Tag Archives: kevlar

Suit up with nanofiber for protection against explosions and high temperatures

Where explosions are concerned you might expect to see some army research and you would be right. A June 29, 2020 news item on ScienceDaily breaks the news,

Since World War I, the vast majority of American combat casualties has come not from gunshot wounds but from explosions. Today, most soldiers wear a heavy, bullet-proof vest to protect their torso but much of their body remains exposed to the indiscriminate aim of explosive fragments and shrapnel.

Designing equipment to protect extremities against the extreme temperatures and deadly projectiles that accompany an explosion has been difficult because of a fundamental property of materials. Materials that are strong enough to protect against ballistic threats can’t protect against extreme temperatures and vice versa. As a result, much of today’s protective equipment is composed of multiple layers of different materials, leading to bulky, heavy gear that, if worn on the arms and legs, would severely limit a soldier’s mobility.

Now, Harvard University researchers, in collaboration with the U.S. Army Combat Capabilities Development Command Soldier Center (CCDC SC) and West Point, have developed a lightweight, multifunctional nanofiber material that can protect wearers from both extreme temperatures and ballistic threats.

A June 29, 2020 Harvard University news release (also on EurekAlert) by Leah Burrows, which originated the news item, expands on the theme,

“When I was in combat in Afghanistan, I saw firsthand how body armor could save lives,” said senior author Kit Parker, the Tarr Family Professor of Bioengineering and Applied Physics at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and a lieutenant colonel in the United States Army Reserve. “I also saw how heavy body armor could limit mobility. As soldiers on the battlefield, the three primary tasks are to move, shoot, and communicate. If you limit one of those, you decrease survivability and you endanger mission success.”

“Our goal was to design a multifunctional material that could protect someone working in an extreme environment, such as an astronaut, firefighter or soldier, from the many different threats they face,” said Grant M. Gonzalez, a postdoctoral fellow at SEAS and first author of the paper.

In order to achieve this practical goal, the researchers needed to explore the tradeoff between mechanical protection and thermal insulation, properties rooted in a material’s molecular structure and orientation.

Materials with strong mechanical protection, such as metals and ceramics, have a highly ordered and aligned molecular structure. This structure allows them to withstand and distribute the energy of a direct blow. Insulating materials, on the other hand, have a much less ordered structure, which prevents the transmission of heat through the material.

Kevlar and Twaron are commercial products used extensively in protective equipment and can provide either ballistic or thermal protection, depending on how they are manufactured. Woven Kevlar, for example, has a highly aligned crystalline structure and is used in protective bulletproof vests. Porous Kevlar aerogels, on the other hand, have been shown to have high thermal insulation.

“Our idea was to use this Kevlar polymer to combine the woven, ordered structure of fibers with the porosity of aerogels to make long, continuous fibers with porous spacing in between,” said Gonzalez. “In this system, the long fibers could resist a mechanical impact while the pores would limit heat diffusion.”

The research team used immersion Rotary Jet-Spinning (iRJS), a technique developed by Parker’s Disease Biophysics Group, to manufacture the fibers. In this technique, a liquid polymer solution is loaded into a reservoir and pushed out through a tiny opening by centrifugal force as the device spins. When the polymer solution shoots out of the reservoir, it first passes through an area of open air, where the polymers elongate and the chains align. Then the solution hits a liquid bath that removes the solvent and precipitates the polymers to form solid fibers. Since the bath is also spinning — like water in a salad spinner — the nanofibers follow the stream of the vortex and wrap around a rotating collector at the base of the device.

By tuning the viscosity of the liquid polymer solution, the researchers were able to spin long, aligned nanofibers into porous sheets — providing enough order to protect against projectiles but enough disorder to protect against heat. In about 10 minutes, the team could spin sheets about 10 by 30 centimeters in size.

To test the sheets, the Harvard team turned to their collaborators to perform ballistic tests. Researchers at CCDC SC in Natick, Massachusetts simulated shrapnel impact by shooting large, BB-like projectiles at the sample. The team performed tests by sandwiching the nanofiber sheets between sheets of woven Twaron. They observed little difference in protection between a stack of all woven Twaron sheets and a combined stack of woven Twaron and spun nanofibers.

“The capabilities of the CCDC SC allow us to quantify the successes of our fibers from the perspective of protective equipment for warfighters, specifically,” said Gonzalez.

“Academic collaborations, especially those with distinguished local universities such as Harvard, provide CCDC SC the opportunity to leverage cutting-edge expertise and facilities to augment our own R&D capabilities,” said Kathleen Swana, a researcher at CCDC SC and one of the paper’s authors. “CCDC SC, in return, provides valuable scientific and soldier-centric expertise and testing capabilities to help drive the research forward.”

In testing for thermal protection, the researchers found that the nanofibers provided 20 times the heat insulation capability of commercial Twaron and Kevlar.

“While there are improvements that could be made, we have pushed the boundaries of what’s possible and started moving the field towards this kind of multifunctional material,” said Gonzalez.

“We’ve shown that you can develop highly protective textiles for people that work in harm’s way,” said Parker. “Our challenge now is to evolve the scientific advances to innovative products for my brothers and sisters in arms.”

Harvard’s Office of Technology Development has filed a patent application for the technology and is actively seeking commercialization opportunities.

Here’s a link to and a citation for the paper,

para-Aramid Fiber Sheets for Simultaneous Mechanical and Thermal Protection in Extreme Environments by Grant M. Gonzalez, Janet Ward, John Song, Kathleen Swana, Stephen A. Fossey, Jesse L. Palmer, Felita W. Zhang, Veronica M. Lucian, Luca Cera, John F. Zimmerman, F. John Burpo, Kevin Kit Parker. Matter DOI: https://doi.org/10.1016/j.matt.2020.06.001 Published:June 29, 2020

This paper is behind a paywall.

While this is the first time I’ve featured clothing/armour that’s protective against explosions I have on at least two occasions featured bulletproof clothing in a Canadian context. A November 4, 2013 posting had a story about a Toronto-based tailoring establishment, Garrison Bespoke, that was going to publicly test a bulletproof business suit. Should you be interested, it is possible to order the suit here. There’s also a February 11, 2020 posting announcing research into “Comfortable, bulletproof clothing for Canada’s Department of National Defence.”

World’s first ever graphene-enhanced sports shoes/sneakers/running shoes/runners/trainers

Regardless of what these shoes are called, they contain, apparently, some graphene. As to why you as a consumer might find that important, here’s more from a June 20, 2018 news item on Nanowerk,

The world’s first-ever sports shoes to utilise graphene – the strongest material on the planet – have been unveiled by The University of Manchester and British brand inov-8.

Collaborating with graphene experts at National Graphene Institute, the brand has been able to develop a graphene-enhanced rubber. They have developed rubber outsoles for running and fitness shoes that in testing have outlasted 1,000 miles and are scientifically proven to be 50% harder wearing.

The National Graphene Institute (located at the UK’s University of Manchester) June 20, 2018 press release, which originated the news item, provides a few details, none of them particularly technical or scientific, no mention of studies, etc.  (Note: Links have been removed),

Graphene is 200 times stronger than steel and at only a single atom thick it is the thinnest possible material, meaning it has many unique properties. inov-8 is the first brand in the world to use the superlative material in sports footwear, with its G-SERIES shoes available to pre-order from June 22nd [2018] ahead of going on sale from July 12th [2018].

The company first announced its intent to revolutionise the sports footwear industry in December last year. Six months of frenzied anticipation later, inov-8 has now removed all secrecy and let the world see these game-changing shoes.

Michael Price, inov-8 product and marketing director, said: “Over the last 18 months we have worked with the National Graphene Institute at The University of Manchester to bring the world’s toughest grip to the sports footwear market.

“Prior to this innovation, off-road runners and fitness athletes had to choose between a sticky rubber that works well in wet or sweaty conditions but wears down quicker and a harder rubber that is more durable but not quite as grippy. Through intensive research, hundreds of prototypes and thousands of hours of testing in both the field and laboratory, athletes now no longer need to compromise.”

Dr Aravind Vijayaraghavan, Reader in Nanomaterials at The University of Manchester, said: “Using graphene we have developed G-SERIES outsole rubbers that are scientifically tested to be 50% stronger, 50% more elastic and 50% harder wearing.

“We are delighted to put graphene on the shelves of 250 retail stores all over the world and make it accessible to everyone. Graphene is a versatile material with limitless potential and in coming years we expect to deliver graphene technologies in composites, coatings and sensors, many of which will further revolutionise sports products.”

The G-SERIES range is made up of three different shoes, each meticulously designed to meet the needs of athletes. THE MUDCLAW G 260 is for running over muddy mountains and obstacle courses, the TERRAULTRA G 260 for running long distances on hard-packed trails and the F-LITE G 290 for crossfitters working out in gyms. Each includes graphene-enhanced rubber outsoles and Kevlar – a material used in bulletproof vests – on the uppers.

Commenting on the patent-pending technology and the collaboration with The University of Manchester, inov-8 CEO Ian Bailey said: “This powerhouse forged in Northern England is going to take the world of sports footwear by storm. We’re combining science and innovation together with entrepreneurial speed and agility to go up against the major sports brands – and we’re going to win.

“We are at the forefront of a graphene sports footwear revolution and we’re not stopping at just rubber outsoles. This is a four-year innovation project which will see us incorporate graphene into 50% of our range and give us the potential to halve the weight of running/fitness shoes without compromising on performance or durability.”

Graphene is produced from graphite, which was first mined in the Lake District fells of Northern England more than 450 years ago. inov-8 too was forged in the same fells, albeit much more recently in 2003. The brand now trades in 68 countries worldwide.

The scientists who first isolated graphene from graphite were awarded the Nobel Prize in 2010. Building on their revolutionary work, a team of over 300 staff at The University of Manchester has pioneered projects into graphene-enhanced prototypes, from sports cars and medical devices to aeroplanes. Now the University can add graphene-enhanced sports footwear to its list of world-firsts.

A picture of the ‘shoes’ has been provided,

Courtesy: National Graphene Institute at University of Manchester

You can find the company inov-8 here. As for more information about their graphene-enhanced show, there’s this,from the company’s ‘graphene webpage‘,

1555Graphite was first mined in the Lake District fells of Northern England

2004Scientists at The University of Manchester isolate graphene from graphite.

2010The Nobel Prize is awarded to the scientists for their ground-breaking experiments with graphene.

2018inov-8 launch the first-ever sports footwear to utilise graphene, delivering the world’s toughest grip.

Ground-breaking technology

One atom thick carbon sheet

200 x stronger than steel

Thin, light, flexible, with limitless potential

inov-8 COLLABORATION WITH THE NATIONAL GRAPHENE INSTITUTE

Previously athletes had to choose between a sticky rubber that works well in wet or sweaty conditions but wears down quicker, and a harder rubber that is more durable but not quite as grippy. Through intensive research, hundreds of prototypes and thousands of hours of testing in both the field and laboratory, athletes now no longer need to compromise. The new rubber we have developed with the National Graphene Institute at The University of Manchester allows us to smash the limits of grip [sic]

The G-SERIES range is made up of three different shoes, each meticulously designed to meet the needs of athletes. Each includes graphene-enhanced rubber outsoles that deliver the world’s toughest grip and Kevlar – a material used in bulletproof vests – on the uppers.

Bulletproof material for running shoes?

As for Canadians eager to try out these shoes, you will likely have to go online or go to the US.  Given how recently (June 19, 2018) this occurred, I’m mentioning the US president’s (Donald Trump) comments that Canadians are notorious for buying shoes in the US and smuggling them across the border back into Canada. (Revelatory information for Canadians everywhere.) His bizarre comments occasioned this explanatory June 19, 2018 article by Jordan Weissmann for Slate.com,

During a characteristically rambling address before the National Federation of Independent Businesses on Tuesday [June 19, 2018], Donald Trump darted off into an odd tangent in which he suggested that Canadians were smuggling shoes across the U.S. border in order to avoid their country’s high tariffs.

There was a story two days ago in a major newspaper talking about people living in Canada coming into the United States and smuggling things back into Canada because the tariffs are so massive. The tariffs to get common items back into Canada are so high that they have to smuggle ‘em in. They buy shoes, then they wear ‘em. They scuff ‘em up. They make ‘em sound old or look old. No, we’re treated horribly. [emphasis mine]

Anyone engaged in this alleged practice would be avoiding payment to the Canadian government. How this constitutes poor treatment of the US government and/or US retailers is a bit a of puzzler.

Getting back to Weissman and his article, he focuses on the source of the US president’s ‘information’.

As for graphene-enhanced ‘shoes’, I hope they are as advertized.

No more kevlar-wrapped lithium-ion batteries?

Current lithium-ion batteries present a fire hazard, which is why, last, year a team of researchers at the University of Michigan came up with a plan to prevent fires by wrapping the batteries in kevlar. My Jan. 30, 2015 post describes the research and provides some information about airplane fires caused by the use of lithium-ion batteries.

This year, a team of researchers at Stanford University (US) have invented a lithium-ion (li-ion) battery that shuts itself down when it overheats, according to a Jan. 12, 2016 news item on Nanotechnology Now,

Stanford researchers have developed the first lithium-ion battery that shuts down before overheating, then restarts immediately when the temperature cools.

The new technology could prevent the kind of fires that have prompted recalls and bans on a wide range of battery-powered devices, from recliners and computers to navigation systems and hoverboards [and on airplanes].

“People have tried different strategies to solve the problem of accidental fires in lithium-ion batteries,” said Zhenan Bao, a professor of chemical engineering at Stanford. “We’ve designed the first battery that can be shut down and revived over repeated heating and cooling cycles without compromising performance.”

Stanford has produced a video of Dr. Bao discussing her latest work,

A Jan. 11, 2016 Stanford University news release by Mark Schwartz, which originated the news item, provides more detail about li-ion batteries and the new fire prevention technology,

A typical lithium-ion battery consists of two electrodes and a liquid or gel electrolyte that carries charged particles between them. Puncturing, shorting or overcharging the battery generates heat. If the temperature reaches about 300 degrees Fahrenheit (150 degrees Celsius), the electrolyte could catch fire and trigger an explosion.

Several techniques have been used to prevent battery fires, such as adding flame retardants to the electrolyte. In 2014, Stanford engineer Yi Cui created a “smart” battery that provides ample warning before it gets too hot.

“Unfortunately, these techniques are irreversible, so the battery is no longer functional after it overheats,” said study co-author Cui, an associate professor of materials science and engineering and of photon science. “Clearly, in spite of the many efforts made thus far, battery safety remains an important concern and requires a new approach.”

Nanospikes

To address the problem Cui, Bao and postdoctoral scholar Zheng Chen turned to nanotechnology. Bao recently invented a wearable sensor to monitor human body temperature. The sensor is made of a plastic material embedded with tiny particles of nickel with nanoscale spikes protruding from their surface.

For the battery experiment, the researchers coated the spiky nickel particles with graphene, an atom-thick layer of carbon, and embedded the particles in a thin film of elastic polyethylene.

“We attached the polyethylene film to one of the battery electrodes so that an electric current could flow through it,” said Chen, lead author of the study. “To conduct electricity, the spiky particles have to physically touch one another. But during thermal expansion, polyethylene stretches. That causes the particles to spread apart, making the film nonconductive so that electricity can no longer flow through the battery.”

When the researchers heated the battery above 160 F (70 C), the polyethylene film quickly expanded like a balloon, causing the spiky particles to separate and the battery to shut down. But when the temperature dropped back down to 160 F (70 C), the polyethylene shrunk, the particles came back into contact, and the battery started generating electricity again.

“We can even tune the temperature higher or lower depending on how many particles we put in or what type of polymer materials we choose,” said Bao, who is also a professor, by courtesy, of chemistry and of materials science and engineering. “For example, we might want the battery to shut down at 50 C or 100 C.”

Reversible strategy

To test the stability of new material, the researchers repeatedly applied heat to the battery with a hot-air gun. Each time, the battery shut down when it got too hot and quickly resumed operating when the temperature cooled.

“Compared with previous approaches, our design provides a reliable, fast, reversible strategy that can achieve both high battery performance and improved safety,” Cui said. “This strategy holds great promise for practical battery applications.”

Here’s a link to and a citation for the paper,

Fast and reversible thermoresponsive polymer switching materials for safer batteries by Zheng Chen, Po-Chun Hsu, Jeffrey Lopez, Yuzhang Li, John W. F. To, Nan Liu, Chao Wang, Sean C. Andrews, Jia Liu, Yi Cui, & Zhenan Bao. Nature Energy 1, Article number: 15009 (2016) doi:10.1038/nenergy.2015.9 Published online: 11 January 2016

This paper appears to be open access.

Kevlar-wrapped batteries on an airplane

Researchers at the University of Michigan are not trying to bulletproof lithium-ion batteries with kevlar. Rather, they’re trying prevent fires. From a Jan. 27, 2015 University of Michigan news release (also on EurekAlert),

New battery technology from the University of Michigan should be able to prevent the kind of fires that grounded Boeing 787 Dreamliners in 2013.

The innovation is an advanced barrier between the electrodes in a lithium-ion battery.

Made with nanofibers extracted from Kevlar, the tough material in bulletproof vests, the barrier stifles the growth of metal tendrils that can become unwanted pathways for electrical current.

A U-M team of researchers also founded Ann Arbor-based Elegus Technologies to bring this research from the lab to market. Mass production is expected to begin in the fourth quarter 2016.

“Unlike other ultra strong materials such as carbon nanotubes, Kevlar is an insulator,” said Nicholas Kotov, the Joseph B. and Florence V. Cejka Professor of Engineering. “This property is perfect for separators that need to prevent shorting between two electrodes.”

Lithium-ion batteries work by shuttling lithium ions from one electrode to the other. This creates a charge imbalance, and since electrons can’t go through the membrane between the electrodes, they go through a circuit instead and do something useful on the way.

But if the holes in the membrane are too big, the lithium atoms can build themselves into fern-like structures, called dendrites, which eventually poke through the membrane. If they reach the other electrode, the electrons have a path within the battery, shorting out the circuit. This is how the battery fires on the Boeing 787 are thought to have started.

“The fern shape is particularly difficult to stop because of its nanoscale tip,” said Siu On Tung, a graduate student in Kotov’s lab, as well as chief technology officer at Elegus. “It was very important that the fibers formed smaller pores than the tip size.”

While the widths of pores in other membranes are a few hundred nanometers, or a few hundred-thousandths of a centimeter, the pores in the membrane developed at U-M are 15-to-20 nanometers across. They are large enough to let individual lithium ions pass, but small enough to block the 20-to-50-nanometer tips of the fern-structures.

The researchers made the membrane by layering the fibers on top of each other in thin sheets. This method keeps the chain-like molecules in the plastic stretched out, which is important for good lithium-ion conductivity between the electrodes, Tung said.

“The special feature of this material is we can make it very thin, so we can get more energy into the same battery cell size, or we can shrink the cell size,” said Dan VanderLey, an engineer who helped found Elegus through U-M’s Master of Entrepreneurship program. “We’ve seen a lot of interest from people looking to make thinner products.”

Thirty companies have requested samples of the material.

Kevlar’s heat resistance could also lead to safer batteries as the membrane stands a better chance of surviving a fire than most membranes currently in use.

While the team is satisfied with the membrane’s ability to block the lithium dendrites, they are currently looking for ways to improve the flow of loose lithium ions so that batteries can charge and release their energy more quickly.

For anyone unfamiliar with the Boeing 787 Dreamliner fires, caused by lithium-ion batteries, these Boeing fires and others are mentioned in my May 29, 2013 post (Life-cycle assessment for electric vehicle lithium-ion batteries and nanotechnology is a risk analysis) scroll down about 50% of the way.

As for the research paper, here’s a link and a citation,

A dendrite-suppressing composite ion conductor from aramid nanofibres by Siu-On Tung, Szushen Ho, Ming Yang, Ruilin Zhang, & Nicholas A. Kotov. Nature Communications 6, Article number: 6152 doi:10.1038/ncomms7152 Published 27 January 2015

This paper is behind a paywall.

You can find out more about Elegus Technologies here.

Toughening up your electronics: kevlar with a tungsten fibre coating

An upcoming presentation at the 61st annual AVS Conference (Nov. 9 – 14, 2014) features a fibre made of tungsten that when added to kevlar offers the possibility of ‘tough’ electronics. From an Oct. 31, 2014 news item on Nanowerk (Note: A link has been removed),

A group of North Carolina State University researchers is exploring novel ways to apply semiconductor industry processes to unique substrates, such as textiles and fabrics, to “weave together” multifunctional materials with distinct capabilities.

During the AVS 61st International Symposium & Exhibition, being held November 9-14, 2014, in Baltimore, Maryland, the researchers will describe how they were able to “weave” high-strength, highly conductive yarns made of tungsten metal on Kevlar — aka body armor material — by using atomic layer deposition (ALD), a process commonly used for producing memory and logic devices.

An Oct. 28, 2014 AVS: Science & Technology of Materials, Interfaces, and Processing news release on Newswire, which originated the news item provides more details about this multifunctional material and a good description of atomic layer deposition (ALD),

“As a substrate, Kevlar was intriguing to us because it’s capable of withstanding the relatively high temperature (220°C) required by the ALD deposition process,” explains Sarah Atanasov, a Ph.D. candidate in the Biomolecular Engineering Department at North Carolina State University. “Kevlar doesn’t begin to degrade until it reaches nearly 400°C.”

The group selected ALD as a process because it allows them to deposit highly conformal films on nonplanar surfaces with nanometer-thickness precision. “This ensures that the entire surface of the yarn — made of nearly 600 fibers, each 12 microns in diameter — is evenly coated,” said Atanasov.

How does the ALD process work? It’s actually a cyclical process, which begins by exposing the substrate’s surface to one gas-phase chemical, in this case tungsten hexafluoride (WF6), followed by removal of any unreacted material. This is chased with surface exposure to a second gas-phase chemical, silane (SiH4), after which any unreacted material is once again removed.

By the end of the ALD cycle, the two chemicals have reacted to produce tungsten. “This is a self-limited process, meaning that a single atomic layer is deposited during each cycle — in this case ~5.5 Angstroms per cycle,” Atanasov said. “The process can be cycled through a number of times to achieve any specifically desired thickness. As a bonus, ALD occurs in the gas phase, so it doesn’t require any solution processing and is considered to be a more sustainable deposition technique.”

While weaving together multiple fabrics to combine multiple capabilities certainly isn’t new, characteristics such as high strength, high conductivity, and flexibility are frequently regarded as being mutually exclusive — so concessions are often made to get the most important one.

The work by Atanasov and colleagues shows, however, that ALD of tungsten on Kevlar yields yarns that are highly flexible and highly conductive, around 2,000 S/cm (“Siemens per centimeter,” a common unit used for conductivity). The yards are also within 90 percent of their original prior-to-coating tensile strength.

“Introducing well-established processes from one area into a completely new field can lead to some very interesting and useful results,” Atanasov noted.

The group’s tungsten-on-Kevlar yarns are expected to find applications in multifunctional protective electronics materials for electromagnetic shielding and communications, as well as erosion-resistant antistatic fabrics for space and automated technologies.

Presentation #MS+PS+TF-ThA4, “Multifunctional Fabrics via Tungsten ALD on Kevlar,” authored by Sarah Atanasov, B. Kalanyan and G.N. Parsons, will be at 3:20 p.m. ET on Thursday, Nov. 13, 2014.

Atanasov recently published a paper about another kevlar project where she worked to enhance its ‘stab resistance’ with a titanium dioxide/aluminum mixture as Anisha Ratan notes in her Sept. 12, 2014 article (Oxide armour offers Kevlar better stab resistance)  (excerpt from Ratan’s article for the Royal Society; Note: Links have been removed),

Scientists in the US have synthesised an ultrathin inorganic bilayer coating for Kevlar that could improve its stab resistance by 30% and prove invaluable for military and first-responders requiring multi-threat protection clothes.

Developed in 1965 by Stephanie Kwolek at DuPont, poly(p-phenylene terephthalamide) (PPTA), or Kevlar, is a para-aramid synthetic fiber deriving its strength from interchain hydrogen bonding. It finds use in flexible energy and electronic systems, but is most commonly associated with bullet-proof body armour.

However, despite its anti-ballistic properties, it offers limited cut and stab protection. In a bid to overcome this drawback, Sarah Atanasov, from Gregory Parsons’ group at North Carolina State University, and colleagues, have developed a TiO2/Al2O3 bilayer that significantly enhances the cut resistance of Kevlar fibers. The coating is added to Kevlar by atomic layer deposition, a low temperature technique with nanoscale precision.

Unfortunately the team’s research paper is no longer open access but you can find a link to it from Ratan’s article.