Tag Archives: Is there hidden turbulence in Vincent van Gogh’s The Starry Night?

Say ain’t so! van Gogh’s ‘The Starry Night’ is not a masterpiece when it comes to flow physics according to researchers

Researchers at Virginia Commonwealth University (VCU; US) have challenged the findings in recent research that was highlighted here in a December 16, 2024 posting “van Gogh’s sky is alive with real-world physics.”

An April 1, 2025 news item (not an April Fool’s joke) on phys.org announces a conclusion that contradicts the original findings,

The Dutch master Vincent van Gogh may have painted one of Western history’s most enduring works, but “The Starry Night” is not a masterpiece of flow physics—despite recent attention to its captivating swirls, according to researchers from Virginia Commonwealth University and the University of Washington [state not district].

Credit: Pixabay/CC0 Public Domain [downloaded from https://phys.org/news/2025-04-vincent-van-gogh-starry-night.html].

An April 1, 2025 Virginia Commonwealth University (VCU) news release (also on EurekAlert) by Leila Ugincius, which originated the news item, goes on to further refute the claim about Starry Night and flow physics, Note: Links have been removed,

The post-Impressionist artist painted the work (often referred to simply as “Starry Night”) in June 1889, and its depiction of a pre-sunrise sky and village was inspired in part by the view from van Gogh’s asylum room in southern France. The painting is part of the permanent collection of the Museum of Modern Art in New York City.

Last year, a paper published in the September issue of Physics of Fluids – “Hidden Turbulence in van Gogh’s ‘The Starry Night’” – received considerable notice by positing that the eddies, or swirls, painted by van Gogh adhere to Kolmogorov’s theory of turbulent flow, which explains how air and water swirls move in a somewhat chaotic pattern. “[van Gogh] was able to reproduce not only the size of whirls/eddies, but also their relative distance and intensity in his painting,” the paper read.

However, those conclusions are unfounded, according to Mohamed Gad-el-Hak, Ph.D., the Inez Caudill Eminent Professor in VCU’s Department of Mechanical and Nuclear Engineering, and James J. Riley, Ph.D., the inaugural Paccar Professor of Mechanical Engineering at the University of Washington. Their report –  “Is There Hidden Turbulence in Vincent van Gogh’s ‘The Starry Night’?” – appears in the latest issue of Journal of Turbulence.

Here’s a link to and a citation for the paper,

Is there hidden turbulence in Vincent van Gogh’s The Starry Night? by James J. Riley
& Mohamed Gad-el-Hak. Journal of Turbulence Pages 1–2. DOI: https://doi.org/10.1080/14685248.2025.2477244 Published online: 18 Mar 2025

This paper is behind a paywall.