Tag Archives: Joseph DeSimone

Nominations open for Kabiller Prizes in Nanoscience and Nanomedicine ($250,000 for visionary researcher and $10,000 for young investigator)

For a change I can publish something that doesn’t have a deadline in three days or less! Without more ado (from a Feb. 20, 2017 Northwestern University news release by Megan Fellman [h/t Nanowerk’s Feb. 20, 2017 news item]),

Northwestern University’s International Institute for Nanotechnology (IIN) is now accepting nominations for two prestigious international prizes: the $250,000 Kabiller Prize in Nanoscience and Nanomedicine and the $10,000 Kabiller Young Investigator Award in Nanoscience and Nanomedicine.

The deadline for nominations is May 15, 2017. Details are available on the IIN website.

“Our goal is to recognize the outstanding accomplishments in nanoscience and nanomedicine that have the potential to benefit all humankind,” said David G. Kabiller, a Northwestern trustee and alumnus. He is a co-founder of AQR Capital Management, a global investment management firm in Greenwich, Connecticut.

The two prizes, awarded every other year, were established in 2015 through a generous gift from Kabiller. Current Northwestern-affiliated researchers are not eligible for nomination until 2018 for the 2019 prizes.

The Kabiller Prize — the largest monetary award in the world for outstanding achievement in the field of nanomedicine — celebrates researchers who have made the most significant contributions to the field of nanotechnology and its application to medicine and biology.

The Kabiller Young Investigator Award recognizes young emerging researchers who have made recent groundbreaking discoveries with the potential to make a lasting impact in nanoscience and nanomedicine.

“The IIN at Northwestern University is a hub of excellence in the field of nanotechnology,” said Kabiller, chair of the IIN executive council and a graduate of Northwestern’s Weinberg College of Arts and Sciences and Kellogg School of Management. “As such, it is the ideal organization from which to launch these awards recognizing outstanding achievements that have the potential to substantially benefit society.”

Nanoparticles for medical use are typically no larger than 100 nanometers — comparable in size to the molecules in the body. At this scale, the essential properties (e.g., color, melting point, conductivity, etc.) of structures behave uniquely. Researchers are capitalizing on these unique properties in their quest to realize life-changing advances in the diagnosis, treatment and prevention of disease.

“Nanotechnology is one of the key areas of distinction at Northwestern,” said Chad A. Mirkin, IIN director and George B. Rathmann Professor of Chemistry in Weinberg. “We are very grateful for David’s ongoing support and are honored to be stewards of these prestigious awards.”

An international committee of experts in the field will select the winners of the 2017 Kabiller Prize and the 2017 Kabiller Young Investigator Award and announce them in September.

The recipients will be honored at an awards banquet Sept. 27 in Chicago. They also will be recognized at the 2017 IIN Symposium, which will include talks from prestigious speakers, including 2016 Nobel Laureate in Chemistry Ben Feringa, from the University of Groningen, the Netherlands.

2015 recipient of the Kabiller Prize

The winner of the inaugural Kabiller Prize, in 2015, was Joseph DeSimone the Chancellor’s Eminent Professor of Chemistry at the University of North Carolina at Chapel Hill and the William R. Kenan Jr. Distinguished Professor of Chemical Engineering at North Carolina State University and of Chemistry at UNC-Chapel Hill.

DeSimone was honored for his invention of particle replication in non-wetting templates (PRINT) technology that enables the fabrication of precisely defined, shape-specific nanoparticles for advances in disease treatment and prevention. Nanoparticles made with PRINT technology are being used to develop new cancer treatments, inhalable therapeutics for treating pulmonary diseases, such as cystic fibrosis and asthma, and next-generation vaccines for malaria, pneumonia and dengue.

2015 recipient of the Kabiller Young Investigator Award

Warren Chan, professor at the Institute of Biomaterials and Biomedical Engineering at the University of Toronto, was the recipient of the inaugural Kabiller Young Investigator Award, also in 2015. Chan and his research group have developed an infectious disease diagnostic device for a point-of-care use that can differentiate symptoms.

BTW, Warren Chan, winner of the ‘Young Investigator Award’, and/or his work have been featured here a few times, most recently in a Nov. 1, 2016 posting, which is mostly about another award he won but also includes links to some his work including my April 27, 2016 post about the discovery that fewer than 1% of nanoparticle-based drugs reach their destination.

Nanotechnology-enabled dengue virus vaccine

Here’s news of work-in-progress for a dengue virus vaccine and, possibly, a Zika virus vaccine too. From a Nov. ??, 2016 University of North Carolina news release,

Scientists at the UNC School of Medicine are working to develop a nanoparticle vaccine to protect against the four serotypes of dengue virus, which infects more than 350 million people across the globe each year.

Aravinda de Silva, PhD, professor of microbiology and immunology, and a post-doctoral researcher Stefan Metz, PhD, recently published the latest on their vaccine development efforts in PLOS Neglected Tropical Diseases.

The nanoparticle platform was produced with PRINT (Particle Replication in Non-wetting Templates) technology. Joseph DeSimone, PhD, the Chancellor’s Eminent Professor of Chemistry and a joint professor in the Department of Pharmacology at UNC, developed PRINT, a nano-molding technique, in 2004.

Rather than using a killed or attenuated virus to develop a vaccine for dengue, de Silva’s lab is focusing on “expressing the E protein and attaching it to nanoparticles to induce good immune responses,” Metz said.

The nanoparticle vaccine platform can be safer to certain populations than vaccines that use either live or killed virus, he said.

One of the many complexities about developing a successful dengue vaccine, Metz explained, is that there are four serotypes of the virus, which means researchers need to develop a vaccine that provides immunity against all four serotypes.

“There are currently several vaccines in trial and development for dengue,” Metz said. “One vaccine has gone through all three clinical trial phases and has been licensed in some countries. Although these vaccines produce good antibody responses, a large part of the population still wasn’t protected from each of the serotypes.

“With dengue, you need to vaccinate people against all four serotypes at once in order to protect people. That’s why we’re combing the different serotypes.”

In their most recent study, de Silva and Metz focused their efforts on the second serotype. Now, they’re moving forward with the same studies for serotypes one, three and four.

“In the study, we express the E protein, which is found on the surface of the virus particle,” Metz explained. “This protein is organized in a very complex way, and this complex organization exposes isotopes that are important to induce protective immune response.”

De Silva and Metz were recently named to a global research consortium to tackle Zika, and they’re using the same nanoparticle vaccine platform as they work to develop a Zika vaccine.

“Globally, if you look at the numbers, dengue is still a much bigger problem than Zika,” Metz said, noting that an estimated 25,000 people die from dengue infections each year. “If you get dengue, you might not even notice it. If you do get clinical symptoms during a first infection of dengue, you might feel like you have a feverish flu. A lot of people don’t even know it because if you’re not feeling well for a couple days, you don’t necessarily think that it’s caused by a dengue virus infection.

“However, if you were infected by the first serotype and you had a secondary infection with a different serotype, that’s when the more severe diseases can come up – stress syndromes, hemorrhagic diseases – those can be fatal diseases,” Metz said. “There are thousands and thousands of people dying from those diseases each year.”

Here’s a link to and a citation for the paper,

Precisely Molded Nanoparticle Displaying DENV-E Proteins Induces Robust Serotype-Specific Neutralizing Antibody Responses by Stefan W. Metz, Shaomin Tian, Gabriel Hoekstra, Xianwen Yi, Michelle Stone, Katie Horvath, Michael J. Miley, Joseph DeSimone, Chris J. Luft, Aravinda M. de Silva. PLOS http://dx.doi.org/10.1371/journal.pntd.0005071  Published: October 20, 2016

This paper is open access.

Could science funding in the European Union have an impact on Canadian nanotechnology?

Unexpectedly they’re upping the research budget in the European Union. According to the item online at  BBC News,

The EU has announced 6.4bn euros (£5.4bn) of funding for scientific research and innovation next year – a 12% increase on this year’s allocation.

The programme is aimed at creating more than 165,000 jobs and developing “a more competitive and greener Europe”, the European Commission says.

The focus is on tackling climate change, energy projects, food security, health and Europe’s ageing population.

Grants will be awarded to about 16,000 research bodies and businesses.

“Research and innovation are the only smart and lasting route out of crisis and towards sustainable and socially equitable growth,” said the EU Commissioner for Research and Innovation, Maire Geoghegan-Quinn.

“There is no other way of creating good and well-paid jobs that will withstand the pressures of globalisation.”

EU-funded research currently accounts for about 5% of the total public funding for research in the EU, she said.

The investment includes more than 600m euros for health research, about 206m euros of which will go into clinical trials for new drugs.

Nanotechnologies will get 270m euros, while about 600m euros is earmarked for advanced computer technologies. [emphasis mine]

Another 400m euros is to be spent on computer applications that address the challenges of building a low-carbon economy and managing ageing populations.

I was inclined to view it as a piece of delightful news without really analyzing it, then David Bruggeman (Pasco Phronesis) made a salient comment,

I suspect that the European spending will be insufficient even if individual nations hold the line on their own science funding. Because even those nations are looking at significant cuts to their universities, which affect both the training of the next generation of researchers and a certain amount of research. At best the funding boosts and cuts will be a wash, but the future doesn’t look like the best. What might happen is a greater shift in attention to European Union level research compared to country level research.

David also provides a brief description of the  ‘framework programme’ that the European Union uses to fund science research so that readers (such as me) have a better understanding of the bigger picture. If you’re interested in this kind of thing, do check out his posting.

David’s commentary was particularly timely as, this morning, I came across an article about the French government funding nanotechnology research in Canada (Sherbrooke, Québec to be precise). Since the article is in French, I’m going to be relying on my translation skills (Note: I will reproduce at least some of the French, so do let me know if you spot any errors.)

There is an abbreviated version of the article (Nanotechnologies: un petit bout de France à L’UdeS) by Jonathan Custeau for the Sherbrooke Tribune here (fyi, somebody sent me a copy of the full article).

The University of Sherbrooke’s current nanotechnology laboratory (Laboratoire international associé en nanotechnologies et nanosystèmes [LIA-LN2]) is about to receiving funding to the tune of ! million Euros over three years from France’s CNRS (Centre National de la Recherche Scientifique) putting  it in a category occupied by only eight other labs in the world.

I gather the lab’s current LIA-LN2 status is a consequence of previous French funding since the university’s vice-president of research describes the current bonanza as ‘jumping to a new level’, i.e. jumping to Unité mixte international (UMI) status,

“Nous étions tellement en avance que nous sautons à un autre niveau”, fait valoir Jacques Beauvais, vice-recteur à la recherche de l’Université de Sherbrooke.

L’autre niveau, c’est l’Unité mixte internationale, un laboratoire financé par le Centre national de la recherche scientifique (CNRS français. Il n’en existe que huit à travers le monde.

“Une UMI coûte très cher, parce que c’est un vrai laboratoire, avec des chercheurs financés par le CNRS, des fonds de recherches français et européens. C’est comme s’il y avait un bout de France sur le campus de l’Université de Sherbrooke”, fait valoir Vincent Aimez, codirecteur du LIA-LN2.

The nanotechnology researchers at the University of Sherbrooke (L’UdeS) have been liaising and collaborating with researchers in Varennes, Lyon, and Grenoble, France for over two years,  so this new funding is an acknowledgment of the quality of their work.

Bravo—the award is all the more extraordinary given the concerns about science and university funding in Europe.

January 2012 is the launch date for the University of Sherbrooke’s UMI which will have a focus on bringing at least some of the academic research to the market. Miniaturized integrated circuit boards are mentioned specifically and my translation skills failed a bit here,

Les applications des recherches pourraient notamment permettre de relever le défi de la miniaturisation des puces électroniques [integrated circuit boards?]. “Nous cherchons à faire des puces avec plus de fonctions, mais qui consomment moins d’énergie, pour qu’elles restent efficaces pendant un mois par exemple. Nous voulons aussi développer des biocapteurs [?] pour des contrôles environnementaux [?] ou des analyses médicales [medical diagnostics?]”, précise Abdelkader Souifi, également codirecteur du LIA-LN2.

I found the comments regarding products quite interesting in light of the Québec government’s recent moves to improve innovation in that province as per the article (June 30, 2010) by Peter Hadekel in the Montréal Gazette. (Idle thought: This casts a new light on the recent Domtar-FPInnovations collaboration on nanocrystalline cellulose (my July 16, 2010 posting).

It’s not just the size, it’s the shape of your nanoparticles

There’s an interesting piece on nanomedicine in Scientific American about some research that was conducted by chemistry professor Joseph DeSimone at the University of North Carolina (at Chapel Hill) about the most effective nanotransport for drug therapy. They concluded that the shape of nanoparticle used as the delivery system was an important factor in its effectiveness. There’s more here in an article by Larry Greenemeier.

Richard Jones, in his blog Soft Machines, offers his thoughts about the latest UK public dialogue programme about nanotechnology. This one focused on nanomedicine.  He first provides some information about a recent call for nanomedicine proposals, so keep reading if public dialogue is your interest. The full report for the public dialogue project that Jones mentions is here but if you’re short for time, read Jones’ posting.

Now back to my dissertation project, The Nanotech Mysteries.