Tag Archives: Janez Potocnik

Nanomaterials definition for Europe

After all the ‘sturm und drang’ in the last few months (my Sept. 8, 2011 posting summarizing some of the lively discussion), a nanomaterials definition for Europe has been adopted. It is the first ‘cross-cutting’ nanomaterials definition to date according to the Oct. 18, 2011 news item on Nanowerk,

“Nanomaterials” are materials whose main constituents have a dimension of between 1 and 100 billionth of a metre, according to a Recommendation on the definition of nanomaterial (pdf) adopted by the European Commission today. The announcement marks an important step towards greater protection for citizens, clearly defining which materials need special treatment in specific legislation.

European Environment Commissioner Janez Potocnik said: “I am happy to say that the EU is the first to come forward with a cross-cutting designation of nanomaterials to be used for all regulatory purposes. We have come up with a solid definition based on scientific input and a broad consultation. Industry needs a clear coherent regulatory framework in this important economic sector, and consumers deserve accurate information about these substances. It is an important step towards addressing any possible risks for the environment and human health, while ensuring that this new technology can live up to its potential.”

As I understand it , ‘cross-cutting’ doesn’t refer to national boundaries so much as it refers to agency boundaries. Take for example the recent nanomaterial definition (my initial comments in an Oct. 11, 2011 posting) adopted by Health Canada. It is applicable only to Health Canada’s jurisdictional responsibilities. Environment Canada uses a different definition.

As for the new European definition of nanomaterials, Dr. Andrew Maynard offers some interesting observations on his 2020 Science blog in an Oct. 18, 2011 posting (Note: Andrew favours an approach other than the one adopted by the European Commission and was an active participant in the lively discussion that took place),

1.  The inclusion of incidental and natural materials in the definition. The inference is that any product containing or associated with nanomaterials from any of these sources will potentially be regulated under this definition.  Strict enforcement of this definition would encompass many polymeric materials and most heterogeneous materials currently in use.  And the lack of distinction between “hard” and “soft” nanoparticles means that the definition applies to any substance containing small micelles or liposomes – someone needs to check the micelle size distribution in homogenized milk.

2.  The focus on unbound nanoparticles and their agglomerates and aggregates. This makes sense in terms of targeting materials with the greatest exposure potential.  But it may be hard to apply to complex nanostructured materials which nevertheless present unusual health and environmental risks – such as materials with biologically active structures that are not based on unbound nanoparticles (patterned surfaces, porous materials and nano-engineered micrometer-sized structures come to mind).

3.  The threshold of 50% of a material’s number distribution comprising of particles with one or more external dimension between 1 nm – 100 nm. This is a laudable attempt to handle materials comprised of particles of different sizes.  But it is unclear where the scientific basis for the 50% threshold lies, how this applies to aggregates and agglomerates, and how diameter is defined (there is no absolute measure of particle diameter – it depends on how it is defined and measured).

The desire to identify materials that require further action makes sense.  But I do worry that this definition is a significant move toward requiring industry action and providing consumer information in a way that creates concern and raises economic barriers, without protecting health (and possibly taking the focus off materials that could present unusual risks) – in the “do no harm” and “do good” stakes, it seems somewhat lacking.

Andrew does include the full text of the definition and more points of interest in his full posting. I’m very happy to see his comments as they give me some guidance as I get ready to review the Health Canada definition more closely.

ETA Oct. 18, 2011 1500 hours: The European Commission released the Joint Research Centre (JRC) and the European Academies Science Advisory Council (EASAC) presented the findings of a joint report entitled “Impact of engineered nanomaterials on health: considerations for benefit-risk assessment” (pdf). This was an  event designed to coincide with the adoption of a definition for nanomaterials. The Oct. 18, 2011 news item on the JRC-IHCP web site (fully referred to by Nanowerk news) notes,

This fulfils one of the recommendations of the report, which was a call for a precise definition of nanomaterials.

ETA Oct. 18, 2011 1525 hours: I particularly appreciate Andrew’s dry comment about micelle and liposome distribution in milk at the end of his first point.

ETA: NanoWiki offers a roundup of responses in an Oct. 21, 2011 posting.

Nanotech cosmetics and beauty products labelling; scientists in Japan worried about research cuts; gender imbalance in European science researcher community; nano game;

I mentioned the new European nano labeling regulation cosmetics and beauty products earlier this week (Nov.24.09) in the context of Germany’s resistance to it. Now officially passed(from the news item on Nanowerk),

The nanoparticle decree is part of a new 397-page cosmetics regulation approved on 20 November by the Council of the European Union, which includes ministers from all EU nations and is the EU’s main decision-making body. The cosmetic regulation states that all ingredients present in the product in the form of nanomaterials should be clearly indicated in the list of ingredients, by inserting the word ‘nano’ in brackets after the ingredient listing. The ruling defines nanomaterial as ‘an insoluble or biopersistant and intentionally manufactured material with one or more external dimensions, or an internal structure, on the scale from 1 to 100 nm’.

Now I wonder how  long before we start hearing demands for similar product labeling in the US, Canada, and Australia? As for failing to mention other countries,  I haven’t come across any health and safety or environmental discussions in other countries but I only search English language materials so I’m not likely to find something written in Spanish, Chinese, etc.

More cuts to  scientific research and, this time, in Japan. From the news item on physorg.com,

Top Japanese scientists, including four Nobel laureates, have criticised the new government for plans to slash research budgets, warning the country will loose its high-tech edge.


“The panel’s approach of judging science purely from a cost perspective completely lacks vision,” said 2001 Nobel Chemistry prize winner Ryoji Noyori. “I wonder if the panelists are ready to face the judgement of history.”

Kyoto University professor Shinya Yamanaka, a pioneer of embryonic stem cell research, told reporters: “I am deeply concerned about the development, which is just beyond my imagination.”

“You cannot predict achievements, that’s science,” he said. “I’m worried about Japan’s future.”

It certainly sounds familiar and it seems as if there is a fad sweeping governments ’round the world as they cut back on science funding and/or focus on the short term goal of realizing financial benefits in the immediately foreseeable future. The only exception, the US, seems to be holding firm to a commitment to basic science. If you know of any other countries doing so, please do let me know.

In the three years I’ve been tracking nanotechnology research I’ve noticed that female researchers are few and far between. During a research project in 2007, I asked one of the few I’d come across about my observation and ran into a metaphorical stone wall (she really didn’t want to talk about it). Apparently this dearth of female nanotechnology researchers is a reflection of a larger issue. From the news item on Nanowerk,

Despite a rise in their numbers, female scientific researchers remain a minority, accounting for just 30% of all scientific researchers in Europe. Furthermore, the more senior positions in science and research are still heavily dominated by men. These are some of the main findings in the latest ‘She Figures’, statistics on women in science in Europe which are produced every three years by the European Commission and the Helsinki Group on Women and Science. ‘While some trends are positive, the fact that women remain underrepresented in scientific careers should be a worry for all of us,’ commented European Commissioner for Science and Research, Janez Potocnik. ‘This gender imbalance in science is a waste of opportunity and talent which Europe cannot afford.’

I realize this is a European report but I think it reflects the international situation and, point well taken, it “is a waste of opportunity and talent.”

For a complete change of pace: Nanovor is a new game for 7 to 12 year olds. Yes, it’s all about nano. I find the storyline a bit strange, from the news item on Nanowerk,

Nanovor is based in a rich fictional world where nanoscopic monsters, known as Nanovor live and battle inside computers. These nanoscopic dust mites ruled our still-molten Earth, long before any other species could survive. As Earth cooled and the atmosphere became oxygen-rich, the silicon-based Nanovor slipped into deep hibernation for billions of years. In 1958, when silicon was embedded within a computer chip and electricity pulsed through it for the very first time, the Nanovor sprung back to life.

The business model reminds me of the sticker craze that one of my nieces participated in when she was about 7 or 8 years old. She started collecting stickers to put into books. New themes for stickers and their books were constantly being added to the product line and she was always trying to catch up. This game which can be downloaded free has booster packs (additional nanovors) that can be purchased.  If the game becomes popular, the booster packs (the equivalent of a new sticker theme) will become essential to playing the game.

There is a video about the game at the link to Nanowerk that I’ve provided. After viewing the video I’d say the game does seems a bit male dominated especially when you go to the game’s website and look up the main characters: Lucas, Mr. Sapphire, and Drew (female) who are listed in that order here but it is early days and these things can change over time.  The company producing the game is called, Smith & Tinker, and their tag line is: Reinventing play for the connected generation.

Happy weekend!