Tag Archives: Joseph Haydn

Physicists study Bach, Mozart, and jazz

This November 5, 2024 news item on phys.org takes a while before revealing how science is involved in the research,

Physicists at the Max Planck Institute for Dynamics and Self-Organization (MPI-DS) have investigated to which extent a piece of music can evoke expectations about its progression. They were able to determine differences in how far compositions of different composers can be anticipated. In total, the scientists quantitatively analyzed more than 550 pieces from classical and jazz music.

It is common knowledge that music can evoke emotions. But how do these emotions arise and how does meaning emerge in music? Almost 70 years ago, music philosopher Leonard Meyer suggested that both are due to an interplay between expectation and surprise.

In the course of evolution, it was crucial for humans to be able to make new predictions based on past experiences. This is how we can also form expectations and predictions about the progression of music based on what we have heard. According to Meyer, emotions and meaning in music arise from the interplay of expectations and their fulfillment or (temporary) non-fulfillment.

A team of scientists led by Theo Geisel at the MPI-DS and the University of Göttingen have asked themselves whether these philosophical concepts can be quantified empirically using modern methods of data science. …

Physicists at the MPI-DS have investigated the variability in music pieces by different composers. They found a high initial autocorrelation of pitches, which ends relatively abruptly after a certain time, thus making further anticipation impossible. (image generated with AI) [less] © MPI-DS [downloaded from https://phys.org/news/2024-11-bach-mozart-jazz-scientists-quantitative.html]

A November 5, 2024 Max Planck Institute for Dynamics and Self-Organization press release (also on EurekAlert), which originated the news item, offers technical details about the work,

… In a paper published recently in Nature Communications, they used time series analysis to infer the autocorrelation function of musical pitch sequences; it measures how similar a tone sequence is to previous sequences. This results in a kind of “memory” of the piece of music. If this memory decreases only slowly with time difference, the time series is easier to anticipate; if it vanishes rapidly, the time series offers more variation and surprises. 

In total, the researchers Theo Geisel and Corentin Nelias analyzed more than 450 jazz improvisations and 99 classical compositions in this way, including multi-movement symphonies and sonatas. They found that the autocorrelation function of pitches initially decreases very slowly with the time difference. This expresses a high similarity and possibility to anticipate musical sequences. However, they found that there is a time limit, after which this similarity and predictability ends relatively abruptly. For larger time differences, the autocorrelation function and memory are both negligible.

Of particular interest here are the values of the transition times of the pieces where the more predictable behavior changes into a completely unpredictable and uncorrelated behavior. Depending on the composition or improvisation, the scientists found transition times ranging from a few quarter notes to about 100 quarter notes. Jazz improvisations typically had shorter transition times than many classical compositions, and therefore were usually less predictable. Differences could also be observed between different composers. For example, the researchers found transition times between five and twelve quarter notes in various compositions by Johann Sebastian Bach, while the transition times in various compositions by Mozart ranged from eight to 22 quarter notes. This implies that the anticipation and expectation of the musical progression tends to last longer in Mozart’s compositions than in Bach’s compositions, which offer more variability and surprises.

For Theo Geisel, the initiator and head of this research project, this also explains a very personal observation from his high school days: “In my youth, I shocked my music teacher and conductor of our school orchestra by saying that I often couldn’t show much enthusiasm for Mozart’s compositions,” he says. “With the transition times between highly correlated and uncorrelated behavior, we have now found a quantitative measure for the variability of music pieces, which helps me to understand why I liked Bach more than Mozart.”

Here’s a link to and a citation for the paper,

Stochastic properties of musical time series by Corentin Nelias & Theo Geisel. Nature Communications volume 15, Article number: 9280 (2024) DOI: https://doi.org/10.1038/s41467-024-53155-y Published: 28 October 2024

This paper is open access.

There was a Theodor Geisel who in the US and Canada was better known as Dr. Seuss.

Chemistry of opera

Kate Yandell has written a thoroughly fascinating article about opera and chemistry (Atoms and Arias) for the Mar. 23, 2013 issue of The Scientist,

In a paper published earlier this year (January 14) in the Journal of Chemical Education, André [João Paulo André], who is now a professor at the University of Minho in Portugal, described his strategy for exploring the links between chemistry and opera for educational purposes.

According to André, the pairing is a natural one, as opera actually chronicled the heady, early days of chemical discovery. Joseph Haydn’s Der Apotheker (also known as Lo Speziale) and Gaetano Donizetti’s one-act opera, Il Campanello, for example, both featured pharmacists as main characters. In 1768, as Joseph Priestley, Antoine Lavoisier, and Carl Wilhelm Scheele, who would eventually discover oxygen, were immersed in their chemical labors, Haydn debuted Der Apotheker, a story about competition and love that plays out in the pharmacy. “There was something in the air. Chemistry was coming to be called a modern science,” Andé says. Il Campanello was first performed publicly in 1836, a time when many natural compounds were being isolated. It includes songs about long, complicated prescriptions. These “apothecary operas” illustrate the cultural pull chemistry used to have.

The researcher’s paper, published in the Journal of Chemical Education, has received worldwide interest. Meanwhile, Yandell’s article inspired this Mar. 24, 2013 posting on Les Vérités Scientifiques,

La constatation que nous livre l’auteur constitue-t-elle une surprise ? Non, car il en est de l’Opéra comme il en est de toute d’autre production artistique, littérature, peinture, musique : la mise en évidence d’une interpénétration entre l’actualité de  la science et l’art. Chaque époque de la société se reflète dans ce que choisissent d’exprimer ses différents acteurs ce qui permet de regarder efficacement derrière soi (cf l’exposition L’ange du bizarre. Le romantisme noir de Goya à Max Ernst au musée d’Orsay).

This is going to be a rough (very) translation and any errors are entirely mine,

The relationship between opera and chemistry should not be a surprise since opera like all the other artistic enterprises such as literature, painting, music always reflect the social and scientific interests of their own epochs as we can see in various venues, e.g. L’ange du bizarre: the dark romanticism of artists ranging from Goya to Max Ernst at the musée d’Orsay [in Paris].

As Yandell’s article notes others have observed a relationship between opera and chemistry (Links have been removed),

Jorge Calado, a retired Portuguese chemistry professor and an opera critic for the Portuguese newspaper Expresso, saw André’s talk and helped edit the Journal of Chemical Education paper. …

Calado published a book in Portuguese in 2011 whose title translates to Let There be Light! A History of Chemistry Through Everything, in which he tells the story of chemistry’s early roots through the lens of the arts and humanities, including opera.

He says that André’s paper made him want to write his own follow-up paper, and that he could think of even more examples of operas with connections to chemistry—from Jacques Offenbach’s Le Docteur Ox (1877), based on a story by science fiction writer Jules Verne, to John Adams’ Doctor Atomic (2005), which chronicles the creation of the atom bomb in Los Alamos.

Aside from the fact that it’s well worth reading, Yandell’s article is studded with opera videos that enhance the opera/chemistry relationships being described.

Here’s a link to and a citation for the research article,

Opera and Poison: A Secret and Enjoyable Approach To Teaching and Learning Chemistry by João Paulo André. J. Chem. Educ., 2013, 90 (3), pp 352–357 DOI: 10.1021/ed300445b
Publication Date (Web): January 14, 2013
Copyright © 2013 The American Chemical Society and Division of Chemical Education, Inc.

This article is behind a paywall.

The Feb. 14, 2013 posting on the Smithsonian blog offers a little more information about the project,

Any good opera needs a dramatic twist, and death by poison and potions fits the bill. When a team of chemists took a closer look at the formulas behind these concoctions in 20 operas, they found 25 different natural and synthetic chemical materials featured. The researchers suggest that teachers use these poison plots to engage students with chemistry, and while opera isn’t exactly an easy sell with most teenagers, learning about death by deadly nightshade probably ranks higher for most than memorizing yet another chemical formula.

The Smithsonian posting also offers a few tidbits from beyond the article’s paywall.

I believe this is a case where a few people independently had similar ideas as there is a professor in Germany who has also combined chemistry and opera although he has turned to performance. Professor Dr. Gerald Linti, at Heidelberg University has been staging musical chemistry experiments since 2004 if I’ve properly understood the German on his Special Events webpage,

  • Lange Nacht im Schloss (März 2004)

  “Chemie und Oper für Jedermann: Tannhäuser”

More recently (2009), Linti produced a Puccini night as part of his ongoing Chemistry and Opera series,

Under the title “Turandot’s Three Chemical Riddles” Gerald Linti, professor at Heidelberg University’s Institute of Inorganic Chemistry, and his students will be giving another demonstration of their legendary skill in the musical staging of chemical experiments at 6 p.m. on 26 June 2009.

He seems to have followed that up with a 2011 opera night at a conference titled, Modeling Molecular Properties, according to an Oct. 11, 2011 article by Sarah Miller for Chemistry Views,

The first day concluded with the spectacular “Chemistry and Opera” arranged by Professor Gerald Linti, University of Heidelberg. This demonstrated the beauty and fun of chemistry as Linti told the story of a Chinese Princess while his assistants performed chemistry experiments in time to live opera.

This sounds like a restaging of ‘Turandot’s Three Chemical Riddles’ from 2009. Here’s one of the images which illustrates Miller’s article,

[Downloaded from: http://www.chemistryviews.org/details/ezine/1371029/Modeling_Molecular_Properties_and_Opera.html]

[Downloaded from: http://www.chemistryviews.org/details/ezine/1371029/Modeling_Molecular_Properties_and_Opera.html]

Maybe it’s time for a new ‘chemistry’ opera. Any takers?