Tag Archives: Jiaxi Cui

A bioinspired approach to self-healing materials

Scientists have been working to develop self-healing materials for a while now and a Jan. 8, 2016 news item on Nanowerk chronicles a relatively recent attempt,

Inspired by healing wounds in skin, a new approach protects and heals surfaces using a fluid secretion process. In response to damage, dispersed liquid-storage droplets are controllably secreted. The stored liquid replenishes the surface and completes the repair of the polymer in seconds to hours …

The fluid secretion approach to repair the material has also been demonstrated in fibers and microbeads. This bioinspired approach could be extended to create highly desired adaptive, resilient materials with possible uses in heat transfer, humidity control, slippery surfaces, and fluid delivery.

A December ??, 2015 US Department of Energy (DOE) news release, which originated the news item, expands on the theme,

A polymer that secretes stored liquid in response to damage has been designed and created to function as a self-healing material. While human-made material systems can trigger the release of stored contents, the ability to continuously self-adjust and monitor liquid supply in these compartments is a challenge. In contrast, biological systems manage complex protection and healing functions by having individual components work in concert to initiate and self-regulate a coordinated response. Inspired by biological wound-healing, this new process, developed by researchers at Harvard University, involves trapping and dispersing liquid-storage droplets within a reversibly crosslinked polymer gel network topped with a thin liquid overlayer. This novel approach allows storage of the liquid, yet is reconfigurable to induce finely controlled secretion in response to polymer damage. When the gel was damaged by slicing, the ruptured droplets in the immediate vicinity of the damage released oil and the gel network was squeezed. This squeezing allowed oil to be pushed out from neighboring droplets and the polymer network linkages to unzip and rezip rapidly, allowing just enough oil to flow to the damaged region. Healing occurred at ambient temperature within seconds to hours as fluid was secreted into the crack, severed polymer ends diffused across the gap, and new network linkages were created. Droplet-embedded polymers repaired faster or at lower temperatures than polymers without oil droplets. Also, the repaired droplet-embedded materials were much stronger than the repaired networks that did not contain the droplets. This dynamic liquid exchange to repair the material has also been demonstrated in other forms, showing the potential to extend this bioinspired approach for fabricating highly desired adaptive, resilient materials to a wide range of polymeric structures.

Here’s a link to and a citation for the paper,

Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing by Jiaxi Cui, Daniel Daniel, Alison Grinthal, Kaixiang Lin, & Joanna Aizenberg. Nature Materials 14,  790–795 (2015) doi:10.1038/nmat4325 Published online 22 June 2015

I’m not sure what occasioned a late push to promote this particular piece of research but if you are interested, the paper is behind a paywall.