Tag Archives: Kai Sun

How memristors retain information without a power source? A mystery solved

A September 10, 2024 news item on ScienceDaily provides a technical explanation of how memristors, without a power source, can retain information,

Phase separation, when molecules part like oil and water, works alongside oxygen diffusion to help memristors — electrical components that store information using electrical resistance — retain information even after the power is shut off, according to a University of Michigan led study recently published in Matter.

A September 11, 2024 University of Michigan press release (also on EurekAltert but published September 10, 2024), which originated the news item, delves further into the research,

Up to this point, explanations have not fully grasped how memristors retain information without a power source, known as nonvolatile memory, because models and experiments do not match up.

“While experiments have shown devices can retain information for over 10 years, the models used in the community show that information can only be retained for a few hours,” said Jingxian Li, U-M doctoral graduate of materials science and engineering and first author of the study.

To better understand the underlying phenomenon driving nonvolatile memristor memory, the researchers focused on a device known as resistive random access memory or RRAM, an alternative to the volatile RAM used in classical computing, and are particularly promising for energy-efficient artificial intelligence applications. 

The specific RRAM studied, a filament-type valence change memory (VCM), sandwiches an insulating tantalum oxide layer between two platinum electrodes. When a certain voltage is applied to the platinum electrodes, a conductive filament forms a tantalum ion bridge passing through the insulator to the electrodes, which allows electricity to flow, putting the cell in a low resistance state representing a “1” in binary code. If a different voltage is applied, the filament is dissolved as returning oxygen atoms react with the tantalum ions, “rusting” the conductive bridge and returning to a high resistance state, representing a binary code of “0”. 

It was once thought that RRAM retains information over time because oxygen is too slow to diffuse back. However, a series of experiments revealed that previous models have neglected the role of phase separation. 

“In these devices, oxygen ions prefer to be away from the filament and will never diffuse back, even after an indefinite period of time. This process is analogous to how a mixture of water and oil will not mix, no matter how much time we wait, because they have lower energy in a de-mixed state,” said Yiyang Li, U-M assistant professor of materials science and engineering and senior author of the study.

To test retention time, the researchers sped up experiments by increasing the temperature. One hour at 250°C is equivalent to about 100 years at 85°C—the typical temperature of a computer chip.

Using the extremely high-resolution imaging of atomic force microscopy, the researchers imaged filaments, which measure only about five nanometers or 20 atoms wide, forming within the one micron wide RRAM device.  

“We were surprised that we could find the filament in the device. It’s like finding a needle in a haystack,” Li said. 

The research team found that different sized filaments yielded different retention behavior. Filaments smaller than about 5 nanometers dissolved over time, whereas filaments larger than 5 nanometers strengthened over time. The size-based difference cannot be explained by diffusion alone.

Together, experimental results and models incorporating thermodynamic principles showed the formation and stability of conductive filaments depend on phase separation. 

The research team leveraged phase separation to extend memory retention from one day to well over 10 years in a rad-hard memory chip—a memory device built to withstand radiation exposure for use in space exploration. 

Other applications include in-memory computing for more energy efficient AI applications or memory devices for electronic skin—a stretchable electronic interface designed to mimic the sensory capabilities of human skin. Also known as e-skin, this material could be used to provide sensory feedback to prosthetic limbs, create new wearable fitness trackers or help robots develop tactile sensing for delicate tasks.

“We hope that our findings can inspire new ways to use phase separation to create information storage devices,” Li said.

Researchers at Ford Research, Dearborn; Oak Ridge National Laboratory; University at Albany; NY CREATES; Sandia National Laboratories; and Arizona State University, Tempe contributed to this study.

Here’s a link to and a citation for the paper,

Thermodynamic origin of nonvolatility in resistive memory by Jingxian Li, Anirudh Appachar, Sabrina L. Peczonczyk, Elisa T. Harrison, Anton V. Ievlev, Ryan Hood, Dongjae Shin, Sangmin Yoo, Brianna Roest, Kai Sun, Karsten Beckmann, Olya Popova, Tony Chiang, William S. Wahby, Robin B. Jacobs-Godrim, Matthew J. Marinella, Petro Maksymovych, John T. Heron, Nathaniel Cady, Wei D. Lu, Suhas Kumar, A. Alec Talin, Wenhao Sun, Yiyang Li. Matter DOI: https://doi.org/10.1016/j.matt.2024.07.018 Published online: August 26, 2024

This paper is behind a paywall.

Solving an iridescent mystery could lead to quantum transistors

iridescence has fascinated me (and scores of other people) since early childhood and it’s fascinating to note that scientists seems almost as enchanted as we amateurs are. The latest bit of ‘iridescent’ news comes from the University of Michigan in a Dec. 5, 2014 news item on ScienceDaily,

An odd, iridescent material that’s puzzled physicists for decades turns out to be an exotic state of matter that could open a new path to quantum computers and other next-generation electronics.

Physicists at the University of Michigan have discovered or confirmed several properties of the compound samarium hexaboride that raise hopes for finding the silicon of the quantum era. They say their results also close the case of how to classify the material–a mystery that has been investigated since the late 1960s.

A Dec. 5, 2014 University of Michigan news release, which originated the news item, provides more details about the mystery and the efforts to resolve it,

The researchers provide the first direct evidence that samarium hexaboride, abbreviated SmB6, is a topological insulator. Topological insulators are, to physicists, an exciting class of solids that conduct electricity like a metal across their surface, but block the flow of current like rubber through their interior. They behave in this two-faced way despite that their chemical composition is the same throughout.

The U-M scientists used a technique called torque magnetometry to observe tell-tale oscillations in the material’s response to a magnetic field that reveal how electric current moves through it. Their technique also showed that the surface of samarium hexaboride holds rare Dirac electrons, particles with the potential to help researchers overcome one of the biggest hurdles in quantum computing.

These properties are particularly enticing to scientists because SmB6 is considered a strongly correlated material. Its electrons interact more closely with one another than most solids. This helps its interior maintain electricity-blocking behavior.

This deeper understanding of samarium hexaboride raises the possibility that engineers might one day route the flow of electric current in quantum computers like they do on silicon in conventional electronics, said Lu Li, assistant professor of physics in the College of Literature, Science, and the Arts and a co-author of a paper on the findings published in Science.

“Before this, no one had found Dirac electrons in a strongly correlated material,” Li said. “We thought strong correlation would hurt them, but now we know it doesn’t. While I don’t think this material is the answer, now we know that this combination of properties is possible and we can look for other candidates.”

The drawback of samarium hexaboride is that the researchers only observed these behaviors at ultracold temperatures.

Quantum computers use particles like atoms or electrons to perform processing and memory tasks. They could offer dramatic increases in computing power due to their ability to carry out scores of calculations at once. Because they could factor numbers much faster than conventional computers, they would greatly improve computer security.

In quantum computers, “qubits” stand in for the 0s and 1s of conventional computers’ binary code. While a conventional bit can be either a 0 or a 1, a qubit could be both at the same time—only until you measure it, that is. Measuring a quantum system forces it to pick one state, which eliminates its main advantage.

Dirac electrons, named after the English physicist whose equations describe their behavior, straddle the realms of classical and quantum physics, Li said. Working together with other materials, they could be capable of clumping together into a new kind of qubit that would change the properties of a material in a way that could be measured indirectly, without the qubit sensing it. The qubit could remain in both states.

While these applications are intriguing, the researchers are most enthusiastic about the fundamental science they’ve uncovered.

“In the science business you have concepts that tell you it should be this or that and when it’s two things at once, that’s a sign you have something interesting to find,” said Jim Allen, an emeritus professor of physics who studied samarium hexaboride for 30 years. “Mysteries are always intriguing to people who do curiosity-driven research.”

Allen thought for years that samarium hexaboride must be a flawed insulator that behaved like a metal at low temperatures because of defects and impurities, but he couldn’t align that with all of its other properties.

“The prediction several years ago about it being a topological insulator makes a lightbulb go off if you’re an old guy like me and you’ve been living with this stuff your whole life,” Allen said.

In 2010, Kai Sun, assistant professor of physics at U-M, led a group that first posited that SmB6 might be a topological insulator. He and Allen were also involved in seminal U-M experiments led by physics professor Cagliyan Kurdak in 2012 that showed indirectly that the hypothesis was correct.

“But the scientific community is always critical,” Sun said. “They want very strong evidence. We think this experiment finally provides direct proof of our theory.”

Here’s a link to and a citation for the researchers’ latest paper,

Two-dimensional Fermi surfaces in Kondo insulator SmB6 by G. Li, Z. Xiang, F. Yu, T. Asaba, B. Lawson, P. Cai1, C. Tinsman, A. Berkley, S. Wolgast, Y. S. Eo, Dae-Jeong Kim, C. Kurdak, J. W. Allen, K. Sun, X. H. Chen, Y. Y. Wang, Z. Fisk, and Lu Li. Science 5 December 2014: Vol. 346 no. 6214 pp. 1208-1212 DOI: 10.1126/science.1250366

This paper is behind a paywall.

Another day, another solar cell improvement: replacing platinum with 3D graphene

On the plus side, this may replace platinum but it does seem to be one of a plethora of solar cell improvements that don’t make much difference in the current marketplace as this and other improvements are still at the laboratory stage.  Still, it’s encouraging to remember that scientific and technical progress in an area can be agonizingly slow in the early stages only to gain speed at an exponential rate in later stages of development. Fingers crossed this is the case with solar cells.

From the Aug. 20, 2013 Michigan Technological University news release by Marcia Goodrich (also on EurekAlert),

One of the most promising types of solar cells has a few drawbacks. …

Dye-sensitized solar cells are thin, flexible, easy to make and very good at turning sunshine into electricity. However, a key ingredient is one of the most expensive metals on the planet: platinum. While only small amounts are needed, at $1,500 an ounce, the cost of the silvery metal is still significant.

Yun Hang Hu, the Charles and Caroll McArthur Professor of Materials Science and Engineering [Michigan Technological University], has developed a new, inexpensive material that could replace the platinum in solar cells without degrading their efficiency: 3D graphene.

Regular graphene is a famously two-dimensional form of carbon just a molecule or so thick. Hu and his team invented a novel approach to synthesize a unique 3D version with a honeycomb-like structure. To do so, they combined lithium oxide with carbon monoxide in a chemical reaction that forms lithium carbonate (Li2CO3) and the honeycomb graphene. The Li2CO3 helps shape the graphene sheets and isolates them from each other, preventing the formation of garden-variety graphite.  Furthermore, the Li2CO3 particles can be easily removed from 3D honeycomb-structured graphene by an acid.

The researchers determined that the 3D honeycomb graphene had excellent conductivity and high catalytic activity, raising the possibility that it could be used for energy storage and conversion. So they replaced the platinum counter electrode in a dye-sensitized solar cell with one made of the 3D honeycomb graphene. Then they put the solar cell in the sunshine and measured its output.

The cell with the 3D graphene counter electrode converted 7.8 percent of the sun’s energy into electricity, nearly as much as the conventional solar cell using costly platinum (8 percent).

Synthesizing the 3D honeycomb graphene is neither expensive nor difficult, said Hu, and making it into a counter electrode posed no special challenges.

Here’s a link to and a citation for the research paper,

3D Honeycomb-Like Structured Graphene and Its High Efficiency as a Counter-Electrode Catalyst for Dye-Sensitized Solar Cells by Yun Hang Hu, Hui Wang, Franklin Tao, Dario J. Stacchiola, and Kai Sun. Angewandte Chemie, International Edition, Article first published online: 29 JUL 2013 DOI: 10.1002/anie.201303497

The article is behind a paywall.