Tag Archives: Jun Peng

Stay warm with smart fabric that can heat up by 30°C after 10 minutes exposure to the sun

Presumably this material would be used for clothing worn in much colder climates than what we experience in the Pacific Northwest where even during the winter a hike of 30°C would have you sweating like a pig.

A January 23, 2025 news item on phys.org announces the latest news about the fast-heating smart fabric,

A new type of cloth developed by researchers at the University of Waterloo [Ontario, Canada] can heat up when exposed to the sun thanks to innovative nanoparticles embedded in the fabric’s fibers. This advance represents an innovative and environmentally friendly option for staying warm in the winter.

A demonstration of how stretchy the smart fabric is. The fabric can stretch out by as much as five times its original shape. (University of Waterloo)

A January 23, 2025 University of Waterloo news release, which originated the news item, delves further into heated winter clothes and their latest collaborative research, Note: A link has been removed,

Wearable heated clothing typically relies on metals or ceramic heating elements to heat up and an external power source, which could pose safety risks for users.

This new cloth incorporates conductive polymer nanoparticles that can heat up to 30degrees Celsius when exposed to sunlight. The design requires no external power and can also change colour to visually monitor temperature fluctuations.

“The magic behind the temperature-sensitive colour change lies in the combination of nanoparticles embedded in the polymer fibres,” said Yuning Li, a professor in Waterloo’s Department of Chemical Engineering, and part of the research team that includes Chaoxia Wang and Fangqing Ge from the College of Textile Science and Engineering at Jiangnan University in China.

“The nanoparticles are activated by sunlight, enabling the fabric to absorb heat and convert it into warmth.”

The fibre is created using a scalable wet-spinning process, combining polyaniline and polydopamine nanoparticles to enhance light absorption and improve photothermal conversion. Thermoplastic polyurethane serves as the spinning matrix, while thermochromic dyes enable the reversible color-changing feature. The resultant fiber can be woven into fabric for wearable applications.

n addition to its temperature-changing capability, the Waterloo researcher’s new fabric can stretch out by as much as five times its original shape and withstand as much as two-dozen washings while still maintaining its function and appearance. Its reversible colour-changing ability provides a built-in temperature monitoring feature to ensure the wearer’s safety and convenience.

“We prioritized durability, ensuring the fabric could withstand repeated use and environmental exposure while maintaining its innovative properties,” said Li.

The Waterloo team is exploring more cost-effective alternatives to polydopamine to make the smart fabric technology more accessible. Future developments will focus on scaling the production process and reducing costs without compromising on the fabric’s innovative properties.

The fabric’s potential applications include aiding in cold rescue situations and solar-powered pet clothing to help keep them comfortable when outside during the winter.

The study was recently published in the Journal of Advanced Composites and Hybrid Materials.

Here’s a link to and a citation for the paper,

Color tunable photo-thermochromic elastic fiber for flexible wearable heater by Fangqing Ge, Jun Peng, Jialing Tan, Weidong Yu, Yuning Li, & Chaoxia Wang. Journal of Advanced Composites and Hybrid Materials Volume 7, article number 173, (2024) DOI: https://doi.org/10.1007/s42114-024-00994-4 Published: 11 October 2024

This paper is behind a paywall.

For some earlier work from this international collaboration, I have a November 1, 2024 posting about energy harvesting fabric.

Converting body heat into electricity with smart fabric

This bioenergy harvesting story is from the University of Waterloo (Ontario, Canada), where its researchers were part of an international collaboration. From an August 14, 2023 news item on ScienceDaily,

Imagine a coat that captures solar energy to keep you cozy on a chilly winter walk, or a shirt that can monitor your heart rate and temperature.Picture clothing athletes can wear to track their performance without the need for bulky battery packs.

University of Waterloo researchers have developed a smart fabric with these remarkable capabilities.

The fabric has the potential for energy harvesting, health monitoring, and movement tracking applications.

An August 14, 2024 University of Waterloo news release (also on EurekAlert), which originated the news item, provides more information about the new fabric and the research team, Note: A link has been removed,

The new fabric developed by a Waterloo research team can convert body heat and solar energy into electricity, potentially enabling continuous operation with no need for an external power source. Different sensors monitoring temperature, stress, and more can be integrated into the material.

It can detect temperature changes and a range of other sensors to monitor pressure, chemical composition, and more. One promising application is smart face masks that can track breath temperature and rate and detect chemicals in breath to help identify viruses, lung cancer, and other conditions.

“We have developed a fabric material with multifunctional sensing capabilities and self-powering potential,” said Yuning Li, a professor in the Department of Chemical Engineering. “This innovation brings us closer to practical applications for smart fabrics.”

Unlike current wearable devices that often depend on external power sources or frequent recharging, this breakthrough research has created a novel fabric which is more stable, durable, and cost-effective than other fabrics on the market. 

This research, conducted in collaboration with Professor Chaoxia Wang and PhD student Jun Peng from the College of Textile Science and Engineering at Jiangnan University, showcases the potential of integrating advanced materials such as MXene and conductive polymers with cutting-edge textile technologies to advance smart fabrics for wearable technology.

Li, director of Waterloo’s Printable Electronic Materials Lab, highlighted the significance of this advancement, which is the latest in the university’s suite of technologies disrupting health boundaries.

“AI technology is evolving rapidly, offering sophisticated signal analysis for health monitoring, food and pharmaceutical storage, environmental monitoring, and more. However, this progress relies on extensive data collection, which conventional sensors, often bulky, heavy, and costly, cannot meet,” Li said. “Printed sensors, including those embedded in smart fabrics, are ideal for continuous data collection and monitoring. This new smart fabric is a step forward in making these applications practical.”

The next phase of research will focus on further enhancing the fabric’s performance and integrating it with electronic components in collaboration with electrical and computer engineers. Future developments may include a smartphone app to track and transmit data from the fabric to healthcare professionals, enabling real-time, non-invasive health monitoring and everyday use.

Here’s a link to and a citation for the paper,

MXene-based thermoelectric fabric integrated with temperature and strain sensing for health monitoring by Jun Peng, Fangqing Ge, Weiyi Han, Tao Wu, Jinglei Tang, Yuning Li, Chaoxia Wang. Journal of Materials Science & Technology Volume 212, 20 March 2025, Pages 272-280

This paper is behind a paywall but you will be able to read snippets in a preview.