Tag Archives: Kiran Jacob

Graphene coatings in Malaysia

This October 28, 2024 article by Kiran Jacob for The Edge Malaysia is designed to boost businesses but, happily, it also provides some insight into how graphene is being commercialized in Malaysia,

This article first appeared in Digital Edge, The Edge Malaysia Weekly on October 28, 2024 – November 3, 2024

Ominent Sdn Bhd, through its flagship brand IGL Coatings, offers a seemingly straightforward product: cleaning, maintenance and protection solutions for automotive, marine and industrial coatings. But to founder Keong Chun Chieh, it is more than just the provider of a line of functional surface treatments; it’s a tech company. The secret? Nanotechnology and graphene.

What may appear as mere coatings are, in fact, intricate formulations engineered at the molecular level, designed to enhance durability, hydrophobicity and protection, says Keong. This makes the coatings more robust against physical wear and tear, and reduces their permeability to water, oxygen and other gases by filling microscopic voids and creating more impermeable surfaces.

“[Through nanotechnology], a surface that mimics a lotus leaf [is created], which is highly hydrophobic, results in a coating that repels water and dirt, and maintains a clean surface with minimal maintenance,” he says.

All these protect the coating — and the surface it is applied onto — from chemicals, corrosion, ultraviolet radiation and environmental degradation.

While its products can be applied to automotive, industrial and maritime coatings, Keong considers automotive coatings as a low-hanging fruit. This is why 70% of the company’s revenue comes from this sector.

Meanwhile, the main focus of the industrial sector — a market that is rapidly growing for IGL Coatings — is anti-corrosion coatings to prevent rust. The corrosion damages infrastructure and equipment that can lead to sudden failures such as building collapses.

Existing anti-corrosion coatings hinder any early detection of the deterioration. “[The products] that are in the market, are not supposed to rust, but you can’t see whether the rust is happening at the bottom [of the coating],” he says.

“When you visually can see it, it means that it is severely rusted and has cracked the coating and painting on the top.”

A transparent corrosion system enables early detection and repair, which then extends the lifespan of the asset and reduces the need for replacement, says Keong. Moreover, the utilisation of nanotechnology involving titanium dioxide, carbon nanotubes and diamond particles aids in achieving a structured surface at the nanoscale.

“The uniform dispersion optimises the surface energy and texture, which significantly enhances water repellency. The created nanostructure helps in forming a consistent and effective barrier against moisture,” he explains.

The incorporation of functionalised graphene improves the overall properties of the coating, adds Keong. “Graphene is an additive that supercharges some of the behaviour that I need.”

A sophisticated dispersion method is employed to ensure that graphene nanoplatelets and functionalised graphene, such as hydroxyl and carboxyl, are evenly distributed within the coating matrix.

“The hydroxyl and carboxyl groups facilitate better integration within the coating matrix, enhancing the coating’s strength, flexibility and resistance to environmental factors,” he says.

The incorporation of carbon dots into IGL Coatings’ formulations is also in the works. Carbon dots, a type of carbon-nano material composed of discrete and quasi-spherical nanoparticles, have several advantages. These include low cytotoxicity, good biocompatibility, stable chemical inertness, efficient light harvesting and outstanding photo-induced electron transfer.

IGL Coatings, which has over 40 automotive coating products, has an existing network of 5,000 installers in the automotive sector that it leverages to market its industrial solutions, says Keong. Installers who are familiar with the brand are then able to recommend the industrial coatings to their existing customers.

Its customers in this area include those in the mining, theme park and fishing industries. The application for the coatings include for buildings, material handling equipment, roofs, pillars and undercarriages of vehicles.

Keong aims to optimise existing technologies and reduce their environmental impact. For instance, the company has a high solids, zero volatile organic compounds solution to prevent battery corrosion in electric vehicles. It also has a coating for solar panels to reduce cleaning frequency and increase energy collection.

IGL Coatings has expanded to over 50 countries with a broad range of products in the automotive, marine and industrial sectors.

The company generated a total revenue of RM66.5 million from its inception in 2015 up to 2023. Last year, it generated a revenue of RM10.5 million. IGL Coatings recorded a 160% growth in revenue over the past three years. The Financial Times, in a joint study with Statista, ranked it as one of 500 top growth companies in Asia-Pacific in 2023.

The origin story for the coating is interesting too, from Jacob’s October 28, 2024 article,

Keong stumbled upon the idea for his company while working as an engineer. He was frustrated by the daunting prospect of having to clean the expensive lenses in his clients’ spectrometers every six months.

Due to its proximity to materials being burned, the lens in the spectrometer would quickly get dirty with carbon deposits and turn yellow. Cleaning it cost a couple of thousand ringgit.

Using his experience of working in his clients’ labs, Keong formulated a solution that he could apply onto the lens to clean it.

“I worked out a basic formulation and applied it onto the lens. It worked well and actually increased the performance of the lens and I didn’t need to change it anymore. I told my employers that the product could be sold as a solution to clean the instruments,” he recalls.

It had taken Keong about a year to develop the solution. He did this based on his knowledge about chemicals and by referencing scientific journals and reviewing safety data sheets for ingredient ideas.

But, his employers didn’t take to the idea as they wanted to sell more of the lenses, not less.

“I was a bit disappointed. [So] I took that [formulation] and [applied it on] my car windshield. It gave the same result [making the windshield] easier to clean [as it was hydrophobic and had long durability].”

That was his Eureka moment. When Keong researched such products on the market, he realised that the products available could only last for two to three weeks. His solution, on the other hand, could last up to nine months.

“I did a tweak [on the product] and started selling it as a solution to local users in Malaysia, and delved more into the industry. [In my mind], the market for this was, as long as there is a surface, it would require protection.”

At the heart of it all, Keong wants to provide products that are safe, as there is a lack of transparency and safety in detailing chemicals. He noticed that many workers were using the chemicals on a daily basis without wearing personal protective equipment and proper education on how to use them safely.

“The thing is, with chemicals, it’s not about feeling the pain [immediately]. It’s about what you are breathing in and what is getting absorbed into your skin. Five to 10 years later, you will feel it. As I studied more about it, [I found] there are a lot of chemicals that are carcinogenic,” he says.

IGL Coatings’ products do not contain heavy metals and are free from isocyanate, which is a common harmful chemical found in anti-corrosion products, explains Keong.

Additionally, he hopes that with access to public funds eventually, the company will be able to produce the materials for its products, instead of sourcing for them elsewhere.

Currently, the company sources nano-materials from larger companies and experiments to find the right combination. “IGL Coatings is like the chef. We cook the food and we [create] the dish. The materials and ingredients are purchased from the farmer who grows it … we find the best materials that are suitable and compatible. [From there] we form the formulation to produce the product we want. It’s all about trial and error.”

Some of the challenges faced during production are ensuring the nanoparticles remain stable within the coating formulation and are compatible with the other components. Furthermore, the properties of graphene, such as mechanical strength and conductivity, need to be retained after dispersion and incorporation into the coating.

High-quality graphene production is expensive, adds Keong. IGL Coatings identifies graphene derived from the by-products of other industries and repurposes waste materials into high-value nano-materials.

Its formulations are a trade secret and proprietary to avoid competitors from replicating them.

“When I did the formulation, I actually studied other patents [emphasis mine]. They list down the whole thing. [Based on the] patents [I learnt what to and what not to do]. If I were to list my formulations down for a patent, well-funded [companies] and [their] research and development chemists can read the article and come up with something immediately,” he says.

So, he used other companies’ patents and doesn’t want that to happen to his company. That’s certainly one approach to dealing with intellectual property.

In the end, I’m happy to have seen Jacob’s October 28, 2024 article and to have learned more about graphene commercialization in Malaysia.