Thanks to my August 8, 2024 Google alert I found information on an event being held in London, UK. It’s being held at the London Centre for Nanotechnology (part of Imperial College London) and is called Nano for Humanity – Nanoday 2024, from the event page,
Nano for Humanity – Nanoday 2024
10 September 2024 17:00 to 20:00 [5 pm to 8 pm] Imperial College London, South Kensington Campus, London
Nanoscience underpins the technologies of tomorrow. Researchers across the London Centre for Nanotechnology (LCN) use nanoscience to make breakthroughs for applications in medicine and healthcare, energy generation and storage, and for future transport and computing systems.
Nanoday is an annual LCN celebration on or around September 10 to raise awareness of nanoscience, how we use nanoscience in our everyday lives, and how nanoscience will transform our futures. This date (10/9) is a tribute to the nanometer scale (10^–9). The LCN celebrate the very, very small on September 10th in recognition of the nanometer (10^–9)
Join LCN researchers to learn about:
Connecting Life and Technology: See how tiny tech is improving the way living things and man-made materials work together.
Quantum Technologies: Find out about the future of super powerful computers, ultra precise sensors and more secure ways to communicate.
Nano Energy: Learn about the new tech that is helping to generate and store clean energy.
What will I find at Nanoday?
Interactive Demos: Experience hands-on science activities and demonstrations from our not-so Nano researchers.
Live Performances: Enjoy artistic performances that shine a light on the nanoworld.
Engaging Talks: Hear from researchers as they share stories from their lives and labs, showcasing the incredible potential of nanotechnologies.
…
There’s more on the event page including a registration button and directions to the London Centre for Nanotechnology. Unfortunately, there are no details about the artistic performances or the talks.
Researchers at Imperial College London have genetically engineered bacteria to grow animal- and plastic-free leather that dyes itself.
In recent years, scientists and companies have started using microbes to grow sustainable textiles or to make dyes for industry—but this is the first time bacteria have been engineered to produce a material and its own pigment simultaneously.
Synthetic chemical dyeing is one of the most environmentally toxic processes in fashion, and black dyes – especially those used in colouring leather – are particularly harmful. The researchers at Imperial set out to use biology to solve this.
In tackling the problem, the researchers say their self-dyeing vegan, plastic-free leather, which has been fashioned into shoe and wallet prototypes, represents a step forward in the quest for more sustainable fashion.
Their new process, which has been published in the journal Nature Biotechnology, could also theoretically be adapted to have bacteria grow materials with various vibrant colours and patterns, and to make more sustainable alternatives to other textiles such as cotton and cashmere.
Lead author Professor Tom Ellis, from Imperial College London’s Department of Bioengineering, said: “Inventing a new, faster way to produce sustainable, self-dyed leather alternatives is a major achievement for synthetic biology and sustainable fashion.
“Bacterial cellulose is inherently vegan, and its growth requires a tiny fraction of the carbon emissions, water, land use and time of farming cows for leather.
“Unlike plastic-based leather alternatives, bacterial cellulose can also be made without petrochemicals, and will biodegrade safely and non-toxically in the environment.”
Designer collaboration
The researchers created the self-dyeing leather alternative by modifying the genes of a bacteria species that produces sheets of microbial cellulose – a strong, flexible and malleable material that is already commonly used in food, cosmetics and textiles. The genetic modifications ‘instructed’ the same microbes that were growing the material to also produce the dark black pigment, eumelanin.
They worked with designers to grow the upper part of a shoe (without the sole) by growing a sheet of bacterial cellulose in a bespoke, shoe-shaped vessel. After 14 days of growth wherein the cellulose took on the correct shape, they subjected the shoe to two days of gentle shaking at 30°C to activate the production of black pigment from the bacteria so that it dyed the material from the inside.
They also made a black wallet by growing two separate cellulose sheets, cutting them to size, and sewing them together.
As well as the prototypes, the researchers demonstrated that the bacteria can be engineered using genes from other microbes to produce colours in response to blue light. By projecting a pattern, or logo, onto the sheets using blue light, the bacteria respond by producing coloured proteins which then glow.
This allows them to project patterns and logos onto the bacterial cultures as the material grows, resulting in patterns and logos forming from within the material.
Co-author Dr Kenneth Walker, who conducted the work at Imperial College London’s Department of Bioengineering and now works in industry, said: “Our technique works at large enough scales to create real-life products, as shown by our prototypes. From here, we can consider aesthetics as well as alternative shapes, patterns, textiles, and colours.
“The work also shows the impact that can happen when scientists and designers work together. As current and future users of new bacteria-grown textiles, designers have a key role in championing exciting new materials and giving expert feedback to improve form, function, and the switch to sustainable fashion.”
Greener clothes
The research team are now experimenting with a variety of coloured pigments to use those that can also be produced by the material-growing microbes.
The researchers and collaborators have also just won £2 million in funding from Biotechnology and Biological Sciences Research Council (BBSRC), part of UK Research and Innovation (UKRI), to use engineering biology and bacterial cellulose to solve more of fashion’s problems, such as the use of toxic chromium in leather’s production lines.
Professor Ellis said: “Microbes are already directly addressing many of the problems of animal and plastic-based leather, and we plan to get them ready to expand into new colours, materials and maybe patterns too.
“We look forward to working with the fashion industry to make the clothes we wear greener throughout the whole production line.”
The authors worked closely with Modern Synthesis, a London-based biodesign and materials company, who specialise in innovative microbial cellulose products.
This work was funded by Engineering and Physical Sciences Research Council and BBSRC, both part of UKRI.
I have two news bits both of them concerned with magnets.
Patent for magnets that can be made without rare earths
I’m starting with the patent news first since this is (as the company notes in its news release) a “Landmark Patent Issued for Technology Critically Needed to Combat Chinese Monopoly.”
For those who don’t know, China supplies most of the rare earths used in computers, smart phones, and other devices. On general principles, having a single supplier dominate production of and access to a necessary material for devices that most of us rely on can raise tensions. Plus, you can’t mine for resources forever.
Nanotechnology Discovery by 2023 Nobel Prize Winner Became Launch Pad to Create Permanent Magnets without Rare Earths from China
NEW YORK, NY, UNITED STATES, December 19, 2023 /EINPresswire.com/ — Integrated Nano-Magnetics Corp, a wholly owned subsidiary of Nanocrystal Technology LP, was awarded a patent for technology built upon a fundamental nanoscience discovery made by Aleksey Yekimov, its former Chief Scientific Officer.
This patent will enable the creation of strong permanent magnets which are critically needed for both industrial and military applications but cannot be manufactured without certain “rare earth” elements available mostly from China.
At a glittering awards ceremony held in Stockholm on December10, 2023, three scientists, Aleksey Yekimov, Louis Brus (Professor at Columbia University) and Moungi Bawendi (Professor at MIT) were honored with the Nobel Prize in Chemistry for their discovery of the “quantum dot” which is now fueling practical applications in tuning the colors of LEDs, increasing the resolution of TV screens, and improving MRI imaging.
As stated by the Royal Swedish Academy of Sciences, “Quantum dots are … bringing the greatest benefits to humankind. Researchers believe that in the future they could contribute to flexible electronics, tiny sensors, thinner solar cells, and encrypted quantum communications – so we have just started exploring the potential of these tiny particles.”
Aleksey Yekimov worked for over 19 years until his retirement as Chief Scientific Officer of Nanocrystals Technology LP, an R & D company in New York founded by two Indian-American entrepreneurs, Rameshwar Bhargava and Rajan Pillai.
Yekimov, who was born in Russia, had already received the highest scientific honors for his work before he immigrated to USA in 1999. Yekimov was greatly intrigued by Nanocrystal Technology’s research project and chose to join the company as its Chief Scientific Officer.
During its early years, the company worked on efficient light generation by doping host nanoparticles about the same size as a quantum dot with an additional impurity atom. Bhargava came up with the novel idea of incorporating a single impurity atom, a dopant, into a quantum dot sized host, and thus achieve an extraordinary change in the host material’s properties such as inducing strong permanent magnetism in weak, readily available paramagnetic materials. To get a sense of the scale at which nanotechnology works, and as vividly illustrated by the Nobel Foundation, the difference in size between a quantum dot and a soccer ball is about the same as the difference between a soccer ball and planet Earth.
Currently, strong permanent magnets are manufactured from “rare earths” available mostly in China which has established a near monopoly on the supply of rare-earth based strong permanent magnets. Permanent magnets are a fundamental building block for electro-mechanical devices such as motors found in all automobiles including electric vehicles, trucks and tractors, military tanks, wind turbines, aircraft engines, missiles, etc. They are also required for the efficient functioning of audio equipment such as speakers and cell phones as well as certain magnetic storage media.
The existing market for permanent magnets is $28 billion and is projected to reach $50 billion by 2030 in view of the huge increase in usage of electric vehicles. China’s overwhelming dominance in this field has become a matter of great concern to governments of all Western and other industrialized nations. As the Wall St. Journal put it, China’s now has a “stranglehold” on the economies and security of other countries.
The possibility of making permanent magnets without the use of any rare earths mined in China has intrigued leading physicists and chemists for nearly 30 years. On December 19, 2023, a U.S. patent with the title ‘’Strong Non Rare Earth Permanent Magnets from Double Doped Magnetic Nanoparticles” was granted to Integrated Nano-Magnetics Corp. [emphasis mine] Referring to this major accomplishment Bhargava said, “The pioneering work done by Yekimov, Brus and Bawendi has provided the foundation for us to make other discoveries in nanotechnology which will be of great benefit to the world.”
This research offers a pathway to neuromorphic (brainlike) computing with chiral (or twisted) magnets, which, as best as I understand it, do not require rare earths. From a November13, 2023 news item on ScienceDaily,
A form of brain-inspired computing that exploits the intrinsic physical properties of a material to dramatically reduce energy use is now a step closer to reality, thanks to a new study led by UCL [University College London] and Imperial College London [ICL] researchers.
In the new study, published in the journal Nature Materials, an international team of researchers used chiral (twisted) magnets as their computational medium and found that, by applying an external magnetic field and changing temperature, the physical properties of these materials could be adapted to suit different machine-learning tasks.
Dr Oscar Lee (London Centre for Nanotechnology at UCL and UCL Department of Electronic & Electrical Engineering), the lead author of the paper, said: “This work brings us a step closer to realising the full potential of physical reservoirs to create computers that not only require significantly less energy, but also adapt their computational properties to perform optimally across various tasks, just like our brains.
“The next step is to identify materials and device architectures that are commercially viable and scalable.”
Traditional computing consumes large amounts of electricity. This is partly because it has separate units for data storage and processing, meaning information has to be shuffled constantly between the two, wasting energy and producing heat. This is particularly a problem for machine learning, which requires vast datasets for processing. Training one large AI model can generate hundreds of tonnes of carbon dioxide.
Physical reservoir computing is one of several neuromorphic (or brain inspired) approaches that aims to remove the need for distinct memory and processing units, facilitating more efficient ways to process data. In addition to being a more sustainable alternative to conventional computing, physical reservoir computing could be integrated into existing circuitry to provide additional capabilities that are also energy efficient.
In the study, involving researchers in Japan and Germany, the team used a vector network analyser to determine the energy absorption of chiral magnets at different magnetic field strengths and temperatures ranging from -269 °C to room temperature.
They found that different magnetic phases of chiral magnets excelled at different types of computing task. The skyrmion phase, where magnetised particles are swirling in a vortex-like pattern, had a potent memory capacity apt for forecasting tasks. The conical phase, meanwhile, had little memory, but its non-linearity was ideal for transformation tasks and classification – for instance, identifying if an animal is a cat or dog.
Co-author Dr Jack Gartside, of Imperial College London, said: “Our collaborators at UCL in the group of Professor Hidekazu Kurebayashi recently identified a promising set of materials for powering unconventional computing. These materials are special as they can support an especially rich and varied range of magnetic textures. Working with the lead author Dr Oscar Lee, the Imperial College London group [led by Dr Gartside, Kilian Stenning and Professor Will Branford] designed a neuromorphic computing architecture to leverage the complex material properties to match the demands of a diverse set of challenging tasks. This gave great results, and showed how reconfiguring physical phases can directly tailor neuromorphic computing performance.”
The work also involved researchers at the University of Tokyo and Technische Universität München and was supported by the Leverhulme Trust, Engineering and Physical Sciences Research Council (EPSRC), Imperial College London President’s Excellence Fund for Frontier Research, Royal Academy of Engineering, the Japan Science and Technology Agency, Katsu Research Encouragement Award, Asahi Glass Foundation, and the DFG (German Research Foundation).
Here’s a link to and a citation for the paper,
Task-adaptive physical reservoir computing by Oscar Lee, Tianyi Wei, Kilian D. Stenning, Jack C. Gartside, Dan Prestwood, Shinichiro Seki, Aisha Aqeel, Kosuke Karube, Naoya Kanazawa, Yasujiro Taguchi, Christian Back, Yoshinori Tokura, Will R. Branford & Hidekazu Kurebayashi. Nature Materials volume 23, pages 79–87 (2024) DOI: https://doi.org/10.1038/s41563-023-01698-8 Published online: 13 November 2023 Issue Date: January 2024
This news comes from the University of Edinburgh (Scotland). From an October 10, 2023 news item on phys.org, Note: A link has been removed,
Scientists have used gene editing techniques to identify and change parts of chicken DNA that could limit the spread of the bird flu virus in the animals.
Researchers were able to restrict—but not completely block—the virus from infecting chickens by altering a small section of their DNA.
The birds showed no signs that the change in their DNA had any impact on their health or well-being.
The findings are an encouraging step forward, but experts highlight that further gene edits would be needed to produce a chicken population which cannot be infected by bird flu—one of the world’s most costly animal diseases.
Scientists from University of Edinburgh, Imperial College London and the Pirbright Institute bred the chickens using gene editing techniques to alter the section of DNA responsible for producing the protein ANP32A. During an infection, flu viruses hijack this molecule to help replicate themselves.
When the ANP32A gene-edited chickens were exposed to a normal dose of the H9N2-UDL strain of avian influenza virus – commonly known as bird flu – 9 out of 10 birds remained uninfected and there was no spread to other chickens.
Partial protection
The research team then exposed the gene-edited birds to an artificially high dose of avian influenza virus to further test their resilience.
When exposed to the high dose, half of the group – 5 out of 10 birds – became infected. However, the gene edit did provide some protection, with the amount of virus in the infected gene-edited chickens much lower than the level typically seen during infection in non-gene-edited chickens.
The gene edit also helped to limit onward spread of the virus to just one of four non-gene-edited chickens placed in the same incubator. There was no transmission to gene-edited birds.
Viral evolution
Scientists found that in the ANP32A gene-edited birds, the virus had adapted to enlist the support of two related proteins – ANP32B and ANP32E – to replicate.
Following lab tests, scientists found that some of the mutations enabled the virus to utilise the human version of ANP32, but its replication remained low in cell cultures from the human airway.
Experts say that additional genetic changes would be needed for the virus to infect and spread effectively in humans.
However, the findings demonstrate that the single ANP32A gene edit is not robust enough for application in the production of chickens, according to the team.
Gene editing
Scientists from University of Edinburgh, Imperial College London and the Pirbright Institute bred the chickens using gene editing techniques to alter the section of DNA responsible for producing the protein ANP32A. During an infection, flu viruses hijack this molecule to help replicate themselves.
When the ANP32A gene-edited chickens were exposed to a normal dose of the H9N2-UDL strain of avian influenza virus – commonly known as bird flu – 9 out of 10 birds remained uninfected and there was no spread to other chickens.
Partial protection
The research team then exposed the gene-edited birds to an artificially high dose of avian influenza virus to further test their resilience.
When exposed to the high dose, half of the group – 5 out of 10 birds – became infected. However, the gene edit did provide some protection, with the amount of virus in the infected gene-edited chickens much lower than the level typically seen during infection in non-gene-edited chickens.
The gene edit also helped to limit onward spread of the virus to just one of four non-gene-edited chickens placed in the same incubator. There was no transmission to gene-edited birds.
Viral evolution
Scientists found that in the ANP32A gene-edited birds, the virus had adapted to enlist the support of two related proteins – ANP32B and ANP32E – to replicate.
Following lab tests, scientists found that some of the mutations enabled the virus to utilise the human version of ANP32, but its replication remained low in cell cultures from the human airway.
Experts say that additional genetic changes would be needed for the virus to infect and spread effectively in humans.
However, the findings demonstrate that the single ANP32A gene edit is not robust enough for application in the production of chickens, according to the team.
Further edits
To prevent the emergence of escape viruses – viruses that adapt to evade the gene edit and cause infection – the research team next targeted additional sections of DNA responsible for producing all three proteins – ANP32A, ANP32B and ANP32E – inside lab-grown chicken cells.
In cell cultures in the lab, growth of the virus was successfully blocked in cells with the three gene edits.
The next step will be to try to develop chickens with edits to all three genes. No birds have been produced yet.
The study highlights the importance of responsible gene editing and the need to be alert to the risks of driving viral evolution in unwanted directions if complete resistance is not achieved, experts say.
Bird flu is a major global threat, with a devastating impact in both farmed and wild bird populations. In the UK alone, the current outbreak of H5N1 bird flu has decimated seabird populations and cost the poultry industry more than £100 million in losses.
In rare instances, mutations in the bird flu virus allow it to infect people and cause serious illness. Efforts to control the spread of the disease are urgently needed.
“Bird flu is a great threat to bird populations. Vaccination against the virus poses a number of challenges, with significant practical and cost issues associated with vaccine deployment. Gene-editing offers a promising route towards permanent disease resistance, which could be passed down through generations, protecting poultry and reducing the risks to humans and wild birds. Our work shows that stopping the spread of avian influenza in chickens will need several simultaneous genetic changes.” Professor Mike McGrew, The study’s principal investigator, from the University of Edinburgh’s Roslin Institute
“This work is an exciting collaboration that fuses our expertise in virology with the world-leading genetic capability at the Roslin Institute. Although we haven’t yet got the perfect combination of gene edits to take this approach into the field, the results have told us a lot about how influenza virus functions inside the infected cell and how to slow its replication.” Professor Wendy Barclay, Imperial College London
The research was funded by UKRI-BBSRC, which also provides strategic funding to The Roslin Institute, and was supported by Edinburgh Innovations, the University’s commercialisation service.
Scientists have successfully used gene editing techniques to limit the spread of bird flu in chickens.
In a UK first, researchers have been able to restrict, but not completely block, the avian influenza virus from infecting the birds by precisely altering a small section of their DNA.
The modified birds showed no signs that the change had any impact on the animals’ health or well-being.
But the researchers say that while the findings are encouraging, further gene edits would be needed to produce chickens which cannot be infected by bird flu.
The study, carried out by researchers from the University of Edinburgh, Imperial College London and the Pirbright Institute, is published in the journal Nature Communications.
Professor Wendy Barclay, Head of the Department of Infectious Disease at Imperial College London, said: “This work is an exciting collaboration that fuses our expertise in virology with the world world-leading genetic capability at the Roslin Institute.
“Although we haven’t yet got the perfect combination of gene edits to take this approach into the field, the results have told us a lot about how influenza virus functions inside the infected cell and how to slow its replication.”
Global Threat
Bird flu is a major global threat, with a devastating impact in both farmed and wild bird populations. In the UK alone, the current outbreak of H5N1 bird flu has decimated seabird populations and cost the poultry industry more than £100 million in losses.
In the latest study, researchers aimed to test whether precise edits to the chicken’s genome could potentially generate birds which are resistant to the virus.
The team bred chickens with small edits to a gene called ANP32A. During an infection, influenza viruses hijack the ANP32A protein to help replicate themselves.
But when the gene-edited birds were exposed to a normal dose of virus (the H9N2 strain of avian influenza), 9 out of 10 birds remained uninfected and there was no spread to other chickens.
When the birds were exposed to an artificially high dose of virus, only half of them became infected. The single gene edit also provided some protection against transmission, with a much lower amount of virus in infected gene-edited birds compared to non-edited birds.
In addition, the edit also helped to limit onward spread of the virus to just one of four non-edited chickens placed in the same incubator. There was no transmission to gene-edited birds.
Triple edits
Analysis revealed that in the edited birds, the virus adapted to enlist the support of two related proteins to replicate – ANP32B and ANP32E.
Following lab tests, the researchers found some of the mutations may enable the virus to utilise the human version of ANP32, but replication remained low in cell cultures from the human airway. The researchers stress that additional genetic changes would be needed for the virus to have the potential to infect and spread effectively in humans.
According to the team, the findings demonstrate that a single gene edit is not robust enough to produce resistant chickens. To prevent the emergence of viruses able to adapt to the single edit, the team next used a triple edit to target additional proteins (ANP32A, ANP32B and ANP32E) in lab-grown chicken cells.
In cell cultures in the lab, growth of the virus was successfully blocked in cells with edits to all three genes. In future, researchers hope to develop chickens with this triple edit, but no birds have been produced at this stage.
According to the researchers, the study highlights the importance of responsible gene editing and the need to be alert to the risks of driving viral evolution in unwanted directions if complete resistance is not achieved, experts say.
Professor Mike McGrew, from the University of Edinburgh’s Roslin Institute and principal investigator of the study, said: “Bird flu is a great threat to bird populations. Vaccination against the virus poses a number of challenges, with significant practical and cost issues associated with vaccine deployment.
“Gene-editing offers a promising route towards permanent disease resistance, which could be passed down through generations, protecting poultry and reducing the risks to humans and wild birds. Our work shows that stopping the spread of avian influenza in chickens will need several simultaneous genetic changes.”
There’s also an October 10, 2023 article by Jon Cohen for Science.org, which gives some idea of how much work it took to get to this point, Note: Links have been removed,
For 3 decades, Helen Sang has tinkered with the genomes of chickens to try to make the birds resistant to the flu viruses that periodically devastate flocks and raise fears of a human pandemic. Now, as an especially virulent strain of avian influenza sweeps through poultry and wild birds around the world, the geneticist at the University of Edinburgh’s Roslin Institute has her first solid success. Using the CRISPR gene editor and recent findings about what makes poultry vulnerable to flu, Sang and colleagues from three other institutions have created chickens that can resist real-life doses of avian flu viruses. “Sticking to it gets you somewhere in the end,” she says.
The result, published today [October 5, 2023] in Nature Communications, is “a long-awaited achievement,” says Jiří Hejnar, a virologist at the Czech Academy of Sciences’s Institute of Molecular Genetics whose group showed in 2020 that CRISPR-edited chickens could resist a cancer-causing virus. But farmers won’t be raising flu-proof chickens anytime soon. The edited birds still became infected when exposed to larger amounts of the flu virus. And the strategy raises a safety concern: chickens edited this way could, in theory, drive the evolution of flu variants better at infecting people. “What this showed is a proof of concept,” says Wendy Barclay, a virologist at Imperial College London who worked on the new study. “But we’re not there yet.”
…
Here’s a link to and a citation for the paper,
Creating resistance to avian influenza infection through genome editing of the ANP32 gene family by Alewo Idoko-Akoh, Daniel H. Goldhill, Carol M. Sheppard, Dagmara Bialy, Jessica L. Quantrill, Ksenia Sukhova, Jonathan C. Brown, Samuel Richardson, Ciara Campbell, Lorna Taylor, Adrian Sherman, Salik Nazki, Jason S. Long, Michael A. Skinner, Holly Shelton, Helen M. Sang, Wendy S. Barclay & Mike J. McGrew. Nature Communications volume 14, Article number: 6136 (2023) DOI: https://doi.org/10.1038/s41467-023-41476-3 Published: 10 October 2023
A supercapacitor is not a battery but it does have some similarities. (For the ‘seaweed curious’, there’s this somewhat related May 17, 2017 posting titled “Seaweed supercapacitors.” It doesn’t seem to be quite as popular as butterfly wings or a crustacean’s shell but seaweed does seem to have a following in the materials community. From an October 5, 2022 news item on Nanowerk,
Bristol-led team uses nanomaterials made from seaweed to create a strong battery separator, paving the way for greener and more efficient energy storage.
Sodium-metal batteries (SMBs) are one of the most promising high-energy and low-cost energy storage systems for the next-generation of large-scale applications. However, one of the major impediments to the development of SMBs is uncontrolled dendrite growth, which penetrate the battery’s separator and result in short-circuiting.
Building on previous work at the University of Bristol and in collaboration with Imperial College and University College London, the team has succeeded in making a separator from cellulose nanomaterials derived from brown seaweed.
The research, published in Advanced Materials, describes how fibres containing these seaweed-derived nanomaterials not only stop crystals from the sodium electrodes penetrating the separator, they also improve the performance of the batteries.
“The aim of a separator is to separate the functioning parts of a battery (the plus and the minus ends) and allow free transport of the charge. We have shown that seaweed-based materials can make the separator very strong and prevent it being punctured by metal structures made from sodium. It also allows for greater storage capacity and efficiency, increasing the lifetime of the batteries – something which is key to powering devices such as mobile phones for much longer,” said Jing Wang, first author and PhD student in the Bristol Composites Institute (BCI).
Dr Amaka Onyianta, also from the BCI, who created the cellulose nanomaterials and co-authored the research, said: “I was delighted to see that these nanomaterials are able to strengthen the separator materials and enhance our capability to move towards sodium-based batteries. This means we wouldn’t have to rely on scarce materials such as lithium, which is often mined unethically and uses a great deal of natural resources, such as water, to extract it.”
“This work really demonstrates that greener forms of energy storage are possible, without being destructive to the environment in their production,” said Professor Steve Eichhorn who led the research at the Bristol Composites Institute.
The next challenge is to upscale production of these materials and to supplant current lithium-based technology.
This May 10, 2022 Association for Computing Machinery (ACM) announcement (received via email) has an eye-catching head,
Should Smart Cities Adopt Facial Recognition, Remote Monitoring Software+Social Media to Police [verb] Info?
The Association for Computing Machinery, the largest and most prestigious computer science society worldwide (100,000 members) has released a report, ACM TechBrief: Smart Cities, for smart city planners to address 1) cybersecurity; 2) privacy protections; 3) fairness and transparency; and 4) sustainability when planning and designing systems, including climate impact.
The Association for Computing Machinery’s global Technology Policy Council (ACM TPC) just released, “ACM TechBrief: Smart Cities,” which highlights the challenges involved in deploying information and communication technology to create smart cities and calls for policy leaders planning such projects to do so without compromising security, privacy, fairness and sustainability. The TechBrief includes a primer on smart cities, key statistics about the growth and use of these technologies, and a short list of important policy implications.
“Smart cities” are municipalities that use a network of physical devices and computer technologies to make the delivery of public services more efficient and/or more environmentally friendly. Examples of smart city applications include using sensors to turn off streetlights when no one is present, monitoring traffic patterns to reduce roadway congestion and air pollution, or keeping track of home-bound medical patients in order to dispatch emergency responders when needed. Smart cities are an outgrowth of the Internet of Things (IoT), the rapidly growing infrastructure of literally billions of physical devices embedded with sensors that are connected to computers and the Internet.
The deployment of smart city technology is growing across the world, and these technologies offer significant benefits. For example, the TechBrief notes that “investing in smart cities could contribute significantly to achieving greenhouse gas emissions reduction targets,” and that “smart cities use digital innovation to make urban service delivery more efficient.”
Because of the meteoric growth and clear benefits of smart city technologies, the TechBrief notes that now is an urgent time to address some of the important public policy concerns that smart city technologies raise. The TechBrief lists four key policy implications that government officials, as well as the private companies that develop these technologies, should consider.
These include:
Cybersecurity risks must be considered at every stage of every smart city technology’s life cycle.
Effective privacy protection mechanisms must be an essential component of any smart city technology deployed.
Such mechanisms should be transparently fair to all city users, not just residents.
The climate impact of smart city infrastructures must be fully understood as they are being designed and regularly assessed after they are deployed
“Smart cities are fast becoming a reality around the world,”explains Chris Hankin, a Professor at Imperial College London and lead author of the ACM TechBrief on Smart Cities. “By 2025, 26% of all internet-connected devices will be used in a smart city application. As technologists, we feel we have a responsibility to raise important questions to ensure that these technologies best serve the public interest. For example, many people are unaware that some smart city technologies involve the collection of personally identifiable data. We developed this TechBrief to familiarize the public and lawmakers with this topic and present some key issues for consideration. Our overarching goal is to guide enlightened public policy in this area.”
“Our new TechBrief series builds on earlier and ongoing work by ACM’s technology policy committees,” added James Hendler, Professor at Rensselaer Polytechnic Institute and Chair of the ACM Technology Policy Council. “Because many smart city applications involve algorithms making decisions which impact people directly, this TechBrief calls for methods to ensure fairness and transparency in how these systems are developed. This reinforces an earlier statement we issued that outlined seven principles for algorithmic transparency and accountability. We also note that smart city infrastructures are especially vulnerable to malicious attacks.”
This TechBrief is the third in a series of short technical bulletins by ACM TPC that present scientifically grounded perspectives on the impact of specific developments or applications of technology. Designed to complement ACM’s activities in the policy arena, TechBriefs aim to inform policymakers, the public, and others about the nature and implications of information technologies. The first ACM TechBrief focused on climate change, while the second addressed facial recognition. Topics under consideration for future issues include quantum computing, election security, and encryption.
About the ACM Technology Policy Council
ACM’s global Technology Policy Council sets the agenda for ACM’s global policy activities and serves as the central convening point for ACM’s interactions with government organizations, the computing community, and the public in all matters of public policy related to computing and information technology. The Council’s members are drawn from ACM’s global membership. It coordinates the activities of ACM’s regional technology policy groups and sets the agenda for global initiatives to address evolving technology policy issues.
About ACM
ACM, the Association for Computing Machinery, is the world’s largest educational and scientific computing society, uniting educators, researchers and professionals to inspire dialogue, share resources and address the field’s challenges. ACM strengthens the computing profession’s collective voice through strong leadership, promotion of the highest standards, and recognition of technical excellence. ACM supports the professional growth of its members by providing opportunities for life-long learning, career development, and professional networking.
This is indeed a brief. I recommend reading it as it provides a very good overview to the topic of ‘smart cities’ and raises a question or two. For example, there’s this passage from the April 2022 Issue 3 Technical Brief on p. 2,
… policy makers should target broad and fair access and application of AI and, in general, ICT [information and communication technologies]. This can be achieved through transparent planning and decision-making processes for smart city infrastructure and application developments, such as open hearings, focus groups, and advisory panels. The goal must be to minimize potential harm while maximizing the benefits that algorithmic decision-making [emphasis mine] can bring
Is this algorithmic decision-making under human supervision? It doesn’t seem to be specified in the brief itself. It’s possible the answer lies elsewhere. After all, this is the third in the series.
Saving energy is one of the main drivers for the current race to make neuromorphic (brainlike) computers as this May 5, 2022 news item on Nanowerk comments, Note: Links have been removed,
Researchers have shown it is possible to perform artificial intelligence using tiny nanomagnets that interact like neurons in the brain.
The new method, developed by a team led by Imperial College London researchers, could slash the energy cost of artificial intelligence (AI), which is currently doubling globally every 3.5 months. [emphasis mine]
In a paper published in Nature Nanotechnology (“Reconfigurable training and reservoir computing in an artificial spin-vortex ice via spin-wave fingerprinting”), the international team have produced the first proof that networks of nanomagnets can be used to perform AI-like processing. The researchers showed nanomagnets can be used for ‘time-series prediction’ tasks, such as predicting and regulating insulin levels in diabetic patients.
Artificial intelligence that uses ‘neural networks’ aims to replicate the way parts of the brain work, where neurons talk to each other to process and retain information. A lot of the maths used to power neural networks was originally invented by physicists to describe the way magnets interact, but at the time it was too difficult to use magnets directly as researchers didn’t know how to put data in and get information out.
Instead, software run on traditional silicon-based computers was used to simulate the magnet interactions, in turn simulating the brain. Now, the team have been able to use the magnets themselves to process and store data – cutting out the middleman of the software simulation and potentially offering enormous energy savings.
Nanomagnetic states
Nanomagnets can come in various ‘states’, depending on their direction. Applying a magnetic field to a network of nanomagnets changes the state of the magnets based on the properties of the input field, but also on the states of surrounding magnets.
The team, led by Imperial Department of Physics researchers, were then able to design a technique to count the number of magnets in each state once the field has passed through, giving the ‘answer’.
Co-first author of the study Dr Jack Gartside said: “We’ve been trying to crack the problem of how to input data, ask a question, and get an answer out of magnetic computing for a long time. Now we’ve proven it can be done, it paves the way for getting rid of the computer software that does the energy-intensive simulation.”
Co-first author Kilian Stenning added: “How the magnets interact gives us all the information we need; the laws of physics themselves become the computer.”
Team leader Dr Will Branford said: “It has been a long-term goal to realise computer hardware inspired by the software algorithms of Sherrington and Kirkpatrick. It was not possible using the spins on atoms in conventional magnets, but by scaling up the spins into nanopatterned arrays we have been able to achieve the necessary control and readout.”
Slashing energy cost
AI is now used in a range of contexts, from voice recognition to self-driving cars. But training AI to do even relatively simple tasks can take huge amounts of energy. For example, training AI to solve a Rubik’s cube took the energy equivalent of two nuclear power stations running for an hour.
Much of the energy used to achieve this in conventional, silicon-chip computers is wasted in inefficient transport of electrons during processing and memory storage. Nanomagnets however don’t rely on the physical transport of particles like electrons, but instead process and transfer information in the form of a ‘magnon’ wave, where each magnet affects the state of neighbouring magnets.
This means much less energy is lost, and that the processing and storage of information can be done together, rather than being separate processes as in conventional computers. This innovation could make nanomagnetic computing up to 100,000 times more efficient than conventional computing.
AI at the edge
The team will next teach the system using real-world data, such as ECG signals, and hope to make it into a real computing device. Eventually, magnetic systems could be integrated into conventional computers to improve energy efficiency for intense processing tasks.
Their energy efficiency also means they could feasibly be powered by renewable energy, and used to do ‘AI at the edge’ – processing the data where it is being collected, such as weather stations in Antarctica, rather than sending it back to large data centres.
It also means they could be used on wearable devices to process biometric data on the body, such as predicting and regulating insulin levels for diabetic people or detecting abnormal heartbeats.
A February 9, 2022 news item on phys.org describes some bioinspired research that could help cut down on the use of disinfectants,
Researchers have created intricately patterned materials that mimic antimicrobial, adhesive and drag reducing properties found in natural surfaces.
The team from Imperial College London found inspiration in the wavy and spiky surfaces found in insects, including on cicada and dragonfly wings, which ward off bacteria.
They hope the new materials could be used to create self-disinfecting surfaces and offer an alternative to chemically functionalized surfaces and cleaners, which can promote the growth of antibiotic-resistant bacteria.
The tiny waves, which overlap at defined angles to create spikes and ripples, could also help to reduce drag on marine transport by mimicking shark skin, and to enhance the vibrancy of color without needing pigment, by mimicking insects.
Senior author Professor Joao Cabral, of Imperial’s Department of Chemical Engineering, said, “It’s inspiring to see in miniscule detail how the wings and skins of animals help them master their environments. Animals evolved wavy surfaces to kill bacteria, enhance color, and reduce drag while moving through water. We’re borrowing these natural tricks for the very same purposes, using a trick reminiscent of a Fourier wave superposition.”
Spiky structures
Researchers created the new materials by stretching and compressing a thin, soft, sustainable plastic resembling clingfilm to create three-dimensional nano- and microscale wavy patterns, compatible with sustainable and biodegradable polymers.
The spiky structure was inspired by the way insects and fish have evolved to interact with their environments. The corrugated ripple effect is seen in the wings of cicadas and dragonflies, whose surfaces are made of tiny spikes which pop bacterial cells to keep the insects clean.
The structure could also be applied to ships to reduce drag and boost efficiency – an application inspired by shark skin, which contains nanoscale horizontal ridges to reduce friction and drag.
Another application is in producing vibrant colours like those seen in the wings of morpho blue butterflies, whose cells are arranged to reflect and bend light into a brilliant blue without using pigment. Known as structural colour, other examples include the blue in peacock feathers, the shells of iridescent beetles, and blue human eyes.
They discovered that they could recreate these naturally occurring surface waves by stretching and then relaxing thin polymer skins in precise directions at the nanoscale.
While complex patterns can be fabricated by lithography and other methods, for instance in silicon microchip production, these are generally prohibitively expensive to use over large areas. This new technique, on the other hand, is ready to be scaled up relatively inexpensively if confirmed to be effective and robust.
Potential applications include self-disinfecting surfaces in hospitals, schools, public transport, and food manufacturing. They could even help keep medical implants clean, which is important as these can host networks of bacterial matter known as biofilms that are notoriously difficult to kill.
Naturally occurring wave patterns are also seen in the wrinkling of the human brain and fingertips as well as the ripples in sand beds. First author Dr Luca Pellegrino from the Department of Chemical Engineering, said: “The idea is compelling because it is simple: by mimicking the surface waves found in nature, we can create a palette of patterns with important applications. Through this work we can also learn more about the possible origins of these natural forms – a field called morphogenesis.”
he next focus for the team is to test the effectiveness and robustness of the material in real-world settings, like on bus surfaces. The researchers hope it can contribute to solutions to surface cleanliness that are not reliant on chemical cleaners. To this end, they have been awarded a €5.4million EU HORIZON grant with collaborators ranging from geneticists at KU Leuven to a bus manufacturer to develop sustainable and robust antimicrobial surfaces for high traffic contexts.
Here’s a link (the press release also has a link) to and a citation for the paper,
This work reminds me of Sharklet, a company that was going to produce materials that mimicked the structure of sharkskin. Apparently, sharks have nanostructures on their skin which prevents bacteria and more from finding a home there.
At the simplest of levels, nanopores are (nanometre-sized) holes in an insulating membrane. The hole allows ions to pass through the membrane when a voltage is applied, resulting in a measurable current. When a molecule passes through a nanopore it causes a change in the current, this can be used to characterize and even identify individual molecules. Nanopores are extremely powerful single-molecule biosensing devices and can be used to detect and sequence DNA, RNA, and even proteins. Recently, it has been used in the SARS-CoV-2 virus sequencing.
Solid-state nanopores are an extremely versatile type of nanopore formed in ultrathin membranes (less than 50 nanometres), made from materials such as silicon nitride (SiNx). Solid-state nanopores can be created with a range of diameters and can withstand a multitude of conditions (discover more about solid-state nanopore fabrication techniques here). One of the most appealing techniques with which to fabricate nanopores is Controlled Breakdown (CBD). This technique is quick, reduces fabrication costs, does not require specialized equipment, and can be automated.
CBD is a technique in which an electric field is applied across the membrane to induce a current. At some point, a spike in the current is observed, signifying pore formation. The voltage is then quickly reduced to ensure the fabrication of a single, small nanopore.
The mechanisms underlying this process have not been fully elucidated thus an international team involving ITQB NOVA decided to further investigate how electrical conduction through the membrane occurs during breakdown, namely how oxidation and reduction reactions (also called redox reactions, they imply electron loss or gain, respectively) influence the process. To do this, the team created three devices in which the electric field is applied to the membrane (a silicon-rich SiNx membrane) in different ways: via metal electrodes on both sides of the membrane; via electrolyte solutions on both sides of the membrane; and via a mixed device with a metal electrode on one side and an electrolyte solution on the other.
Results showed that redox reactions must occur at the membrane-electrolyte interface, whilst the metal electrodes circumvent this need. The team also demonstrated that, because of this phenomenon, nanopore fabrication could be localized to certain regions by performing CBD with metal microelectrodes on the membrane surface. Finally, by varying the content of silicon in the membrane, the investigators demonstrated that conduction and nanopore formation is highly dependent on the membrane material since it limits the electrical current in the membrane.
“Controlling the location of nanopores has been of interest to us for a number of years”, says James Yates. Pedro Sousa adds that “our findings suggest that CBD can be used to integrate pores with complementary micro or nanostructures, such as tunneling electrodes or field-effect sensors, across a range of different membrane materials.” These devices may then be used for the detection of specific molecules, such as proteins, DNA, or antibodies, and applied to a wide array of scenarios, including pandemic surveillance or food safety.
This project was developed by a research team led by ITQB NOVA’s James Yates and has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 724300 and 875525). Co-author Pedro Miguel Sousa is also from ITQB NOVA. The other consortium members are from the University of Oxford, Oak Ridge National Laboratory, Imperial College London and Queen Mary University of London. The authors would like to thank Andrew Briggs for providing financial support.
Here’s a link to and a citation for the paper,
Understanding Electrical Conduction and Nanopore Formation During Controlled Breakdown by Jasper P. Fried, Jacob L. Swett, Binoy Paulose Nadappuram, Aleksandra Fedosyuk, Pedro Miguel Sousa, Dayrl P. Briggs, Aleksandar P. Ivanov, Joshua B. Edel, Jan A. Mol, James R. Yates. Small DOI: https://doi.org/10.1002/smll.202102543 First published: 01 August 2021
Researchers at the Imperial College London (ICL) are warning that brain-computer interfaces (BCIs) may pose a number of quandaries. (At the end of this post, I have a little look into some of the BCI ethical issues previously explored on this blog.)
Surpassing the biological limitations of the brain and using one’s mind to interact with and control external electronic devices may sound like the distant cyborg future, but it could come sooner than we think.
Researchers from Imperial College London conducted a review of modern commercial brain-computer interface (BCI) devices, and they discuss the primary technological limitations and humanitarian concerns of these devices in APL Bioengineering, from AIP Publishing.
The most promising method to achieve real-world BCI applications is through electroencephalography (EEG), a method of monitoring the brain noninvasively through its electrical activity. EEG-based BCIs, or eBCIs, will require a number of technological advances prior to widespread use, but more importantly, they will raise a variety of social, ethical, and legal concerns.
Though it is difficult to understand exactly what a user experiences when operating an external device with an eBCI, a few things are certain. For one, eBCIs can communicate both ways. This allows a person to control electronics, which is particularly useful for medical patients that need help controlling wheelchairs, for example, but also potentially changes the way the brain functions.
“For some of these patients, these devices become such an integrated part of themselves that they refuse to have them removed at the end of the clinical trial,” said Rylie Green, one of the authors. “It has become increasingly evident that neurotechnologies have the potential to profoundly shape our own human experience and sense of self.”
Aside from these potentially bleak mental and physiological side effects, intellectual property concerns are also an issue and may allow private companies that develop eBCI technologies to own users’ neural data.
“This is particularly worrisome, since neural data is often considered to be the most intimate and private information that could be associated with any given user,” said Roberto Portillo-Lara, another author. “This is mainly because, apart from its diagnostic value, EEG data could be used to infer emotional and cognitive states, which would provide unparalleled insight into user intentions, preferences, and emotions.”
As the availability of these platforms increases past medical treatment, disparities in access to these technologies may exacerbate existing social inequalities. For example, eBCIs can be used for cognitive enhancement and cause extreme imbalances in academic or professional successes and educational advancements.
“This bleak panorama brings forth an interesting dilemma about the role of policymakers in BCI commercialization,” Green said. “Should regulatory bodies intervene to prevent misuse and unequal access to neurotech? Should society follow instead the path taken by previous innovations, such as the internet or the smartphone, which originally targeted niche markets but are now commercialized on a global scale?”
She calls on global policymakers, neuroscientists, manufacturers, and potential users of these technologies to begin having these conversations early and collaborate to produce answers to these difficult moral questions.
“Despite the potential risks, the ability to integrate the sophistication of the human mind with the capabilities of modern technology constitutes an unprecedented scientific achievement, which is beginning to challenge our own preconceptions of what it is to be human,” [emphasis mine] Green said.
Back on September 17, 2020 I published a post about a brain implant and included some material I’d dug up on ethics and brain-computer interfaces and was most struck by one of the stories. Here’s the excerpt (which can be found under the “Brain-computer interfaces, symbiosis, and ethical issues” subhead): … From a July 24, 2019 article by Liam Drew for Nature Outlook: The brain,
“It becomes part of you,” Patient 6 said, describing the technology that enabled her, after 45 years of severe epilepsy, to halt her disabling seizures. Electrodes had been implanted on the surface of her brain that would send a signal to a hand-held device when they detected signs of impending epileptic activity. On hearing a warning from the device, Patient 6 knew to take a dose of medication to halt the coming seizure.
“You grow gradually into it and get used to it, so it then becomes a part of every day,” she told Frederic Gilbert, an ethicist who studies brain–computer interfaces (BCIs) at the University of Tasmania in Hobart, Australia. “It became me,” she said. [emphasis mine]
Gilbert was interviewing six people who had participated in the first clinical trial of a predictive BCI to help understand how living with a computer that monitors brain activity directly affects individuals psychologically1. Patient 6’s experience was extreme: Gilbert describes her relationship with her BCI as a “radical symbiosis”.
… He [Gilbert] is now preparing a follow-up report on Patient 6. The company that implanted the device in her brain to help free her from seizures went bankrupt. The device had to be removed.
… Patient 6 cried as she told Gilbert about losing the device. … “I lost myself,” she said.
“It was more than a device,” Gilbert says. “The company owned the existence of this new person.”
…
It wasn’t my first thought when the topic of ethics and BCIs came up but as Gilbert’s research highlights: what happens if the company that made your implant and monitors it goes bankrupt?
If you have the time, do take a look at the entire entry under the “Brain-computer interfaces, symbiosis, and ethical issues” subhead of the September 17, 2020 posting or read the July 24, 2019 article by Liam Drew.
Should you have a problem finding the July 20, 2021 American Institute of Physics news release at either of the two links I have previously supplied, there’s a July 20, 2021 copy at SciTechDaily.com