Tag Archives: Institute of Materials Research and Engineering

Nanoimprint Foundry in Singapore

Sept. 30, 2013 marks the date for the launch of Singapore’s Nanoimprint Foundry. From the Sept. 30, 2013 news item on Nanowerk,

A*STAR’s [Agency for Science, Technology and Research] Institute of Materials Research and Engineering (IMRE) and its partners launched a new Nanoimprint Foundry that will develop, test-bed and prototype specially engineered plastics and surfaces for the specific purpose of commercialising the technologies. Possible applications of nanoimprint technology include dry adhesives, aesthetic packaging, contact lenses, biomedical cell scaffolds, anti-frost surfaces and anti-bacteria materials.

The multi-party investment will bring together national research organisations, suppliers and manufacturers spanning the nanotechnology value chain, and government agencies to promote the technology. The Foundry is part of a masterplan spearheaded by A*STAR to push translational research and accelerate commercialisation of home-grown technologies. In partnership with other A*STAR research institutes, IMRE will work with companies like Toshiba Machines Co Ltd, EV Group, NTT Advanced Technology Corporation, NIL Technology ApS, Kyodo International Inc., micro resist technology GmbH, Nanoveu Pte Ltd and Solves Innovative Technology Pte Ltd to produce prototypes for real-world products and applications. The Foundry and its partners will also work closely with Singapore’s Economic Development Board (EDB) and SPRING to promote its nanoimprint applications to industry as part of the plans to build up Singapore’s high-value manufacturing capabilities.

The Sept. 30, 2013 A*STAR press release, which originated the news item, itemizes the various news points of interest,

3.     “We can help companies develop up to 20,000 samples for proof-of-concept and pilot production allowing manufacturers to shorten the product cycle but minus the heavy capital R&D investment”, said Dr Karen Chong, the IMRE scientist who is heading the Foundry. Dr Chong added that the Foundry will be a one-stop shop for companies seeking to conceive, design and develop solutions for new, revolutionary products based on the versatile nanoimprint technology.

4.     “The Foundry gives us the tools for creating real products that target industry end users and ultimately consumers”, explained Mr Masayuki Yagi, Director & General Manager, Advanced Machinery Business Unit, Toshiba Machines Co Ltd, Japan on why the company chose to participate in the initiative. “Toshiba Machines and the Foundry will aim to deliver innovative engineering solutions based on nanoimprint and be the best partner for leading industries”.

5.     According to Mr Koh Teng Kwee, Director of Solves Innovative Technology Pte Ltd, “Working with IMRE since IICON 1[1] am sure IMRE’s nanoimprint technology and know-how is now ready for industrial adoption.  In my opinion, IMRE is able to provide everything needed for a new product realisation involving nanoimprinting.”

6.     “There is a billion-dollar, virtually untapped market for new advanced nanotechnology products that can make use of what the Foundry has to offer”, said Prof Andy Hor, Executive Director for IMRE, adding that the initiative will hasten the industrialisation of nanoimprinting in this lucrative market segment. In consumer care for example, the global market for contact lenses – where nanoimprint technology can be used to produce new functionalities like multi-coloured lenses – is expected to grow to USD 11.7 billion by 2015[2].

7.     “The Foundry is the first one-stop shop to pull different value chain partners together to offer solutions based on nanoimprint through equipment, moulds, materials and applications to end user companies”, said Dr Tan Geok Leng, Executive Director of A*STAR’s Science and Engineering Research Council which oversees a number of the research institutes dedicated to the physical sciences and engineering. “The new Foundry is part of Singapore’s strategy to create a new, advanced high-value manufacturing sector to support its growing knowledge-based economy.”

8.     “As part of EDB’s vision to position Singapore as an Advanced Manufacturing Hub, we will continue to work with companies to co-create and adopt advanced manufacturing technologies. We see this new Research Foundry as one of the key infrastructures to strengthen nanoscale-manufacturing capabilities in Singapore”, said Mr Yi-Hsen Gian, Director (i3), Economic Development Board (EDB), Singapore.

[1]Source: Industrial Consortium On Nanoimprint, Project 1 on anti-reflection surfaces

[2] Source: Global Industry Analysts, Inc.

Good luck with the foundry and this attempt to set up a manufacturing process!

Are we creating a Star Trek world? T-rays and tricorders

There’s been quite a flutter online (even the Huffington Post has published a piece) about ‘Star Trek-hand-held medical scanners’ becoming possible due to some recent work in the area of T-rays. From the Jan. 20, 2012 news item on Nanowerk,

Scientists who have developed a new way to create a type of radiation known as Terahertz (THz) or T-rays – the technology behind full-body security scanners – say their new, stronger and more efficient continuous wave T-rays could be used to make better medical scanning gadgets and may one day lead to innovations similar to the “tricorder” scanner used in Star Trek.

In a study published recently in Nature Photonics (“Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer” [behind a paywall]), researchers from the Institute of Materials Research and Engineering (IMRE), a research institute of the Agency for Science, Technology and Research (A*STAR) in Singapore and Imperial College London in the UK have made T-rays into a much stronger directional beam than was previously thought possible and have efficiently produced T-rays at room-temperature conditions. This breakthrough allows future T-ray systems to be smaller, more portable, easier to operate, and much cheaper.

For anyone who’s not familiar with ‘Star Trek world’ and tricorders, here’s a brief description from a Wikipedia essay about tricorders,

In the fictional Star Trek universe, a tricorder is a multifunction handheld device used for sensor scanning, data analysis, and recording data.

David Freeman in his Jan. 21, 2012 article for the Huffington Post about the research puts it this way,

Trekkies, take heart. A scientific breakthrough involving a form of infrared radiation known as terahertz (THz) waves could lead to handheld medical scanners reminiscent of the “tricorder” featured on the original Star Trek television series.

What’s the breakthrough? Using nanotechnology, physicists in London and Singapore found a way to make a beam of the”T-rays”–which are now used in full-body airport security scanners–stronger and more directional.

Here’s how the improved T-ray technology works (from the Jan. 20, 2012 news item on Nanowerk),

In the new technique, the researchers demonstrated that it is possible to produce a strong beam of T-rays by shining light of differing wavelengths on a pair of electrodes – two pointed strips of metal separated by a 100 nanometre gap on top of a semiconductor wafer. The unique tip-to-tip nano-sized gap electrode structure greatly enhances the THz field and acts like a nano-antenna that amplifies the THz wave generated. The waves are produced by an interaction between the electromagnetic waves of the light pulses and a powerful current passing between the semiconductor electrodes from the carriers generated in the underlying semiconductor. The scientists are able to tune the wavelength of the T-rays to create a beam that is useable in the scanning technology.

Lead author Dr Jing Hua Teng, from A*STAR’s IMRE, said: “The secret behind the innovation lies in the new nano-antenna that we had developed and integrated into the semiconductor chip.” ….

Research co-author Stefan Maier, a Visiting Scientist at A*STAR’s IMRE and Professor in the Department of Physics at Imperial College London, said: “T-rays promise to revolutionise medical scanning to make it faster and more convenient, potentially relieving patients from the inconvenience of complicated diagnostic procedures and the stress of waiting for accurate results. Thanks to modern nanotechnology and nanofabrication, we have made a real breakthrough in the generation of T-rays that takes us a step closer to these new scanning devices. …”

It’s another story about handheld (or point-of-care) diagnostic devices and I have posted on this topic previously:

  • Jan. 4, 2012 about work in Alberta;
  •  Dec. 22, 2011 on grants to scientists in the US and Canada working on these devices;
  •  Aug. 4, 2011 about a diagnostic device the size of a credit card;
  •  Mar. 1, 2011 about nanoLAB from Stanford University (my last sentence in that posting “It’s not quite Star Trek yet but we’re getting there.”); and,
  •  Feb. 5, 2011 about the Argento and PROOF initiatives.

I see I had four articles last year and this year (one month old), I already have two articles on these devices. It reflects my own interest, as well as, the amount work being done in this area.