Tag Archives: James M. Tour

Graphene gains metallic powers after laser-burning

Rice University (Texas, US) researchers have developed a technique for embedding metallic nanoparticles in graphene with the hope of one day replacing platinum catalysts in fuel cells. From an August 20, 2015 news item on ScienceDaily,

Laser-induced graphene, created by the Rice lab of chemist James Tour last year, is a flexible film with a surface of porous graphene made by exposing a common plastic known as polyimide to a commercial laser-scribing beam. The researchers have now found a way to enhance the product with reactive metals.

An August 20, 2015 Rice University news release (also on EurekAlert), which originated the news item, provides further description,

With the discovery, the material that the researchers call “metal oxide-laser induced graphene” (MO-LIG) becomes a new candidate to replace expensive metals like platinum in catalytic fuel-cell applications in which oxygen and hydrogen are converted to water and electricity.

“The wonderful thing about this process is that we can use commercial polymers, with simple inexpensive metal salts added,” Tour said. “We then subject them to the commercial laser scriber, which generates metal nanoparticles embedded in graphene. So much of the chemistry is done by the laser, which generates graphene in the open air at room temperature.

“These composites, which have less than 1 percent metal, respond as ‘super catalysts’ for fuel-cell applications. Other methods to do this take far more steps and require expensive metals and expensive carbon precursors.”

Initially, the researchers made laser-induced graphene with commercially available polyimide sheets. Later, they infused liquid polyimide with boron to produce laser-induced graphene with a greatly increased capacity to store an electrical charge, which made it an effective supercapacitor.

For the latest iteration, they mixed the liquid and one of three concentrations containing cobalt, iron or molybdenum metal salts. After condensing each mixture into a film, they treated it with an infrared laser and then heated it in argon gas for half an hour at 750 degrees Celsius.

That process produced robust MO-LIGs with metallic, 10-nanometer particles spread evenly through the graphene. Tests showed their ability to catalyze oxygen reduction, an essential chemical reaction in fuel cells. Further doping of the material with sulfur allowed for hydrogen evolution, another catalytic process that converts water into hydrogen, Tour said.

“Remarkably, simple treatment of the graphene-molybdenum oxides with sulfur, which converted the metal oxides to metal sulfides, afforded a hydrogen evolution reaction catalyst, underscoring the broad utility of this approach,” he said.

Here’s a link to and a citation for the paper,

In situ Formation of Metal Oxide Nanocrystals Embedded in Laser-Induced Graphene by Ruquan Ye, Zhiwei Peng, Tuo Wang, Yunong Xu, Jibo Zhang, Yilun Li, Lizanne G. Nilewski, Jian Lin, and James M. Tour. ACS Nano, Just Accepted Manuscript DOI: 10.1021/acsnano.5b04138 Publication Date (Web): August 18, 2015
Copyright © 2015 American Chemical Society

This paper is open access provided you have an ACS ID, which is a free registration. ACS is the American Chemical Society.

Nanoscale antioxidants

A Feb. 10, 2015 news item on Azonano features injectable nanoparticles that act as antioxidants useful in case of injury, in particular, brain injury,

Injectable nanoparticles that could protect an injured person from further damage due to oxidative stress have proven to be astoundingly effective in tests to study their mechanism.

Scientists at Rice University, Baylor College of Medicine and the University of Texas Health Science Center at Houston (UTHealth) Medical School designed methods to validate their 2012 discovery that combined polyethylene glycol-hydrophilic carbon clusters — known as PEG-HCCs — could quickly stem the process of overoxidation that can cause damage in the minutes and hours after an injury.

A Feb. 9, 2015 Rice University news release (also on EurekAlert), which originated the news item, describe the benefits in more detail,

The tests revealed a single nanoparticle can quickly catalyze the neutralization of thousands of damaging reactive oxygen species molecules that are overexpressed by the body’s cells in response to an injury and turn the molecules into oxygen. These reactive species can damage cells and cause mutations, but PEG-HCCs appear to have an enormous capacity to turn them into less-reactive substances.

The researchers hope an injection of PEG-HCCs as soon as possible after an injury, such as traumatic brain injury or stroke, can mitigate further brain damage by restoring normal oxygen levels to the brain’s sensitive circulatory system.

“Effectively, they bring the level of reactive oxygen species back to normal almost instantly,” said Rice chemist James Tour. “This could be a useful tool for emergency responders who need to quickly stabilize an accident or heart attack victim or to treat soldiers in the field of battle.” Tour led the new study with neurologist Thomas Kent of Baylor College of Medicine and biochemist Ah-Lim Tsai of UTHealth.

The news release goes on to describe the antioxidant particles and previous research,

PEG-HCCs are about 3 nanometers wide and 30 to 40 nanometers long and contain from 2,000 to 5,000 carbon atoms. In tests, an individual PEG-HCC nanoparticle can catalyze the conversion of 20,000 to a million reactive oxygen species molecules per second into molecular oxygen, which damaged tissues need, and hydrogen peroxide while quenching reactive intermediates.

Tour and Kent led the earlier research that determined an infusion of nontoxic PEG-HCCs may quickly stabilize blood flow in the brain and protect against reactive oxygen species molecules overexpressed by cells during a medical trauma, especially when accompanied by massive blood loss.

Their research targeted traumatic brain injuries, after which cells release an excessive amount of the reactive oxygen species known as a superoxide into the blood. These toxic free radicals are molecules with one unpaired electron that the immune system uses to kill invading microorganisms. In small concentrations, they contribute to a cell’s normal energy regulation. Generally, they are kept in check by superoxide dismutase, an enzyme that neutralizes superoxides.

But even mild traumas can release enough superoxides to overwhelm the brain’s natural defenses. In turn, superoxides can form such other reactive oxygen species as peroxynitrite that cause further damage.

“The current research shows PEG-HCCs work catalytically, extremely rapidly and with an enormous capacity to neutralize thousands upon thousands of the deleterious molecules, particularly superoxide and hydroxyl radicals that destroy normal tissue when left unregulated,” Tour said.

“This will be important not only in traumatic brain injury and stroke treatment, but for many acute injuries of any organ or tissue and in medical procedures such as organ transplantation,” he said. “Anytime tissue is stressed and thereby oxygen-starved, superoxide can form to further attack the surrounding good tissue.”

These details about the research are also noted in the news release,

The researchers used an electron paramagnetic resonance spectroscopy technique that gets direct structure and rate information for superoxide radicals by counting unpaired electrons in the presence or absence of PEG-HCC antioxidants. Another test with an oxygen-sensing electrode, peroxidase and a red dye confirmed the particles’ ability to catalyze superoxide conversion.

“In sharp contrast to the well-known superoxide dismutase, PEG-HCC is not a protein and does not have metal to serve the catalytic role,” Tsai said. “The efficient catalytic turnover could be due to its more ‘planar,’ highly conjugated carbon core.”

The tests showed the number of superoxides consumed far surpassed the number of possible PEG-HCC bonding sites. The researchers found the particles have no effect on important nitric oxides that keep blood vessels dilated and aid neurotransmission and cell protection, nor was the efficiency sensitive to pH changes.

“PEG-HCCs have enormous capacity to convert superoxide to oxygen and the ability to quench reactive intermediates while not affecting nitric oxide molecules that are beneficial in normal amounts,” Kent said. “So they hold a unique place in our potential armamentarium against a range of diseases that involve loss of oxygen and damaging levels of free radicals.”

The study also determined PEG-HCCs remain stable, as batches up to 3 months old performed as good as new.

Here’s a link to and a citation for the paper,

Highly efficient conversion of superoxide to oxygen using hydrophilic carbon clusters by Errol L. G. Samuel, Daniela C. Marcano, Vladimir Berka, Brittany R. Bitner, Gang Wu, Austin Potter, Roderic H. Fabian, Robia G. Pautler, Thomas A. Kent, Ah-Lim Tsai, and James M. Tour. Published online before print February 9, 2015, doi: 10.1073/pnas.1417047112 PNAS February 9, 2015

This paper is behind a paywall.

De-icing film for radar domes adapted for use on glass

Interesting to see that graphene is in use for de-icing. From a Sept. 16, 2014 news item  on ScienceDaily,

Rice University scientists who created a deicing film for radar domes have now refined the technology to work as a transparent coating for glass.

The new work by Rice chemist James Tour and his colleagues could keep glass surfaces from windshields to skyscrapers free of ice and fog while retaining their transparency to radio frequencies (RF).

A Sept. 16, 2014 Rice University news release on EurekAlert, which originated the news item, describes the technology and its new application in more detail,

The material is made of graphene nanoribbons, atom-thick strips of carbon created by splitting nanotubes, a process also invented by the Tour lab. Whether sprayed, painted or spin-coated, the ribbons are transparent and conduct both heat and electricity.

Last year the Rice group created films of overlapping nanoribbons and polyurethane paint to melt ice on sensitive military radar domes, which need to be kept clear of ice to keep them at peak performance. The material would replace a bulky and energy-hungry metal oxide framework.

The graphene-infused paint worked well, Tour said, but where it was thickest, it would break down when exposed to high-powered radio signals. “At extremely high RF, the thicker portions were absorbing the signal,” he said. “That caused degradation of the film. Those spots got so hot that they burned up.”

The answer was to make the films more consistent. The new films are between 50 and 200 nanometers thick – a human hair is about 50,000 nanometers thick – and retain their ability to heat when a voltage is applied. The researchers were also able to preserve their transparency. The films are still useful for deicing applications but can be used to coat glass and plastic as well as radar domes and antennas.

In the previous process, the nanoribbons were mixed with polyurethane, but testing showed the graphene nanoribbons themselves formed an active network when applied directly to a surface. They were subsequently coated with a thin layer of polyurethane for protection. Samples were spread onto glass slides that were then iced. When voltage was applied to either side of the slide, the ice melted within minutes even when kept in a minus-20-degree Celsius environment, the researchers reported.

“One can now think of using these films in automobile glass as an invisible deicer, and even in skyscrapers,” Tour said. “Glass skyscrapers could be kept free of fog and ice, but also be transparent to radio frequencies. It’s really frustrating these days to find yourself in a building where your cellphone doesn’t work. This could help alleviate that problem.”

Tour noted future generations of long-range Wi-Fi may also benefit. “It’s going to be important, as Wi-Fi becomes more ubiquitous, especially in cities. Signals can’t get through anything that’s metallic in nature, but these layers are so thin they won’t have any trouble penetrating.”

He said nanoribbon films also open a path toward embedding electronic circuits in glass that are both optically and RF transparent.

Here’s a link to and a citation for the paper,

Functionalized Graphene Nanoribbon Films as a Radiofrequency and Optically Transparent Material by Abdul-Rahman O. Raji, Sydney Salters, Errol L. G. Samuel, Yu Zhu, Vladimir Volman, and James M. Tour. ACS Appl. Mater. Interfaces, Article ASAP DOI: 10.1021/am503478w Publication Date (Web): September 4, 2014
Copyright © 2014 American Chemical Society

This paper is behind a paywall.

De-icing is a matter of some interest in the airlines industry as I noted in my Nov. 19, 2012 posting about de-icing airplane wings.

Better RRAM memory devices in the short term

Given my recent spate of posts about computing and the future of the chip (list to follow at the end of this post), this Rice University [Texas, US] research suggests that some improvements to current memory devices might be coming to the market in the near future. From a July 12, 2014 news item on Azonano,

Rice University’s breakthrough silicon oxide technology for high-density, next-generation computer memory is one step closer to mass production, thanks to a refinement that will allow manufacturers to fabricate devices at room temperature with conventional production methods.

A July 10, 2014 Rice University news release, which originated the news item, provides more detail,

Tour and colleagues began work on their breakthrough RRAM technology more than five years ago. The basic concept behind resistive memory devices is the insertion of a dielectric material — one that won’t normally conduct electricity — between two wires. When a sufficiently high voltage is applied across the wires, a narrow conduction path can be formed through the dielectric material.

The presence or absence of these conduction pathways can be used to represent the binary 1s and 0s of digital data. Research with a number of dielectric materials over the past decade has shown that such conduction pathways can be formed, broken and reformed thousands of times, which means RRAM can be used as the basis of rewritable random-access memory.

RRAM is under development worldwide and expected to supplant flash memory technology in the marketplace within a few years because it is faster than flash and can pack far more information into less space. For example, manufacturers have announced plans for RRAM prototype chips that will be capable of storing about one terabyte of data on a device the size of a postage stamp — more than 50 times the data density of current flash memory technology.

The key ingredient of Rice’s RRAM is its dielectric component, silicon oxide. Silicon is the most abundant element on Earth and the basic ingredient in conventional microchips. Microelectronics fabrication technologies based on silicon are widespread and easily understood, but until the 2010 discovery of conductive filament pathways in silicon oxide in Tour’s lab, the material wasn’t considered an option for RRAM.

Since then, Tour’s team has raced to further develop its RRAM and even used it for exotic new devices like transparent flexible memory chips. At the same time, the researchers also conducted countless tests to compare the performance of silicon oxide memories with competing dielectric RRAM technologies.

“Our technology is the only one that satisfies every market requirement, both from a production and a performance standpoint, for nonvolatile memory,” Tour said. “It can be manufactured at room temperature, has an extremely low forming voltage, high on-off ratio, low power consumption, nine-bit capacity per cell, exceptional switching speeds and excellent cycling endurance.”

In the latest study, a team headed by lead author and Rice postdoctoral researcher Gunuk Wang showed that using a porous version of silicon oxide could dramatically improve Rice’s RRAM in several ways. First, the porous material reduced the forming voltage — the power needed to form conduction pathways — to less than two volts, a 13-fold improvement over the team’s previous best and a number that stacks up against competing RRAM technologies. In addition, the porous silicon oxide also allowed Tour’s team to eliminate the need for a “device edge structure.”

“That means we can take a sheet of porous silicon oxide and just drop down electrodes without having to fabricate edges,” Tour said. “When we made our initial announcement about silicon oxide in 2010, one of the first questions I got from industry was whether we could do this without fabricating edges. At the time we could not, but the change to porous silicon oxide finally allows us to do that.”

Wang said, “We also demonstrated that the porous silicon oxide material increased the endurance cycles more than 100 times as compared with previous nonporous silicon oxide memories. Finally, the porous silicon oxide material has a capacity of up to nine bits per cell that is highest number among oxide-based memories, and the multiple capacity is unaffected by high temperatures.”

Tour said the latest developments with porous silicon oxide — reduced forming voltage, elimination of need for edge fabrication, excellent endurance cycling and multi-bit capacity — are extremely appealing to memory companies.

“This is a major accomplishment, and we’ve already been approached by companies interested in licensing this new technology,” he said.

Here’s a link to and a citation for the paper,

Nanoporous Silicon Oxide Memory by Gunuk Wang, Yang Yang, Jae-Hwang Lee, Vera Abramova, Huilong Fei, Gedeng Ruan, Edwin L. Thomas, and James M. Tour. Nano Lett., Article ASAP DOI: 10.1021/nl501803s Publication Date (Web): July 3, 2014

Copyright © 2014 American Chemical Society

This paper is behind a paywall.

As for my recent spate of posts on computers and chips, there’s a July 11, 2014 posting about IBM, a 7nm chip, and much more; a July 9, 2014 posting about Intel and its 14nm low-power chip processing and plans for a 10nm chip; and, finally, a June 26, 2014 posting about HP Labs and its plans for memristive-based computing and their project dubbed ‘The Machine’.

Carbon capture with nanoporous material in the oilfields

Researchers at Rice University (Texas) have devised a new technique for carbon capture according to a June 3, 2014 news item on Nanowerk,

Rice University scientists have created an Earth-friendly way to separate carbon dioxide from natural gas at wellheads.

A porous material invented by the Rice lab of chemist James Tour sequesters carbon dioxide, a greenhouse gas, at ambient temperature with pressure provided by the wellhead and lets it go once the pressure is released. The material shows promise to replace more costly and energy-intensive processes.

A June 3, 2014 Rice University news release, which originated the news item, provides a general description of how carbon dioxide is currently removed during fossil fuel production and adds a few more details about the new technology,

Natural gas is the cleanest fossil fuel. Development of cost-effective means to separate carbon dioxide during the production process will improve this advantage over other fossil fuels and enable the economic production of gas resources with higher carbon dioxide content that would be too costly to recover using current carbon capture technologies, Tour said. Traditionally, carbon dioxide has been removed from natural gas to meet pipelines’ specifications.

The Tour lab, with assistance from the National Institute of Standards and Technology (NIST), produced the patented material that pulls only carbon dioxide molecules from flowing natural gas and polymerizes them while under pressure naturally provided by the well.

When the pressure is released, the carbon dioxide spontaneously depolymerizes and frees the sorbent material to collect more.

All of this works in ambient temperatures, unlike current high-temperature capture technologies that use up a significant portion of the energy being produced.

The news release mentions current political/legislative actions in the US and the implications for the oil and gas industry while further describing the advantages of this new technique,

“If the oil and gas industry does not respond to concerns about carbon dioxide and other emissions, it could well face new regulations,” Tour said, noting the White House issued its latest National Climate Assessment last month [May 2014] and, this week [June 2, 2014], set new rules to cut carbon pollution from the nation’s power plants.

“Our technique allows one to specifically remove carbon dioxide at the source. It doesn’t have to be transported to a collection station to do the separation,” he said. “This will be especially effective offshore, where the footprint of traditional methods that involve scrubbing towers or membranes are too cumbersome.

“This will enable companies to pump carbon dioxide directly back downhole, where it’s been for millions of years, or use it for enhanced oil recovery to further the release of oil and natural gas. Or they can package and sell it for other industrial applications,” he said.

This is an epic (Note to writer: well done) news release as only now is there a technical explanation,

The Rice material, a nanoporous solid of carbon with nitrogen or sulfur, is inexpensive and simple to produce compared with the liquid amine-based scrubbers used now, Tour said. “Amines are corrosive and hard on equipment,” he said. “They do capture carbon dioxide, but they need to be heated to about 140 degrees Celsius to release it for permanent storage. That’s a terrible waste of energy.”

Rice graduate student Chih-Chau Hwang, lead author of the paper, first tried to combine amines with porous carbon. “But I still needed to heat it to break the covalent bonds between the amine and carbon dioxide molecules,” he said. Hwang also considered metal oxide frameworks that trap carbon dioxide molecules, but they had the unfortunate side effect of capturing the desired methane as well and they are far too expensive to make for this application.

The porous carbon powder he settled on has massive surface area and turns the neat trick of converting gaseous carbon dioxide into solid polymer chains that nestle in the pores.

“Nobody’s ever seen a mechanism like this,” Tour said. “You’ve got to have that nucleophile (the sulfur or nitrogen atoms) to start the polymerization reaction. This would never work on simple activated carbon; the key is that the polymer forms and provides continuous selectivity for carbon dioxide.”

Methane, ethane and propane molecules that make up natural gas may try to stick to the carbon, but the growing polymer chains simply push them off, he said.

The researchers treated their carbon source with potassium hydroxide at 600 degrees Celsius to produce the powders with either sulfur or nitrogen atoms evenly distributed through the resulting porous material. The sulfur-infused powder performed best, absorbing 82 percent of its weight in carbon dioxide. The nitrogen-infused powder was nearly as good and improved with further processing.

Tour said the material did not degrade over many cycles, “and my guess is we won’t see any. After heating it to 600 degrees C for the one-step synthesis from inexpensive industrial polymers, the final carbon material has a surface area of 2,500 square meters per gram, and it is enormously robust and extremely stable.”

Apache Corp., a Houston-based oil and gas exploration and production company, funded the research at Rice and licensed the technology. Tour expected it will take time and more work on manufacturing and engineering aspects to commercialize.

Here’s a link to and a citation for the paper,

Capturing carbon dioxide as a polymer from natural gas by Chih-Chau Hwang, Josiah J. Tour, Carter Kittrell, Laura Espinal, Lawrence B. Alemany, & James M. Tour. Nature Communications 5, Article number: 3961 doi:10.1038/ncomms4961 Published 03 June 2014

This paper is behind a paywall.

The researchers have made an illustration of the material available,

 Illustration by Tanyia Johnson/Rice University

Illustration by Tanyia Johnson/Rice University

This morning, Azonano posted a June 6, 2014 news item about a patent for carbon capture,

CO2 Solutions Inc. ( the “Corporation”), an innovator in the field of enzyme-enabled carbon capture technology, today announced it has received a Notice of Allowance from the U.S. Patent and Trademark Office for its patent application No. 13/264,294 entitled Process for CO2 Capture Using Micro-Particles Comprising Biocatalysts.

One might almost think these announcements were timed to coincide with the US White House’s moves.

As for CO2 Solutions, this company is located in Québec, Canada.  You can find out more about the company here (you may want to click on the English language button).

Like water for graphene nanoribbons

Reference to magical realism and fiction aside (Like Water for Chocolate by Laura Esquivel), it turns out that water is integral to the formation of very long, very thin graphene nanoribbons. A July 30, 2011 Rice University news release describes the phenomenon, a two year research odyssey, and the scientific ‘accident’ which led researchers to the discovery,

New research at Rice University shows how water makes it practical to form long graphene nanoribbons less than 10 nanometers wide.

And it’s unlikely that many of the other labs currently trying to harness the potential of graphene, a single-atom sheet of carbon, for microelectronics would have come up with the technique the Rice researchers found while they were looking for something else.

The discovery by lead author Vera Abramova and co-author Alexander Slesarev, both graduate students in the lab of Rice chemist James Tour, appears online this month in the American Chemical Society journal ACS Nano.

A bit of water adsorbed from the atmosphere was found to act as a mask in a process that begins with the creation of patterns via lithography and ends with very long, very thin graphene nanoribbons. The ribbons form wherever water gathers at the wedge between the raised pattern and the graphene surface.

The water formation is called a meniscus; it is created when the surface tension of a liquid causes it to curve [in a convex or concave manner]. In the Rice process, the meniscus mask protects a tiny ribbon of graphene from being etched away when the pattern is removed.

Tour said any method to form long wires only a few nanometers wide should catch the interest of microelectronics manufacturers as they approach the limits of their ability to miniaturize circuitry. “They can never take advantage of the smallest nanoscale devices if they can’t address them with a nanoscale wire,” he said. “Right now, manufacturers can make small features, or make big features and put them where they want them. But to have both has been difficult. To be able to pattern a line this thin right where you want it is a big deal because it permits you to take advantage of the smallness in size of nanoscale devices.”

Tour said water’s tendency to adhere to surfaces is often annoying, but in this case it’s essential to the process. “There are big machines that are used in electronics research that are often heated to hundreds of degrees under ultrahigh vacuum to drive off all the water that adheres to the inside surfaces,” he said. “Otherwise there’s always going to be a layer of water. In our experiments, water accumulates at the edge of the structure and protects the graphene from the reactive ion etching (RIE). So in our case, that residual water is the key to success.

Abramova and Slesarev had set out to fabricate nanoribbons by inverting a method developed by another Rice lab to make narrow gaps in materials. The original method utilized the ability of some metals to form a native oxide layer that expands and shields material just on the edge of the metal mask. The new method worked, but not as expected.

“We first suspected there was some kind of shadowing,” Abramova said. But other metals that didn’t expand as much, if at all, showed no difference, nor did varying the depth of the pattern. “I was basically looking for anything that would change something.”

It took two years to develop and test the meniscus theory, during which the researchers also confirmed its potential to create sub-10-nanometer wires from other kinds of materials, including platinum. They also constructed field-effect transistors to check the electronic properties of graphene nanoribbons.

To be sure that water does indeed account for the ribbons, they tried eliminating its effect by first drying the patterns by heating them under vacuum, and then by displacing the water with acetone to eliminate the meniscus. In both cases, no graphene nanoribbons were created.

The researchers are working to better control the nanoribbons’ width, and they hope to refine the nanoribbons’ edges, which help dictate their electronic properties.

“With this study, we figured out you don’t need expensive tools to get these narrow features,” Tour said. “You can use the standard tools [;] a fab line already has to make features that are smaller than 10 nanometers.”

Here’s a link to and a citation for the research paper,

Meniscus-Mask Lithography for Narrow Graphene Nanoribbons by Vera Abramova, Alexander S. Slesarev, and James M. Tour. ACS Nano, Article ASAP DOI: 10.1021/nn403057t Publication Date (Web): July 23, 2013
Copyright © 2013 American Chemical Society

This paper is behind a paywall.

Dexter Johnson in his July30, 2013 posting on the Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers]) notes that this use of water is counter-intuitive,

In [an] ironic twist, the water that most lithography processes try avoid and eliminate at great cost is the same water that makes this new lithography process work.

Graphene and radioactive waste

In fact, the material in question is graphene oxide and researchers at Rice University (Texas) and Lomonosov Moscow State University have found that it can rapidly remove radioactive material from water  From the Jan. 8, 2013 news item on ScienceDaily,

A collaborative effort by the Rice lab of chemist James Tour and the Moscow lab of chemist Stepan Kalmykov determined that microscopic, atom-thick flakes of graphene oxide bind quickly to natural and human-made radionuclides and condense them into solids. The flakes are soluble in liquids and easily produced in bulk.

The Rice University Jan. 8, 2013 news release, which originated the news item, was written by Mike Williams and provides additional insight and quotes from the researchers (Note: Links have been removed),

The discovery, Tour said, could be a boon in the cleanup of contaminated sites like the Fukushima nuclear plants damaged by the 2011 earthquake and tsunami. It could also cut the cost of hydraulic fracturing (“fracking”) for oil and gas recovery and help reboot American mining of rare earth metals, he said.

Graphene oxide’s large surface area defines its capacity to adsorb toxins, Kalmykov said. “So the high retention properties are not surprising to us,” he said. “What is astonishing is the very fast kinetics of sorption, which is key.”

“In the probabilistic world of chemical reactions where scarce stuff (low concentrations) infrequently bumps into something with which it can react, there is a greater likelihood that the ‘magic’ will happen with graphene oxide than with a big old hunk of bentonite,” said Steven Winston, a former vice president of Lockheed Martin and Parsons Engineering and an expert in nuclear power and remediation who is working with the researchers. “In short, fast is good.”

Here’s how it works (from the news release; Note: Links have been removed),

The researchers focused on removing radioactive isotopes of the actinides  and lanthanides  – the 30 rare earth elements in the periodic table – from liquids, rather than solids or gases. “Though they don’t really like water all that much, they can and do hide out there,” Winston said. “From a human health and environment point of view, that’s where they’re least welcome.”

Naturally occurring radionuclides are also unwelcome in fracking fluids that bring them to the surface in drilling operations, Tour said. “When groundwater comes out of a well and it’s radioactive above a certain level, they can’t put it back into the ground,” he said. “It’s too hot. Companies have to ship contaminated water to repository sites around the country at very large expense.” The ability to quickly filter out contaminants on-site would save a great deal of money, he said.

He sees even greater potential benefits for the mining industry. Environmental requirements have “essentially shut down U.S. mining of rare earth metals, which are needed for cell phones,” Tour said. “China owns the market because they’re not subject to the same environmental standards. So if this technology offers the chance to revive mining here, it could be huge.”

Tour said that capturing radionuclides does not make them less radioactive, just easier to handle. “Where you have huge pools of radioactive material, like at Fukushima, you add graphene oxide and get back a solid material from what were just ions in a solution,” he said. “Then you can skim it off and burn it. Graphene oxide burns very rapidly and leaves a cake of radioactive material you can then reuse.”

The low cost and biodegradable qualities of graphene oxide should make it appropriate for use in permeable reactive barriers, a fairly new technology for in situ groundwater remediation, he said.

Romanchuk, Slesarev, Kalmykov and Tour are co-authors of the paper with Dmitry Kosynkin, a former postdoctoral researcher at Rice, now with Saudi Aramco. Kalmykov is radiochemistry division head and a professor at Lomonosov Moscow State University. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science at Rice.

Here’s a ‘before’ shot of solution with graphene oxide and an ‘after’ shot where radionuclides have been added and begun to clump,

A new method for removing radioactive material from solutions is the result of collaboration between Rice University and Lomonosov Moscow State University. The vial at left holds microscopic particles of graphene oxide in a solution. At right, graphene oxide is added to simulated nuclear waste, which quickly clumps for easy removal. Image by Anna Yu. Romanchuk/Lomonosov Moscow State University

A new method for removing radioactive material from solutions is the result of collaboration between Rice University and Lomonosov Moscow State University. The vial at left holds microscopic particles of graphene oxide in a solution. At right, graphene oxide is added to simulated nuclear waste, which quickly clumps for easy removal. Image by Anna Yu. Romanchuk/Lomonosov Moscow State University

As noted in the ScienceDaily news item, the research has been published in the Royal Society’s Physical Chemistry Chemical Physics journal,

Anna Yu. Romanchuk, Alexander Slesarev, Stepan N. Kalmykov, Dmitry Kosynkin, James M Tour. Graphene Oxide for Effective Radionuclide Removal. Physical Chemistry Chemical Physics, 2012; DOI: 10.1039/C2CP44593J

This article is behind a paywall.

James’ bond (Rice University research team creates graphene/nanotube hybrid)

I have to give credit to Mike Williams’ Nov. 27, 2012 Rice University news release for the “James’ bond” phrase used to describe this graphene/nanotube hybrid,

A seamless graphene/nanotube hybrid created at Rice University may be the best electrode interface material possible for many energy storage and electronics applications.

Led by Rice chemist James Tour, researchers have successfully grown forests of carbon nanotubes that rise quickly from sheets of graphene to astounding lengths of up to 120 microns, according to a paper published today by Nature Communications. A house on an average plot with the same aspect ratio would rise into space.

Seven-atom rings (in red) at the transition from graphene to nanotube make this new hybrid material a seamless conductor. The hybrid may be the best electrode interface material possible for many energy storage and electronics applications. Image courtesy of the Tour Group

The Rice hybrid combines two-dimensional graphene, which is a sheet of carbon one atom thick, and nanotubes into a seamless three-dimensional structure. The bonds between them are covalent, which means adjacent carbon atoms share electrons in a highly stable configuration. The nanotubes aren’t merely sitting on the graphene sheet; they become a part of it.

“Many people have tried to attach nanotubes to a metal electrode and it’s never gone very well because they get a little electronic barrier right at the interface,” Tour said. “By growing graphene on metal (in this case copper) and then growing nanotubes from the graphene, the electrical contact between the nanotubes and the metal electrode is ohmic. That means electrons see no difference, because it’s all one seamless material.

In the new work, the team grew a specialized odako that retained the iron catalyst and aluminum oxide buffer but put them on top of a layer of graphene grown separately on a copper substrate. The copper stayed to serve as an excellent current collector for the three-dimensional hybrids that were grown within minutes to controllable lengths of up to 120 microns.

Electron microscope images showed the one-, two- and three-walled nanotubes firmly embedded in the graphene, and electrical testing showed no resistance to the flow of current at the junction.

“The performance we see in this study is as good as the best carbon-based supercapacitors that have ever been made,” Tour said. “We’re not really a supercapacitor lab, and still we were able to match the performance because of the quality of the electrode. It’s really remarkable, and it all harkens back to that unique interface.”

Here’s the citation and a link for the article,

A seamless three-dimensional carbon nanotube graphene hybrid material by Yu Zhu, Lei Li, Chenguang Zhang, Gilberto Casillas,  Zhengzong Sun, Zheng Yan, Gedeng Ruan, Zhiwei Peng, Abdul-Rahman O. Raji, Carter Kittrell, Robert H. Hauge & James M. Tour in Nature Communications 3, Article number:1225 doi:10.1038/ncomms2234 Published 27 November 2012

This article is behind a paywall.

Antioxidant-like carbon nanoparticles could help heal traumatic brain injuries

The research sounds exciting but all of the testing has taken place in laboratories on animal models (rats). The Oct. 18, 2012 news item on Azonano describes why the research team wanted to test  antioxidant-like carbon nanotubes for use with traumatic brain injury (TBI) patients,

Thomas Kent, James Tour and colleagues explain that TBI disrupts the supply of oxygen-rich blood to the brain. With the brain so oxygen-needy — accounting for only 2 percent of a person’s weight, but claiming 20 percent of the body’s oxygen supply — even a mild injury, such as a concussion, can have serious consequences. Reduced blood flow and resuscitation result in a build-up of free-radicals, which can kill brain cells. Despite years of far-ranging efforts, no effective treatment has emerged for TBI. That’s why the scientists tried a new approach, based on nanoparticles so small that 1000 would fit across the width of a human hair.

The American Chemical Society (ACS) Oct. 17, 2912 news release, which originated the news item, provides a few details about the research,

They [the research team]  describe development and successful laboratory tests of nanoparticles, called PEG-HCCs. In laboratory rats, the nanoparticles acted like antioxidants, rapidly restoring blood flow to the brain following resuscitation after TBI. “This finding is of major importance for improving patient health under clinically relevant conditions during resuscitative care, and it has direct implications for the current [TBI] war-fighter victims in the Afghanistan and Middle East theaters,” they say.

The abstract for the paper gives more insight,

Injury to the neurovasculature is a feature of brain injury and must be addressed to maximize opportunity for improvement. Cerebrovascular dysfunction, manifested by reduction in cerebral blood flow (CBF), is a key factor that worsens outcome after traumatic brain injury (TBI), most notably under conditions of hypotension. We report here that a new class of antioxidants, poly(ethylene glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs), which are nontoxic carbon particles, rapidly restore CBF in a mild TBI/hypotension/resuscitation rat model when administered during resuscitation—a clinically relevant time point. Along with restoration of CBF, there is a concomitant normalization of superoxide and nitric oxide levels. Given the role of poor CBF in determining outcome, this finding is of major importance for improving patient health under clinically relevant conditions during resuscitative care, and it has direct implications for the current TBI/hypotension war-fighter victims in the Afghanistan and Middle East theaters. The results also have relevancy in other related acute circumstances such as stroke and organ transplantation.

I notice this treatment has shown some success for mildTBI/hypotension if applied in the resuscitation phase and the testing, as I mentioned earlier, has been done on rats. For anyone who wants more information about this promising treatment,

Antioxidant Carbon Particles Improve Cerebrovascular Dysfunction Following Traumatic Brain Injury by Brittany R. Bitner, Daniela C. Marcano, Jacob M. Berlin, Roderic H. Fabian, Leela Cherian, James C. Culver, Mary E. Dickinson, Claudia S. Robertson, Robia G. Pautler, Thomas A. Kent, and James M. Tour. ACS Nano, 2012, 6 (9), pp 8007–8014 DOI: 10.1021/nn302615f

The article is behind a paywall and I notice it was published online Aug. 6, 2012. It looks like the ACS may may have tried to publicize this at the time of publication and decided to try again now in the hope of getting more publicity for this work.