Tag Archives: Joe Davis

Using scientific methods and technology to explore living systems as artistic subjects: bioart

There is a fascinating set of stories about bioart designed to whet your appetite for more (*) in a Nov. 23, 2015 Cell Press news release on EurekAlert (Note: A link has been removed),

Joe Davis is an artist who works not only with paints or pastels, but also with genes and bacteria. In 1986, he collaborated with geneticist Dan Boyd to encode a symbol for life and femininity into an E. coli bacterium. The piece, called Microvenus, was the first artwork to use the tools and techniques of molecular biology. Since then, bioart has become one of several contemporary art forms (including reclamation art and nanoart) that apply scientific methods and technology to explore living systems as artistic subjects. A review of the field, published November 23, can be found in Trends in Biotechnology.

Bioart ranges from bacterial manipulation to glowing rabbits, cellular sculptures, and–in the case of Australian-British artist Nina Sellars–documentation of an ear prosthetic that was implanted onto fellow artist Stelarc’s arm. In the pursuit of creating art, practitioners have generated tools and techniques that have aided researchers, while sometimes crossing into controversy, such as by releasing invasive species into the environment, blurring the lines between art and modern biology, raising philosophical, societal, and environmental issues that challenge scientific thinking.

“Most people don’t know that bioart exists, but it can enable scientists to produce new ideas and give us opportunities to look differently at problems,” says author Ali K. Yetisen, who works at Harvard Medical School and the Wellman Center for Photomedicine, Massachusetts General Hospital. “At the same time there’s been a lot of ethical and safety concerns happening around bioart and artists who wanted to get involved in the past have made mistakes.”

Here’s a sample of Joe Davis’s work,

 Caption This photograph shows polyptich paintings by Joe Davis of his 28-mer Microvenus DNA molecule (2006 Exhibition in Greece at Athens School of Fine Arts). Credit: Courtesy of Joe Davis

This photograph shows polyptich paintings by Joe Davis of his 28-mer Microvenus DNA molecule (2006 Exhibition in Greece at Athens School of Fine Arts). Credit: Courtesy of Joe Davis

The news release goes on to recount a brief history of bioart, which stretches back to 1928 and then further back into the 19th and 18th centuries,

In between experiments, Alexander Fleming would paint stick figures and landscapes on paper and in Petri dishes using bacteria. In 1928, after taking a brief hiatus from the lab, he noticed that portions of his “germ paintings,” had been killed. The culprit was a fungus, penicillin–a discovery that would revolutionize medicine for decades to come.

In 1938, photographer Edward Steichen used a chemical to genetically alter and produce interesting variations in flowering delphiniums. This chemical, colchicine, would later be used by horticulturalists to produce desirable mutations in crops and ornamental plants.

In the late 18th and early 19th centuries, the arts and sciences moved away from traditionally shared interests and formed secular divisions that persisted well into the 20th century. “Appearance of environmental art in the 1970s brought about renewed awareness of special relationships between art and the natural world,” Yetisen says.

To demonstrate how we change landscapes, American sculptor Robert Smithsonian paved a hillside with asphalt, while Bulgarian artist Christo Javacheffa (of Christo and Jeanne-Claude) surrounded resurfaced barrier islands with bright pink plastic.

These pieces could sometimes be destructive, however, such as in Ten Turtles Set Free by German-born Hans Haacke. To draw attention to the excesses of the pet trade, he released what he thought were endangered tortoises back to their natural habitat in France, but he inadvertently released the wrong subspecies, thus compromising the genetic lineages of the endangered tortoises as the two varieties began to mate.

By the late 1900s, technological advances began to draw artists’ attention to biology, and by the 2000s, it began to take shape as an artistic identity. Following Joe Davis’ transgenic Microvenus came a miniaturized leather jacket made of skin cells, part of the Tissue Culture & Art Project (initiated in 1996) by duo Oran Catts and Ionat Zurr. Other examples of bioart include: the use of mutant cacti to simulate appearance of human hair in the place of cactus spines by Laura Cinti of University College London’s C-Lab; modification of butterfly wings for artistic purposes by Marta de Menezes of Portugal; and photographs of amphibian deformation by American Brandon Ballengée.

“Bioart encourages discussions about societal, philosophical, and environmental issues and can help enhance public understanding of advances in biotechnology and genetic engineering,” says co-author Ahmet F. Coskun, who works in the Division of Chemistry and Chemical Engineering at California Institute of Technology.

Life as a Bioartist

Today, Joe Davis is a research affiliate at MIT Biology and “Artist-Scientist” at the George Church Laboratory at Harvard–a place that fosters creativity and technological development around genetic engineering and synthetic biology. “It’s Oz, pure and simple,” Davis says. “The total amount of resources in this environment and the minds that are accessible, it’s like I come to the city of Oz every day.”

But it’s not a one-way street. “My particular lab depends on thinking outside the box and not dismissing things because they sound like science fiction,” says [George M.] Church, who is also part of the Wyss Institute for Biologically Inspired Engineering. “Joe is terrific at keeping us flexible and nimble in that regard.”

For example, Davis is working with several members of the Church lab to perform metagenomics analyses of the dust that accumulates at the bottom of money-counting machines. Another project involves genetically engineering silk worms to spin metallic gold–an homage to the fairy tale of Rumpelstiltskin.

“I collaborate with many colleagues on projects that don’t necessarily have direct scientific results, but they’re excited to pursue these avenues of inquiry that they might not or would not look into ordinarily–they might try to hide it, but a lot of scientists have poetic souls,” Davis says. “Art, like science, has to describe the whole word and you can’t describe something you’re basically clueless about. The most exciting part of these activities is satiating overwhelming curiosity about everything around you.”

The number of bioartists is still small, Davis says, partly because of a lack of federal funding of the arts in general. Accessibility to the types of equipment bioartists want to experiment with can also be an issue. While Davis has partnered with labs over the past few decades, other artists affiliate themselves with community access laboratories that are run by do-it-yourself biologists. One way that universities can help is to create departmental-wide positions for bioartists to collaborate with scientists.

“In the past, there have been artists affiliated with departments in a very utilitarian way to produce figures or illustrations,” Church says. “Having someone like Joe stimulates our lab to come together in new ways and if we had more bioartists, I think thinking out of the box would be a more common thing.”

“In the era of genetic engineering, bioart will gain new meanings and annotations in social and scientific contexts,” says Yetisen. “Bioartists will surely take up new roles in science laboratories, but this will be subject to ethical criticism and controversy as a matter of course.”

Here’s a link to and a citation for the paper,

Bioart by Ali K. Yetisen, Joe Davis, Ahmet F. Coskun, George M. Church, Seok Hyun. Trends in Biotechnology,  DOI: http://dx.doi.org/10.1016/j.tibtech.2015.09.011 Published Online: November 23, 2015

This paper appears to be open access.

*Removed the word ‘featured’ on Dec. 1, 2015 at 1030 hours PDT.

Art and nanotechnology at Cornell University’s (US) 2014 Biennial/Biennale

The 2014 Cornell [University located in New York State, US] Council for the Arts (CCA) Biennial, “Intimate Cosmologies: The Aesthetics of Scale in an Age of Nanotechnology” was announced in a Dec. 5, 2013 news item on Nanowerk,

A campuswide exhibition next fall will explore the cultural and human consequences of seeing the world at the micro and macro levels, through nanoscience and networked communications.

From Sept. 15 to Dec. 22, the 2014 Cornell Council for the Arts (CCA) Biennial, “Intimate Cosmologies: The Aesthetics of Scale in an Age of Nanotechnology”, will feature several events and principal projects by faculty and student investigators and guest artists – artist-in-residence kimsooja, Trevor Paglen and Rafael Lozano-Hemmer – working in collaboration with Cornell scientists and researchers.

The Dec.5, 2013 Cornell University news release written by Daniel Aloi, which originated the news item, describes the plans for and events leading to the biennale in Fall 2014,

The inaugural biennial theme was chosen to frame dynamic changes in 21st-century culture and art practice, and in nanoscale technology. The multidisciplinary initiative intends to engage students, faculty and the community in demonstrations of how radical shifts in scale have become commonplace, and how artists address realms of human experience lying beyond immediate sensory perception.

“Participating in the biennial is very exciting. We’re engaging the idea of nano and investigating scale as part of the value of art in performance,” said Beth Milles ’88, associate professor in the Department of Performing and Media Arts, who is collaborating on a project with students and with artist Lynn Tomlinson ’88.

A series of events and curricula this fall and spring are preceding the main Biennial exhibition. Joe Davis and Nathaniel Stern ’99 presented talks this semester, and CCA will bring Paul Thomas, Stephanie Rothenberg, Ana Viseu and others to campus in the coming months.

kimsooja, an acclaimed multimedia artist in performance, video and installation, addresses issues of the displaced self and recently represented Korea in the 55th Venice Biennale. She visited the campus Nov. 22-23 to meet with Uli Weisner and students from his research group, who will work with her to realize her large-scale installation here next fall.

Lozano-Hemmer has worked on both ends of the scale spectrum, from laser-etched poetry on human hairs to an interactive light sculpture over Mexico City, Toronto and Yamaguchi, Japan. Paglen’s researched-based work blurs lines between science, contemporary art, journalism and other disciplines.

The Biennial focus brings together artists and scientists who share a common curiosity regarding the position of the individual within the larger world, CCA Director Stephanie Owens said.

“Scientists are suddenly designers creating new forms,” she said. “And artists are increasingly interested in how things are structured, down to the biological level. Both are designing and discovering new ways of synthesizing natural properties of the material world with the fabricated experiences that extend and express the impact of these properties on our lives.”

Here’s a sample of the work that will be featured at the Biennale,

A prototype image of architecture professor Jenny Sabin's "eSkin" CCA Biennial project, an interactive simulation of a building façade that behaves like a living organism. Credit: Jenny Sabin Courtesy: Cornell University

A prototype image of architecture professor Jenny Sabin’s “eSkin” CCA Biennial project, an interactive simulation of a building façade that behaves like a living organism. Credit: Jenny Sabin Courtesy: Cornell University

Aloi includes a description of some of the exhibits and shows to be featured,

 The principal projects to be presented are:

  • “eSkin” – Architecture professor Jenny Sabin addresses ecology and sustainability issues with buildings that behave like organisms. Her project is an interactive simulation of a façade material incorporating nano- and microscale substrates plated with human cells.
  • “Nano Performance: In 13 Boxes” – Performing and media arts professor Beth Milles ‘88, animator/visual artist Lynn Tomlinson ‘88 and students from different majors will collaborate on 13 media installations and live performances situated across campus. Computer mapping and clues linking the project’s components will assist in “synthesizing the 13 events as a whole experience – it has a lot to do with discovering the performance,” Mills said.
  • “Nano Where: Gas In, Light Out” – Juan Hinestroza, fiber science, and So-Yeon Yoon, design and environmental analysis, will demonstrate the potential of molecular-level metal-organic frameworks as wearable sensors to detect methane and poisonous gases, using a sealed gas chamber and 3-D visual art.
  • “Paperscapes” – Three architecture students – teaching associate Caio Barboza ’13; Joseph Kennedy ’15 and Sonny Xu ’13 – will render the microscopic textures of a sheet of paper as a 3-D inhabitable landscape.
  • “When Art Exceeds Perception” – Ph.D. student in applied physics Robert Hovden will explore replication and plagiarism in nanoscale reproductions, 1,000 times smaller than the naked eye can see, of famous works of art inscribed onto a silicon crystal.

The Cornell Council for the Arts (CCA) has more information about their 2014 ‘nano Biennale’ here. This looks very exciting and I wish I could be there.

One final note, I’ve used the Biennale rather than Biennial as I associate Biennial and the US with the dates of 1776 and 1976 when the country celebrated its 200th anniversary.