Tag Archives: IDC

Canada’s ‘Smart Cities’ will need new technology (5G wireless) and, maybe, graphene

I recently published [March 20, 2018] a piece on ‘smart cities’ both an art/science event in Toronto and a Canadian government initiative without mentioning the necessity of new technology to support all of the grand plans. On that note, it seems the Canadian federal government and two provincial (Québec and Ontario) governments are prepared to invest in one of the necessary ‘new’ technologies, 5G wireless. The Canadian Broadcasting Corporation’s (CBC) Shawn Benjamin reports about Canada’s 5G plans in suitably breathless (even in text only) tones of excitement in a March 19, 2018 article,

The federal, Ontario and Quebec governments say they will spend $200 million to help fund research into 5G wireless technology, the next-generation networks with download speeds 100 times faster than current ones can handle.

The so-called “5G corridor,” known as ENCQOR, will see tech companies such as Ericsson, Ciena Canada, Thales Canada, IBM and CGI kick in another $200 million to develop facilities to get the project up and running.

The idea is to set up a network of linked research facilities and laboratories that these companies — and as many as 1,000 more across Canada — will be able to use to test products and services that run on 5G networks.

Benjamin’s description of 5G is focused on what it will make possible in the future,

If you think things are moving too fast, buckle up, because a new 5G cellular network is just around the corner and it promises to transform our lives by connecting nearly everything to a new, much faster, reliable wireless network.

The first networks won’t be operational for at least a few years, but technology and telecom companies around the world are already planning to spend billions to make sure they aren’t left behind, says Lawrence Surtees, a communications analyst with the research firm IDC.

The new 5G is no tentative baby step toward the future. Rather, as Surtees puts it, “the move from 4G to 5G is a quantum leap.”

In a downtown Toronto soundstage, Alan Smithson recently demonstrated a few virtual reality and augmented reality projects that his company MetaVRse is working on.

The potential for VR and AR technology is endless, he said, in large part for its potential to help hurdle some of the walls we are already seeing with current networks.

Virtual Reality technology on the market today is continually increasing things like frame rates and screen resolutions in a constant quest to make their devices even more lifelike.

… They [current 4G networks] can’t handle the load. But 5G can do so easily, Smithson said, so much so that the current era of bulky augmented reality headsets could be replaced buy a pair of normal looking glasses.

In a 5G world, those internet-connected glasses will automatically recognize everyone you meet, and possibly be able to overlay their name in your field of vision, along with a link to their online profile. …

Benjamin also mentions ‘smart cities’,

In a University of Toronto laboratory, Professor Alberto Leon-Garcia researches connected vehicles and smart power grids. “My passion right now is enabling smart cities — making smart cities a reality — and that means having much more immediate and detailed sense of the environment,” he said.

Faster 5G networks will assist his projects in many ways, by giving planners more, instant data on things like traffic patterns, energy consumption, variou carbon footprints and much more.

Leon-Garcia points to a brightly lit map of Toronto [image embedded in Benjamin’s article] in his office, and explains that every dot of light represents a sensor transmitting real time data.

Currently, the network is hooked up to things like city buses, traffic cameras and the city-owned fleet of shared bicycles. He currently has thousands of data points feeding him info on his map, but in a 5G world, the network will support about a million sensors per square kilometre.

Very exciting but where is all this data going? What computers will be processing the information? Where are these sensors located? Benjamin does not venture into those waters nor does The Economist in a February 13, 2018 article about 5G, the Olympic Games in Pyeonchang, South Korea, but the magazine does note another barrier to 5G implementation,

“FASTER, higher, stronger,” goes the Olympic motto. So it is only appropriate that the next generation of wireless technology, “5G” for short, should get its first showcase at the Winter Olympics  under way in Pyeongchang, South Korea. Once fully developed, it is supposed to offer download speeds of at least 20 gigabits per second (4G manages about half that at best) and response times (“latency”) of below 1 millisecond. So the new networks will be able to transfer a high-resolution movie in two seconds and respond to requests in less than a hundredth of the time it takes to blink an eye. But 5G is not just about faster and swifter wireless connections.

The technology is meant to enable all sorts of new services. One such would offer virtual- or augmented-reality experiences. At the Olympics, for example, many contestants are being followed by 360-degree video cameras. At special venues sports fans can don virtual-reality goggles to put themselves right into the action. But 5G is also supposed to become the connective tissue for the internet of things, to link anything from smartphones to wireless sensors and industrial robots to self-driving cars. This will be made possible by a technique called “network slicing”, which allows operators quickly to create bespoke networks that give each set of devices exactly the connectivity they need.

Despite its versatility, it is not clear how quickly 5G will take off. The biggest brake will be economic. [emphasis mine] When the GSMA, an industry group, last year asked 750 telecoms bosses about the most salient impediment to delivering 5G, more than half cited the lack of a clear business case. People may want more bandwidth, but they are not willing to pay for it—an attitude even the lure of the fanciest virtual-reality applications may not change. …

That may not be the only brake, Dexter Johnson in a March 19, 2018 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website), covers some of the others (Note: Links have been removed),

Graphene has been heralded as a “wonder material” for well over a decade now, and 5G has been marketed as the next big thing for at least the past five years. Analysts have suggested that 5G could be the golden ticket to virtual reality and artificial intelligence, and promised that graphene could improve technologies within electronics and optoelectronics.

But proponents of both graphene and 5G have also been accused of stirring up hype. There now seems to be a rising sense within industry circles that these glowing technological prospects will not come anytime soon.

At Mobile World Congress (MWC) in Barcelona last month [February 2018], some misgivings for these long promised technologies may have been put to rest, though, thanks in large part to each other.

In a meeting at MWC with Jari Kinaret, a professor at Chalmers University in Sweden and director of the Graphene Flagship, I took a guided tour around the Pavilion to see some of the technologies poised to have an impact on the development of 5G.

Being invited back to the MWC for three years is a pretty clear indication of how important graphene is to those who are trying to raise the fortunes of 5G. But just how important became more obvious to me in an interview with Frank Koppens, the leader of the quantum nano-optoelectronic group at Institute of Photonic Sciences (ICFO) just outside of Barcelona, last year.

He said: “5G cannot just scale. Some new technology is needed. And that’s why we have several companies in the Graphene Flagship that are putting a lot of pressure on us to address this issue.”

In a collaboration led by CNIT—a consortium of Italian universities and national laboratories focused on communication technologies—researchers from AMO GmbH, Ericsson, Nokia Bell Labs, and Imec have developed graphene-based photodetectors and modulators capable of receiving and transmitting optical data faster than ever before.

The aim of all this speed for transmitting data is to support the ultrafast data streams with extreme bandwidth that will be part of 5G. In fact, at another section during MWC, Ericsson was presenting the switching of a 100 Gigabits per second (Gbps) channel based on the technology.

“The fact that Ericsson is demonstrating another version of this technology demonstrates that from Ericsson’s point of view, this is no longer just research” said Kinaret.

It’s no mystery why the big mobile companies are jumping on this technology. Not only does it provide high-speed data transmission, but it also does it 10 times more efficiently than silicon or doped silicon devices, and will eventually do it more cheaply than those devices, according to Vito Sorianello, senior researcher at CNIT.

Interestingly, Ericsson is one of the tech companies mentioned with regard to Canada’s 5G project, ENCQOR and Sweden’s Chalmers University, as Dexter Johnson notes, is the lead institution for the Graphene Flagship.. One other fact to note, Canada’s resources include graphite mines with ‘premium’ flakes for producing graphene. Canada’s graphite mines are located (as far as I know) in only two Canadian provinces, Ontario and Québec, which also happen to be pitching money into ENCQOR. My March 21, 2018 posting describes the latest entry into the Canadian graphite mining stakes.

As for the questions I posed about processing power, etc. It seems the South Koreans have found answers of some kind but it’s hard to evaluate as I haven’t found any additional information about 5G and its implementation in South Korea. If anyone has answers, please feel free to leave them in the ‘comments’. Thank you.

Cientifica’s latest smart textiles and wearable electronics report

After publishing a report on wearable technology in May 2016 (see my June 2, 2016 posting), Cientifica has published another wearable technology report, this one is titled, Smart Textiles and Wearables: Markets, Applications and Technologies. Here’s more about the latest report from the report order page,

“Smart Textiles and Wearables: Markets, Applications and Technologies” examines the markets for textile based wearable technologies, the companies producing them and the enabling technologies. This is creating a 4th industrial revolution for the textiles and fashion industry worth over $130 billion by 2025.

Advances in fields such as nanotechnology, organic electronics (also known as plastic electronics) and conducting polymers are creating a range of textile–based technologies with the ability to sense and react to the world around them.  This includes monitoring biometric data such as heart rate, the environmental factors such as temperature and The presence of toxic gases producing real time feedback in the form of electrical stimuli, haptic feedback or changes in color.

The report identifies three distinct generations of textile wearable technologies.

First generation is where a sensor is attached to apparel and is the approach currently taken by major sportswear brands such as Adidas, Nike and Under Armour
Second generation products embed the sensor in the garment as demonstrated by products from Samsung, Alphabet, Ralph Lauren and Flex.
In third generation wearables the garment is the sensor and a growing number of companies including AdvanPro, Tamicare and BeBop sensors are making rapid progress in creating pressure, strain and temperature sensors.

Third generation wearables represent a significant opportunity for new and established textile companies to add significant value without having to directly compete with Apple, Samsung and Intel.

The report predicts that the key growth areas will be initially sports and wellbeing

followed by medical applications for patient monitoring. Technical textiles, fashion and entertainment will also be significant applications with the total market expected to rise to over $130 billion by 2025 with triple digit compound annual growth rates across many applications.

The rise of textile wearables also represents a significant opportunity for manufacturers of the advanced materials used in their manufacture. Toray, Panasonic, Covestro, DuPont and Toyobo are already suppling the necessary materials, while researchers are creating sensing and energy storage technologies, from flexible batteries to graphene supercapacitors which will power tomorrows wearables. The report details the latest advances and their applications.

This report is based on an extensive research study of the wearables and smart textile markets backed with over a decade of experience in identifying, predicting and sizing markets for nanotechnologies and smart textiles. Detailed market figures are given from 2016-2025, along with an analysis of the key opportunities, and illustrated with 139 figures and 6 tables.

The September 2016 report is organized differently and has a somewhat different focus from the report published in May 2016. Not having read either report, I’m guessing that while there might be a little repetition, you might better consider them to be companion volumes.

Here’s more from the September 2016 report’s table of contents which you can download from the order page (Note: The formatting has been changed),

SMART TEXTILES AND WEARABLES:
MARKETS, APPLICATIONS AND
TECHNOLOGIES

Contents  1
List of Tables  4
List of Figures  4
Introduction  8
How to Use This Report  8
Wearable Technologies and the 4Th Industrial Revolution  9
The Evolution of Wearable Technologies  10
Defining Smart Textiles  15
Factors Affecting The Adoption of Smart Textiles for Wearables  18
Cost  18
Accuracy  18
On Shoring  19
Power management  19
Security and Privacy  20
Markets  21
Total Market Growth and CAGR  21
Market Growth By Application  21
Adding Value To Textiles Through Technology  27
How Nanomaterials Add Functionality and Value  31
Business Models  33
Applications  35
Sports and Wellbeing  35
1st Generation Technologies  35
Under Armour Healthbox Wearables  35
Adidas MiCoach  36
Sensoria  36
EMPA’s Long Term Research  39
2nd Generation Technologies  39
Google’s Project Jacquard  39
Samsung Creative Lab  43
Microsoft Collaborations  44
Intel Systems on a Chip  44
Flex (Formerly Flextronics) and MAS Holdings  45
Jiobit  46
Asensei Personal Trainer  47
OmSignal Smart Clothing  48
Ralph Lauren PoloTech  49
Hexoskin Performance Management  50
Jabil Circuit Textile Heart Monitoring  51
Stretch Sense Sensors  52
NTT Data and Toray  54
Goldwin Inc. and DoCoMo  55
SupaSpot Inc Smart Sensors  55
Wearable Experiments and Brand Marketing  56
Wearable Life Sciences Antelope  57
Textronics NuMetrex  59
3rd Generation Technologies  60
AdvanPro Pressure Sensing Shoes  60
Tamicare 3D printed Wearables with Integrated Sensors  62
AiQ Smart Clothing Stainless Steel Yarns  64
Flex Printed Inks And Conductive Yarns  66
Sensing Tech Conductive Inks  67
EHO Textiles Body Motion Monitoring  68
Bebop Sensors Washable E-Ink Sensors  70
Fraunhofer Institute for Silicate Research Piezolectric Polymer
Sensors  71
CLIM8 GEAR Heated Textiles  74
VTT Smart Clothing Human Thermal Model  74
ATTACH (Adaptive Textiles Technology with Active Cooling and Heating) 76
Energy Storage and Generation  78
Intelligent Textiles Military Uniforms  78
BAE Systems Broadsword Spine  79
Stretchable Batteries  80
LG Chem Cable Batteries  81
Supercapacitors  83
Swinburne Graphene Supercapacitors  83
MIT Niobium Nanowire Supercapacitors  83
Energy Harvesting  86
Kinetic  86
StretchSense Energy Harvesting Kit  86
NASA Environmental Sensing Fibers  86
Solar  87
Powertextiles  88
Sphelar Power Corp Solar Textiles  88
Ohmatex and Powerweave  89
Fashion  89
1st Generation Technologies  92
Cute Circuit LED Couture  92
MAKEFASHION LED Couture  94
2nd Generation Technologies  94
Covestro Luminous Clothing  94
3rd Generation Technologies  96
The Unseen Temperature Sensitive Dyes  96
Entertainment  98
Wearable Experiments Marketing  98
Key Technologies 100
Circuitry  100
Conductive Inks for Fabrics  100
Conductive Ink For Printing On Stretchable Fabrics  100
Creative Materials Conductive Inks And Adhesives  100
Dupont Stretchable Electronic Inks  101
Aluminium Inks From Alink Co  101
Conductive Fibres  102
Circuitex Silver Coated Nylon  102
Textronics Yarns and Fibres  102
Novonic Elastic Conductive Yarn  103
Copper Coated Polyacrylonitrile (PAN) Fibres  103
Printed electronics  105
Covestro TPU Films for Flexible Circuits  105
Sensors  107
Electrical  107
Hitoe  107
Cocomi  108
Panasonic Polymer Resin  109
Cardiac Monitoring  110
Mechanical  113
Strain  113
Textile-Based Weft Knitted Strain Sensors  113
Chain Mail Fabric for Smart Textiles  113
Nano-Treatment for Conductive Fiber/Sensors 115
Piezoceramic materials  116
Graphene-Based Woven Fabric  117
Pressure Sensing  117
LG Innotek Flexible Textile Pressure Sensors  117
Hong Kong Polytechnic University Pressure Sensing Fibers  119
Conductive Polymer Composite Coatings  122
Printed Textile Sensors To Track Movement  125
Environment  127
Photochromic Textiles  127
Temperature  127
Sefar PowerSens  127
Gasses & Chemicals  127
Textile Gas Sensors  127
Energy  130
Storage  130
Graphene Supercapacitors  130
Niobium Nanowire Supercapacitors  130
Stretchy supercapacitors  132
Energy Generation  133
StretchSense Energy Harvesting Kit  133
Piezoelectric Or Thermoelectric Coated Fibres  134
Optical  137
Light Emitting  137
University of Manchester Electroluminescent Inks and Yarns 137
Polyera Wove  138
Companies Mentioned  141
List of Tables
Table 1 CAGR by application  22
Table 2 Value of market by application 2016-25 (millions USD)  24
Table 3 % market share by application  26
Table 4 CAGR 2016-25 by application  26
Table 5 Technology-Enabled Market Growth in Textile by Sector (2016-22) 28
Table 6 Value of nanomaterials by sector 2016-22 ($ Millions)  33
List of Figures
Figure 1 The 4th Industrial Revolution (World Economic Forum)  9
Figure 2 Block Diagram of typical MEMS digital output motion sensor: ultra
low-power high performance 3-axis “femto” accelerometer used in
fitness tracking devices.  11
Figure 3 Interior of Fitbit Flex device (from iFixit)  11
Figure 4 Internal layout of Fitbit Flex. Red is the main CPU, orange is the
BTLE chip, blue is a charger, yellow is the accelerometer (from iFixit)  11
Figure 5 Intel’s Curie processor stretches the definition of ‘wearable’  12
Figure 6 Typical Textile Based Wearable System Components  13
Figure 7 The Chromat Aeros Sports Bra “powered by Intel, inspired by wind, air and flight.”  14
Figure 8 The Evolution of Smart textiles  15
Figure 9 Goldwin’s C2fit IN-pulse sportswear using Toray’s Hitoe  16
Figure 10 Sensoglove reads grip pressure for golfers  16
Figure 11 Textile Based Wearables Growth 2016-25(USD Millions)  21
Figure 12 Total market for textile based wearables 2016-25 (USD Millions)  22
Figure 13 Health and Sports Market Size 2016-20 (USD Millions)  23
Figure 14 Health and Sports Market Size 2016-25 (USD Millions)  23
Figure 15 Critical steps for obtaining FDA medical device approval  25
Figure 16 Market split between wellbeing and medical 2016-25  26
Figure 17 Current World Textile Market by Sector (2016)  27
Figure 18 The Global Textile Market By Sector ($ Millions)  27
Figure 19 Compound Annual Growth Rates (CAGR) by Sector (2016-25)  28
Figure 20 The Global Textile Market in 2022  29
Figure 21 The Global Textile Market in 2025  30
Figure 22 Textile Market Evolution (2012-2025)  30
Figure 23 Total Value of Nanomaterials in Textiles 2012-2022 ($ Millions)  31
Figure 24 Value of Nanomaterials in Textiles by Sector 2016-2025 ($ Millions) 32
Figure 25 Adidas miCoach Connect Heart Rate Monitor  36
Figure 26 Sensoria’s Hear[t] Rate Monitoring Garments . 37
Figure 27 Flexible components used in Google’s Project Jacquard  40
Figure 28 Google and Levi’s Smart Jacket  41
Figure 29 Embedded electronics Google’s Project Jacquard  42
Figure 30 Samsung’s WELT ‘smart’ belt  43
Figure 31 Samsung Body Compass at CES16  44
Figure 32 Lumo Run washable motion sensor  45
Figure 33 OMSignal’s Smart Bra  49
Figure 34 PoloTech Shirt from Ralph Lauren  50
Figure 35 Hexoskin Data Acquisition and Processing  51
Figure 36 Peak+™ Hear[t] Rate Monitoring Garment  52
Figure 37 StretchSense CEO Ben O’Brien, with a fabric stretch sensor  53
Figure 38 C3fit Pulse from Goldwin Inc  55
Figure 39 The Antelope Tank-Top  58
Figure 40 Sportswear with integrated sensors from Textronix  60
Figure 41 AdvanPro’s pressure sensing insoles  61
Figure 42 AdvanPro’s pressure sensing textile  62
Figure 43 Tamicare 3D Printing Sensors and Apparel  63
Figure 44 Smart clothing using stainless steel yarns and textile sensors from AiQ  65
Figure 45 EHO Smart Sock  69
Figure 46 BeBop Smart Car Seat Sensor  71
Figure 47 Non-transparent printed sensors from Fraunhofer ISC  73
Figure 48 Clim8 Intelligent Heat Regulating Shirt  74
Figure 49 Temperature regulating smart fabric printed at UC San Diego  76
Figure 50 Intelligent Textiles Ltd smart uniform  79
Figure 51 BAE Systems Broadsword Spine  80
Figure 52 LG Chem cable-shaped lithium-ion battery powers an LED display even when twisted and strained  81
Figure 53 Supercapacitor yarn made of niobium nanowires  84
Figure 54 Sphelar Textile  89
Figure 55 Sphelar Textile Solar Cells  89
Figure 56 Katy Perry wears Cute Circuit in 2010  91
Figure 57 Cute Circuit K Dress  93
Figure 58 MAKEFASHION runway at the Brother’s “Back to Business” conference, Nashville 2016  94
Figure 59 Covestro material with LEDs are positioned on formable films made from thermoplastic polyurethane (TPU).  95
Figure 60 Unseen headpiece, made of 4000 conductive Swarovski stones, changes color to correspond with localized brain activity  96
Figure 61 Eighthsense a coded couture piece.  97
Figure 62 Durex Fundawear  98
Figure 63 Printed fabric sensors from the University of Tokyo  100
Figure 64 Tony Kanaan’s shirt with electrically conductive nano-fibers  107
Figure 65 Panasonic stretchable resin technology  109
Figure 66 Nanoflex moniroring system  111
Figure 67 Knitted strain sensors  113
Figure 68 Chain Mail Fabric for Smart Textiles  114
Figure 69 Electroplated Fabric  115
Figure 70 LG Innotek flexible textile pressure sensors  118
Figure 71 Smart Footwear installed with fabric sensors. (Credit: Image courtesy of The Hong Kong Polytechnic University)  120
Figure 72 SOFTCEPTOR™ textile strain sensors  122
Figure 73 conductive polymer composite coating for pressure sensing  123
Figure 74 Fraunhofer ISC_ printed sensor  125
Figure 75 The graphene-coated yarn sensor. (Image: ETRI)  128
Figure 76 Supercapacitor yarn made of niobium nanowires  131
Figure 77 StretchSense Energy Harvesting Kit  134
Figure 78 Energy harvesting textiles at the University of Southampton  135
Figure 79 Polyera Wove Flexible Screen  139

If you compare that with the table of contents for the May 2016 report in my June 2, 2016 posting, you can see the difference.

Here’s one last tidbit, a Sept. 15, 2016 news item on phys.org highlights another wearable technology report,

Wearable tech, which was seeing sizzling sales growth a year ago [2015], is cooling this year amid consumer hesitation over new devices, a survey showed Thursday [Sept. 15, 2016].

The research firm IDC said it expects global sales of wearables to grow some 29.4 percent to some 103 million units in 2016.

That follows 171 percent growth in 2015, fueled by the launch of the Apple Watch and a variety of fitness bands.

“It is increasingly becoming more obvious that consumers are not willing to deal with technical pain points that have to date been associated with many wearable devices,” said IDC analyst Ryan Reith.

So-called basic wearables—including fitness bands and other devices that do not run third party applications—will make up the lion’s share of the market with some 80.7 million units shipped this year, according to IDC.

According to IDC, it seems that the short term does not promise the explosive growth of the previous year but that new generations of wearable technology, according to both IDC and Cientifica, offer considerable promise for the market.