

Speaking on a panel analysing different advisory models, Prof. Mark Ferguson, Chair of the European Innovation Council’s Advisory Board and Chief Science Advisor to the Government of Ireland, sounded a note of optimism and caution in stating that: “Around the world, many scientists have become public celebrities as citizens engage with science like never before. Every country has a new, much followed advisory body. With that comes tremendous opportunities to advance the status of science and the funding of scientific research. On the flipside, my view is that we must also be mindful of the threat of science and scientists being viewed as a political force”.

Strength in numbers

What makes the 4th edition of this biennial event stand out is the perhaps never-before assembled range of speakers from all continents working at the boundary between science, society and policy willing to make their voices heard. In a truly ‘Olympics’ approach to getting all stakeholders on-board, organisers succeeded in involving, amongst others, the UN Office for Disaster Risk Reduction, the United Nations Development Programme, UNESCO and the OECD. The in-house science services of the European Commission and Parliament, plus many country-specific science advisors also feature prominently.

As organisers foster informed debate, we get a rare glimpse inside the science advisory worlds of the Comprehensive Nuclear Test Ban Treaty Organisation, the World Economic Forum and the Global Young Academy to name a few. From Canadian doctors, educators and entrepreneurs and charitable foundations like the Welcome Trust, to Science Europe and media organisations, the programme is rich in its diversity. The International Organisation of the Francophonie and a keynote address by H.E. Laurent Fabius, President of the Constitutional Council of the French Republic are just examples of two major draws on the final day dedicated to spotlighting advisory groups working through French. 

INGSA’s Elections: New Canadian President and Three Vice Presidents from Chile, Ethiopia, UK

The International Network for Government Science Advice has recently undertaken a series of internal reforms intended to better equip it to respond to the growing demands for support from its international partners, while realising the project proposals and ideas of its members.

Part of these reforms included the election in June, 2021 of a new President replacing Sir Peter Gluckman (2014 – 2021) and the creation of three new Vice President roles.

These results will be announced at 13h15 on Wednesday, 1st September during a special conference plenary and awards ceremony. While noting the election results below, media are asked to respect this embargo.

Professor Rémi Quirion, Chief Scientist of Québec (Canada), replaces Sir Peter Gluckman (New Zealand) as President of INGSA.
 

Professor Claire Craig (United Kingdom), CBE, Provost of Queen’s College Oxford and a member of the UK government’s AI Council, has been elected by members as the inaugural Vice President for Evidence.
 

Professor Binyam Sisay Mendisu (Egypt), PhD, Lecture at the University of Addis Ababa and Programme Advisor, UNESCO Institute for Building Capacity in Africa, has been elected by members as the inaugural Vice President for Capacity Building.
 

Professor Soledad Quiroz Valenzuela (Chile), Science Advisor on Climate Change to the Ministry of Science, Technology, Knowledge and Innovation of the government of Chile, has been elected by members as the Vice President for Policy.

Satellite Events: From 7 – 9 September, as part of INGSA2021, the conference is partnering with local,  national and international organisations to ignite further conversations about the science/policy/society interface. Six satellite events are planned to cover everything from climate science advice and energy policy, open science and publishing during a crisis, to the politicisation of science and pre-school scientific education. International delegates are equally encouraged to join in online. 

About INGSA: Founded in 2014 with regional chapters in Africa, Asia and Latin America and the Caribbean, INGSA has quicky established an important reputation as aa collaborative platform for policy exchange, capacity building and research across diverse global science advisory organisations and national systems. Currently, over 5000 individuals and institutions are listed as members. Science communicators and members of the media are warmly welcomed to join.

As the body of work detailed on its website shows (www.ingsa.org) through workshops, conferences and a growing catalogue of tools and guidance, the network aims to enhance the global science-policy interface to improve the potential for evidence-informed policy formation at sub-national, national and transnational levels. INGSA operates as an affiliated body of the International Science Council which acts as trustee of INGSA funds and hosts its governance committee. INGSA’s secretariat is based in Koi Tū: The Centre for Informed Futures at the University of Auckland in New Zealand.

Conference Programme: 4th International Conference on Science Advice to Government (ingsa2021.org)

Newly released compendium of Speaker Viewpoints: Download Essays From The Cutting Edge Of Science Advice – Viewpoints

[1] Argentina, Australia, Austria, Barbados, Belgium, Benin, Brazil, Burkina Faso, Cameroon, Canada, Chad, Colombia, Costa Rica, Côte D’Ivoire, Denmark, Estonia, Finland, France, Germany, Hong Kong, Indonesia, Ireland, Japan, Lebanon, Luxembourg, Malaysia, Mexico, Morocco, Netherlands, New Zealand, Pakistan, Papua New Guinea, Rwanda, Senegal, Singapore, Slovakia, South Africa, Spain, Sri Lanka, Sweden, Switzerland, Thailand, UK, USA. 

Society for Canadian Women in Science and Technology (SCWIST)

As noted earlier this year in my January 28, 2021 posting, it’s SCWIST’s 40th anniversary and the organization is celebrating with a number of initiatives, here are some of the latest including as talk on science policy (from the August 2021 newsletter received via email),

SCWIST “STEM Forward Project”
Receives Federal Funding

SCWIST’s “STEM Forward for Economic Prosperity” project proposal was among 237 projects across the country to receive funding from the $100 million Feminist Response Recovery Fund of the Government of Canada through the Women and Gender Equality Canada (WAGE) federal department.

Read more. 

iWIST and SCWIST Ink Affiliate MOU [memorandum of understanding]

Years in planning, the Island Women in Science and Technology (iWIST) of Victoria, British Columbia and SCWIST finally signed an Affiliate MOU (memorandum of understanding) on Aug 11, 2021.

The MOU strengthens our commitment to collaborate on advocacy (e.g. grants, policy and program changes at the Provincial and Federal level), events (networking, workshops, conferences), cross promotion ( event/ program promotion via digital media), and membership growth (discounts for iWIST members to join SCWIST and vice versa).

Dr. Khristine Carino, SCWIST President, travelled to Victoria to sign the MOU in person. She was invited as an honoured guest to the iWIST annual summer picnic by Claire Skillen, iWIST President. Khristine’s travel expenses were paid from her own personal funds.

Discovery Foundation x SBN x SCWIST Business Mentorship Program: Enhancing Diversity in today’s Biotechnology Landscape

The Discovery Foundation, Student Biotechnology Network, and Society for Canadian Women in Science and Technology are proud to bring you the first-ever “Business Mentorship Program: Enhancing Diversity in today’s Biotechnology Landscape”. 

The Business Mentorship Program aims to support historically underrepresented communities (BIPOC, Women, LGBTQIAS+ and more) in navigating the growth of the biotechnology industry. The program aims to foster relationships between individuals and professionals through networking and mentorship, providing education and training through workshops and seminars, and providing 1:1 consultation with industry leaders. Participants will be paired with mentors throughout the week and have the opportunity to deliver a pitch for the chance to win prizes at the annual Building Biotechnology Expo. 

This is a one week intensive program running from September 27th – October 1st, 2021 and is limited to 10 participants. Please apply early. 

Events

September 10

Art of Science and Policy-Making Go Together

Science and policy-making go together. Acuitas’ [emphasis mine] Molly Sung shares her journey and how more scientists need to engage in this important area.

September 23

Au-delà de l’apparence :

des femmes de courage et de résilience en STIM

Dans le cadre de la semaine de l’égalité des sexes au Canada, ce forum de la division québécoise de la Société pour les femmes canadiennes en science et technologie (la SCWIST) mettra en vedette quatre panélistes inspirantes avec des parcours variés qui étudient ou travaillent en science, technologie, ingénierie et mathématiques (STIM) au Québec. Ces femmes immigrantes ont laissé leurs proches et leurs pays d’origine pour venir au Québec et contribuer activement à la recherche scientifique québécoise. 

….

The ‘Art and Science Policy-Making Go Together’ talk seems to be aimed at persuasion and is not likely to offer any insider information as to how the BC life sciences effort is progressing. For a somewhat less rosy view of science and policy efforts, you can check out my August 23, 2021 posting, Who’s running the life science companies’ public relations campaign in British Columbia (Vancouver, Canada)?; scroll down to ‘The BC biotech gorillas’ subhead for more about Acuitas and some of the other life sciences companies in British Columbia (BC).

For some insight into how competitive the scene is here in BC, you can see my August 20, 2021 posting (Getting erased from the mRNA/COVID-19 story) about Ian MacLachlan.

You can check out more at the SCWIST website and I’m not sure when the August issue will be placed there but they do have a Newsletter Archive.

Getting erased from the mRNA/COVID-19 story

Nathan Vardi’s August 17, 2021 article for Forbes magazine about Ian MacLachlan and the delivery system for mRNA vaccines tells a type of story I’ve more often seen in history books. It is reminiscent of the Thomas Edison and Nikola Tesla story of electricity. One gets all the glory while the other is largely forgotten.

I’m especially interested as much of this concerns players in the local (Vancouver, British Columbia, Canada) biotechnology scene. Vardi’s August 17, 2021 article sets the scene,

“The whole mRNA platform is not how to build an mRNA molecule; that’s the easy thing,” Bourla [Pfizer CEO Albert Bourla] says. “It is how to make sure the mRNA molecule will go into your cells and give the instructions.” 

Yet the story of how Moderna, BioNTech and Pfizer managed to create that vital delivery system has never been told. It’s a complicated saga involving 15 years of legal battles and accusations of betrayal and deceit. [emphases mine] What is clear is that when humanity needed a way to deliver mRNA to human cells to arrest the pandemic, there was only one reliable method available—and it wasn’t one originated in-house by Pfizer, Moderna, BioNTech or any of the other major vaccine companies. 

A months-long investigation by Forbes reveals that the scientist most responsible for this critical delivery method is a little-known 57-year-old Canadian biochemist named Ian MacLachlan. As chief scientific officer of two small companies, Protiva Biotherapeutics and Tekmira Pharmaceuticals, MacLachlan led the team that developed this crucial technology. Today, though, few people—and none of the big pharmaceutical companies—openly acknowledge his groundbreaking work, and MacLachlan earns nothing from the technology he pioneered. 

I have three stories (on this blog) mentioning Tekmira (all from 2014 or 2015) and none mentioning Protiva nor, for that matter, Ian MacLachlan.

Back to Vardi’s August 17, 2021 article,

Moderna Therapeutics vigorously disputes the idea that its mRNA vaccine uses MacLachlan’s delivery system, and BioNTech, the vaccine maker partnered with Pfizer, talks about it carefully. Legal proceedings are pending, and big money is at stake. 

Moderna, BioNTech and Pfizer are on their way to selling $45 billion worth of vaccines in 2021. They don’t pay a dime to MacLachlan. Other coronavirus vaccine makers, such as Gritstone Oncology, have recently licensed MacLachlan’s Protiva-Tekmira delivery technology for between 5% and 15% of product sales. MacLachlan no longer has a financial stake in the technology, but a similar royalty on the Moderna and Pfizer-BioNTech vaccines could yield as much as $6.75 billion in 2021 alone. …

Vardi provides evidence (Note: A link has been removed from the August 17, 2021 article excerpt,

Despite their denials, scientific papers and regulatory documents filed with the FDA [US Food and Drug Administration] show that both Moderna and Pfizer-BioNTech’s vaccines use a delivery system strikingly similar to what MacLachlan and his team created—a carefully formulated four-lipid component that encapsulates mRNA in a dense particle through a mixing process involving ethanol and a T-connector apparatus. 

For years, Moderna claimed it was using its own proprietary delivery system, but when it came time for the company to test its Covid-19 vaccine in mice, it used the same four kinds of lipids as MacLachlan’s technology, in identical ratios. 

According to Vardi’s LinkedIn profile: “I am a senior editor at Forbes, where I am responsible for the coverage of hedge funds, private equity, and other big investors. I lead investigative reporting efforts and have written 20 cover stories for Forbes Magazine,” he does not appear to have any medical or bioscience expertise (Bachelor of Journalism from Carleton University [Canada] and Masters of International Affairs from Columbia University [US].) Presumably someone he consulted or someone on his team provided the skills necessary for analyzing the scientific papers and documents.

You may recognize this scientist (from the August 17, 2021 article),

Not everyone ignores MacLachlan. “A lot of credit goes to Ian MacLachlan for the LNP [lipid nanoparticle],” says Katalin Karikó, [emphasis mine] the scientist who laid the groundwork for mRNA therapies before joining BioNTech in 2013. But Karikó, now a frontrunner for a Nobel Prize, is angry that MacLachlan didn’t do more to help her use his delivery system to build her own mRNA company years ago. “[MacLachlan] might be a great scientist, but he lacked vision,” she says.

I have more about Karikó and her role in the mRNA vaccine story here in a March 5, 2021 posting.

As for MacLachlan’s start (from the August 17, 2021 article),

… With a Ph.D. in biochemistry, MacLachlan joined Inex in 1996, his first job after completing a postdoctoral fellowship in a gene lab at the University of Michigan. 

Inex was cofounded by its chief scientific officer, Pieter Cullis, now 75, a long-haired physicist who taught at the University of British Columbia. From his perch there Cullis started several biotechs, cultivating an elite community of scientists that made Vancouver a hotbed of lipid chemistry. 

As companies rise and fall with intellectual property being assigned to one company or other, legal brawls ensue. This was the time that Karikó came knocking on the door, from the August 17, 2021 article,

It was in the midst of all this furious legal fighting that Hungarian biochemist Katalin Karikó first showed up at MacLachlan’s door. Karikó was early to grasp that MacLachlan’s delivery system held the key to unlocking the potential of mRNA therapies. As early as 2006, she began sending letters to MacLachlan urging him to encase her groundbreaking chemically altered mRNA in his four-lipid delivery system. Embroiled in litigation, MacLachlan passed on her offer. 

Karikó didn’t give up easily. In 2013, she flew to meet with Tekmira’s executives, offering to relocate to Vancouver and work directly under MacLachlan. Tekmira passed. “Moderna, BioNTech and CureVac all wanted me to work for them, but my number one choice, Tekmira, didn’t,” says Karikó, who took a job at BioNTech in 2013. 

By this time, Moderna CEO Stéphane Bancel [emphasis mine] was also trying to solve the delivery puzzle. Bancel held discussions with Tekmira about collaborating, but talks stalled. At one point, Tekmira indicated it wanted at least $100 million up front, plus royalties, to strike a deal.

Instead, Moderna partnered with Madden [Thomas Madden], who was still working with Cullis at their drug delivery company, Acuitas Therapeutics.  …

I have been wondering why Acuitas Therapeutics hasn’t been getting all that much attention in the hyperbolic discussions about British Columbia’s (or Vancouver’s) thriving biotechnology scene. (I’ll have more about the ‘scene’ in a later posting.) Perhaps all this legal wrangling is not considered helpful when bragging. (I do have a November 12, 2020 post, which features Acuitas, an interview with its president and chief executive office Dr. Thomas Madden, and an explanation of their technology.)

As for Moderna, I have a special interest as the company has announced plans to open a production facility here in Canada and one of Moderna’s founders is Canadian, Derek Rossi. (He too is mentioned in the March 5, 2021 posting, scroll down to the ‘Entrepreneurs rush in’ subhead; he is not an altogether happy camper.)

Rossi has opinions on how we should be doing things here as noted in a June 17, 2021 article by Barbara Shecter for the Financial Post (Moderna founder says Canada needs to build a biotech hub to avoid ‘getting caught with its pants down next time’). Thank you, Mr. Rossi. (I’m more familiar with clusters than hubs [hubs were a popular topic of conversation about 20 years ago but in Canada we seem more interested in clusters; see John Newbigin’s “Hubs, clusters and regions” on britishcouncil.org for a description of the differences].)

As for Moderna’s response to all of the legal wrangling over mRNA delivery systems, from Vardi’s August 17, 2021 article,

Moderna pursued a different strategy. It filed lawsuits with the U.S. Patent and Trademark Office seeking to nullify a series of patents related to MacLachlan’s delivery system, now controlled by Genevant. But in July 2020, as Moderna was pushing its vaccine through clinical trials, an adjudicative body largely upheld the most important patent claims. (Moderna is appealing.)

I highly recommend reading Vardi’s August 17, 2021 article as I have not done justice to all of the ‘ins and outs’ of the story.

You can see how thoroughly MacLachlan has been erased form the lipid nanoparticle delivery system/COVID-19 vaccine story in this May 24 ,2021 posting (Lipid nanoparticles: The underrated invention behind the vaccine revolution) by Nada Salem at the Science Borealis blog. It is largely a description of the technology and in the last two paragraphs a history of its development with no mention of MacLachlan or any of his companies.

One last thought, I wonder how Vardi found out about MacLachlan. Could someone have brought the story to his attention and who might that have been?