Tag Archives: Joint Research Center (JRC)

In depth report on European Commission’s nanotechnology definition

A February 13, 2019 news item on the (US) National Law Review blog announces a new report on nanomaterial definitions (Note: A link has been removed),

The European Commission’s (EC) Joint Research Center (JRC) published on February 13, 2019, a report entitled An overview of concepts and terms used in the European Commission’s definition of nanomaterial. … The report provides recommendations for a harmonized and coherent implementation of the nanomaterial definition in any specific regulatory context at the European Union (EU) and national level.

©2019 Bergeson & Campbell, P.C.

There’s a bit more detail about the report in a February 19, 2019 European Commission press release,

The JRC just released a report clarifying the key concepts and terms used in the European Commission’s nanomaterial definition.

This will support stakeholders for the correct implementation of legislation making reference to the definition.

Nanotechnology may well be one of the most fast-moving sectors of the last few years.
The number of products produced by nanotechnology or containing nanomaterials entering the market is increasing.

As the technology develops, nanomaterials are delivering benefits to many sectors, including: healthcare (in targeted drug delivery, regenerative medicine, and diagnostics), electronics, cosmetics, textiles, information technology and environmental protection.
As the name suggests, nanomaterials are very small – so small that they are invisible to the human eye.

In fact, nanomaterials contain particles smaller than 100 nanometres (100 millionths of a millimetre).

Nanomaterials have unique physical and chemical characteristics.
They can be used in consumer products to improve the products’ properties – for instance, to make something more resistant against breaking, stains or humidity.

Nanomaterials have undoubtedly enabled progress in many areas, but as with all innovation, we must ensure that the impact on human health and the environment are properly considered

The European Commission’s Recommendation on the definition of nanomaterials (2011/696/EU) provides a general basis for regulatory instruments in many areas.

This definition has been used in the EU regulations on biocidal products and medical devices, and the REACH regulation. It is also used in various national legislative texts.

However, in the context of a JRC survey, many respondents expressed difficulties with the implementation of the EC definition, in particular due to the fact that some of the key concepts and terms could be interpreted in different ways.

Therefore, the JRC just published the report “An overview of concepts and terms used in the European Commission’s definition of nanomaterial” which aims to provide a clarification of the key concepts and terms of the nanomaterial definition and discusses them in a regulatory context.

This will facilitate a common understanding and fosters a harmonised and coherent implementation of the nanomaterial definition in different regulatory context at EU and national level.

Not my favourite topic but definitions and their implementation are important whether I like it or not.

Internet of toys, the robotification of childhood, and privacy issues

Leave it to the European Commission’s (EC) Joint Research Centre (JRC) to look into the future of toys. As far as I’m aware there are no such moves in either Canada or the US despite the ubiquity of robot toys and other such devices. From a March 23, 2017 EC JRC  press release (also on EurekAlert),

Action is needed to monitor and control the emerging Internet of Toys, concludes a new JRC report. Privacy and security are highlighted as main areas of concern.

Large numbers of connected toys have been put on the market over the past few years, and the turnover is expected to reach €10 billion by 2020 – up from just €2.6 billion in 2015.

Connected toys come in many different forms, from smart watches to teddy bears that interact with their users. They are connected to the internet and together with other connected appliances they form the Internet of Things, which is bringing technology into our daily lives more than ever.

However, the toys’ ability to record, store and share information about their young users raises concerns about children’s safety, privacy and social development.

A team of JRC scientists and international experts looked at the safety, security, privacy and societal questions emerging from the rise of the Internet of Toys. The report invites policymakers, industry, parents and teachers to study connected toys more in depth in order to provide a framework which ensures that these toys are safe and beneficial for children.

Robotification of childhood

Robots are no longer only used in industry to carry out repetitive or potentially dangerous tasks. In the past years, robots have entered our everyday lives and also children are more and more likely to encounter robotic or artificial intelligence-enhanced toys.

We still know relatively little about the consequences of children’s interaction with robotic toys. However, it is conceivable that they represent both opportunities and risks for children’s cognitive, socio-emotional and moral-behavioural development.

For example, social robots may further the acquisition of foreign language skills by compensating for the lack of native speakers as language tutors or by removing the barriers and peer pressure encountered in class room. There is also evidence about the benefits of child-robot interaction for children with developmental problems, such as autism or learning difficulties, who may find human interaction difficult.

However, the internet-based personalization of children’s education via filtering algorithms may also increase the risk of ‘educational bubbles’ where children only receive information that fits their pre-existing knowledge and interest – similar to adult interaction on social media networks.

Safety and security considerations

The rapid rise in internet connected toys also raises concerns about children’s safety and privacy. In particular, the way that data gathered by connected toys is analysed, manipulated and stored is not transparent, which poses an emerging threat to children’s privacy.

The data provided by children while they play, i.e the sounds, images and movements recorded by connected toys is personal data protected by the EU data protection framework, as well as by the new General Data Protection Regulation (GDPR). However, information on how this data is stored, analysed and shared might be hidden in long privacy statements or policies and often go unnoticed by parents.

Whilst children’s right to privacy is the most immediate concern linked to connected toys, there is also a long term concern: growing up in a culture where the tracking, recording and analysing of children’s everyday choices becomes a normal part of life is also likely to shape children’s behaviour and development.

Usage framework to guide the use of connected toys

The report calls for industry and policymakers to create a connected toys usage framework to act as a guide for their design and use.

This would also help toymakers to meet the challenge of complying with the new European General Data Protection Regulation (GDPR) which comes into force in May 2018, which will increase citizens’ control over their personal data.

The report also calls for the connected toy industry and academic researchers to work together to produce better designed and safer products.

Advice for parents

The report concludes that it is paramount that we understand how children interact with connected toys and which risks and opportunities they entail for children’s development.

“These devices come with really interesting possibilities and the more we use them, the more we will learn about how to best manage them. Locking them up in a cupboard is not the way to go. We as adults have to understand how they work – and how they might ‘misbehave’ – so that we can provide the right tools and the right opportunities for our children to grow up happy in a secure digital world”, Stéphane Chaudron, the report’s lead researcher at the Joint Research Centre (JRC).).

The authors of the report encourage parents to get informed about the capabilities, functions, security measures and privacy settings of toys before buying them. They also urge parents to focus on the quality of play by observing their children, talking to them about their experiences and playing alongside and with their children.

Protecting and empowering children

Through the Alliance to better protect minors online and with the support of UNICEF, NGOs, Toy Industries Europe and other industry and stakeholder groups, European and global ICT and media companies  are working to improve the protection and empowerment of children when using connected toys. This self-regulatory initiative is facilitated by the European Commission and aims to create a safer and more stimulating digital environment for children.

There’s an engaging video accompanying this press release,

You can find the report (Kaleidoscope on the Internet of Toys: Safety, security, privacy and societal insights) here and both the PDF and print versions are free (although I imagine you’ll have to pay postage for the print version). This report was published in 2016; the authors are Stéphane Chaudron, Rosanna Di Gioia, Monica Gemo, Donell Holloway , Jackie Marsh , Giovanna Mascheroni , Jochen Peter, Dylan Yamada-Rice and organizations involved include European Cooperation in Science and Technology (COST), Digital Literacy and Multimodal Practices of Young Children (DigiLitEY), and COST Action IS1410. DigiLitEY is a European network of 33 countries focusing on research in this area (2015-2019).

Harmonized nano terminology for environmental health and safety

According to Lynn Bergeson’s April 11, 2016 posting on Nanotechnology Now, the European Commission’s Joint Research Centre (JRC) has published a document about harmonizing terminology for environmental health and safety of nanomaterials,

The European Commission (EC) Joint Research Center (JRC) recently published a report entitled NANoREG harmonised terminology for environmental health and safety assessment of nanomaterials, developed within the NANoREG project: “A common European approach to the regulatory testing of nanomaterials.”

The NANoREG harmonised terminology for environmental health and safety assessment of nanomaterials (PDF)  has an unexpected description for itself on p. 8 (Note: A link has been removed),

Consistent  use  of  terminology  is  important  in  any  field  of  science  and  technology  to ensure  common  understanding  of  concepts  and  tools among  experts  and  different stakeholders, such as regulatory authorities, industry and consumers. Several  terms  in  the  field of  environmental  health  and  safety  (EHS)  assessment of nanomaterials  (hereinafter  NMs) have  been  indeed  defined  or  used  by  the  scientific community and various organisations, including   international   bodies,   European authorities, and industry associations.

This  is true  for multidisciplinary  projects  such  as  NANoREG, which  aims  at supporting regulatory  authorities, and  industry,  in  dealing  with EHS issues  of  manufactured NMs (‘nanoEHS’) (http://cordis.europa.eu/project/rcn/107159_en.html,www.nanoreg.eu). Terminology  thus  plays  an  important  role  in  NANoREG’s internal  process  of producing diverse types of output with regulatory relevance (e.g. physicochemical characterisation and test protocols, grouping and read-across approaches, exposure models, a framework for  safety  assessment  of NMs,  etc.). The  process  takes  place  in a  collaborative  effort across severalNANoREG work packages or tasks,  involvingquite a  few partners. Moreover,  the  different  types  of NANoREG output (‘deliverables’) are  addressed  to  a large  audience  of  scientists,  industry  and  regulatory  bodies,  extending beyond  Europe. Hence, a coordinated initiative has been undertaken by the Joint Research Centre (JRC) to harmonise the use of specific wording within NANoREG.

The objective of this JRC report is to disseminate the harmonised terminology that has been developed and used with in NANoREG. This collection of key terms has been agreed upon by all  project  partners and adopted  in  their  activities  and  related  documents, as recommended by the NANoREG internal Guidance Document.

Accordingly,  Section  2  of  the  report  illustrates  the  methodology  used  i)  to  select  key terms  that  form  the  ‘NANoREG  Terminology’,  ii)  to  develop  harmonised  ‘NANoREG Definitions’, and iii) it also explains the thinking that led to the choices made in drafting a  definition.  In  Section  3,  those  definitions, adopted  by  the  project  Consortium,  are reported  in  a  table  format  and  constitute  the  ‘NANoREG  Harmonised  Terminology’. Section 4 summarises the existing literature definitions that have been used as starting point to elaborate, for each key term, a NANoREG Definition. It also shortly discusses the reason(s) behind the choices that have been made in drafting a definition.

2. Methodology

The NANoREG Harmonised Terminology illustrated in this report is not a ‘dictionary’ [emphasis mine] that collects a long list of well-known, well-defined scientific and/or regulatory terms relevant to  the  field  of nanoEHS.  Rather,  the  NANoREG Harmonised  Terminology  focuses  on  a relatively short list of key terms that may be interpreted in various ways, depending on where the reader is located on the globe or on the reader’s scientific area of expertise. Moreover,  it  focuses  on  few  terms  that  are  specifically relevant  in  a  REACH [Registration, Evaluation, Authorization, & Restriction of Chemicals]  context, which represents the regulatory framework of reference for NANoREG.

This is having it both ways. As I read it, what they’re saying is this: ‘Our document is not a dictionary but here are the definitions we’re using and you can use them that way if you like’.

You can find a link to the ‘harmonisation’ document and one other related document on this page.