Tag Archives: Kit Eaton

They is becoming more like us: Geminoid robots and robots with more humanlike movement

We will be proceeding deep into the ‘uncanny valley’, that place where robots looks so like humans, they make us uncomfortable. I have made a reference to the ‘uncanny valley’ in a previous posting that featured some Japanese dancing robots (October 18, 2010 posting [scroll down]). This is an order of magnitude more uncanny. See the video for yourself,

First test of the Geminoid DK. The nearly completed geminoid (twin robot) is operated by a human for the first time. Movements of the operator is reproduced in the robot. (from the description on Youtube)

Here’s a little more from a March 7, 2011 article by Katie Gatto on physorg.com,

The latest robot in the family of ultra-realistic androids, called the Geminoid series, is so realistic that it can actually be mistaken for the person it was designed to look like. The new bot, dubbed the Geminoid DK, was was created by robotics firm Kokoro in Tokyo and is now being housed at Japan’s Advanced Telecommunications Research Institute International in Nara. The robot was designed to look like Associate Professor Henrik Scharfe of Aalborg University in Denmark.

As for why anyone would want a robot that so closely resembled themselves, I can think of a few reasons but Scharfe has used this as an opportunity to embark on a study (from the March 7, 2011 article by Kit Eaton on Fast Company),

Scharfe is an associate professor at Aalborg University in Denmark and is director of the center for Computer-Mediated Epistemology, which pretty much explains what all this robotics tech is all about–Epistemology is the philosophical study of knowledge, centering on the question of what’s “true” knowledge versus “false” or “inadequate” knowledge. Scharfe intends to use the robot to probe “emotional affordances” between robots and humans, as well as “blended presence” (a partly digital, partly realistic way for people to telepresence themselves, demonstrated by weird prototypes like the Elfoid robot-phone we covered the other day). The device will also be used to look at cultural differences in how people interact with robots–for example in the U.S. robots may be perceived as threatening, or mere simple tools, but in Japan they’re increasingly accepted as a part of society.

Here’s a picture of the ‘real’ Scharfe with the ‘Geminoid’ Scharfe,

Image from Geminoid Facebook page

You can click through to the Geminoid Facebook page from here. Here’s more about Geminoid research (from the Geminoid DK website),

Introduction to Geminoid research

The first geminoid, HI-1, was created in 2005 by Prof. Hiroshi Ishiguro of ATR and the Tokyo-based firm, Kokoro. A geminoid is an android, designed to look exactly as its master, and is controlled through a computer system that replicates the facial movements of the operator in the robot.

In the spring of 2010, a new geminoid was created. The new robot, Geminoid-F was a simpler version of the original HI-1, and it was also more affordable, making it reasonable to acquire one for humanistic research in Human Robot Interaction.

Geminoid|DK will be the first of its kind outside of Japan, and is intended to advance android science and philosophy, in seeking answers to fundamental questions, many of which that have also occupied the Japanese researchers. The most important questions are:

– What is a human?
– What is presence?
– What is a relation?
– What is identity?

If that isn’t enough, there’s research at Georgia Tech (US) being done on how make to robots move in a more humanlike fashion (from the March 8, 2011 article by Kit Eaton on Fast Company),

Which is where research from Georgia Tech comes in. Based on their research droid Simon who looks distinctly robotic with a comedic head and glowing “ears,” a team working in the Socially Intelligent Machines Lab has been trying to teach Simon to move like humans do–forcing less machine-like gestures from his solid limbs. The trick was to record real human subjects performing a series of moves in a motion-capture studio, then taking the data and using it to program Simon, being careful (via a clever algorithm) to replicate the fluid multiple-joint rotations a human body does when swinging a limb between one position and the next, and which robot movements tend to avoid.

Then the team got volunteers to observe Simon in action, and asked them to identify the kinds of movements he was making. When a more smooth, fluid robot movement was made, the volunteers were better at identifying the gesture compared to a more “robotic” movement. To double-check the algorithm’s effectiveness the researchers then asked the human volunteers to mimic the gestures they thought the robot was making, tapping into the unconscious part of their minds that recognize human tics: And again, the volunteers were better at correctly mimicking the gesture when the human-like algorithm was applied to Simon’s moves.

Why’s this research important? Because as robots become increasingly a part of every day human life, we need to trust them and interact with them normally. Just as other research tries to teach robots to move in ways that can’t hurt us, this work will create robots that move in subtle ways to communicate physically with nearby people, aiding their incorporation into society. In medical professional roles, which are some of the first places humanoid robots may find work, this sort of acceptance could be absolutely crucial.

It seems that researchers believe that the ‘uncanny valley’ doesn’t necessarily have to exist forever and at some point, people will accept humanoid robots without hesitation. In the meantime, here’s a diagram of the ‘uncanny valley’,

From the article on Android Science by Masahiro Mori (translated by Karl F. MacDorman and Takashi Minato)

Here’s what Mori (the person who coined the term) had to say about the ‘uncanny valley’ (from Android Science),

Recently there are many industrial robots, and as we know the robots do not have a face or legs, and just rotate or extend or contract their arms, and they bear no resemblance to human beings. Certainly the policy for designing these kinds of robots is based on functionality. From this standpoint, the robots must perform functions similar to those of human factory workers, but their appearance is not evaluated. If we plot these industrial robots on a graph of familiarity versus appearance, they lie near the origin (see Figure 1 [above]). So they bear little resemblance to a human being, and in general people do not find them to be familiar. But if the designer of a toy robot puts importance on a robot’s appearance rather than its function, the robot will have a somewhat humanlike appearance with a face, two arms, two legs, and a torso. This design lets children enjoy a sense of familiarity with the humanoid toy. So the toy robot is approaching the top of the first peak.

Of course, human beings themselves lie at the final goal of robotics, which is why we make an effort to build humanlike robots. For example, a robot’s arms may be composed of a metal cylinder with many bolts, but to achieve a more humanlike appearance, we paint over the metal in skin tones. These cosmetic efforts cause a resultant increase in our sense of the robot’s familiarity. Some readers may have felt sympathy for handicapped people they have seen who attach a prosthetic arm or leg to replace a missing limb. But recently prosthetic hands have improved greatly, and we cannot distinguish them from real hands at a glance. Some prosthetic hands attempt to simulate veins, muscles, tendons, finger nails, and finger prints, and their color resembles human pigmentation. So maybe the prosthetic arm has achieved a degree of human verisimilitude on par with false teeth. But this kind of prosthetic hand is too real and when we notice it is prosthetic, we have a sense of strangeness. So if we shake the hand, we are surprised by the lack of soft tissue and cold temperature. In this case, there is no longer a sense of familiarity. It is uncanny. In mathematical terms, strangeness can be represented by negative familiarity, so the prosthetic hand is at the bottom of the valley. So in this case, the appearance is quite human like, but the familiarity is negative. This is the uncanny valley.

It’s a very interesting interpretation of the diagram. The article is definitely worth reading  although you won’t find a reference to the zombies which represent the bottom of the ‘uncanny valley’. Perhaps there’s something about them in the original article printed in Energy, (1970) 7(4), pp. 33-35?

ETA April 12, 2011: Someone sent me a link to this March 8, 2011 posting by Reid of the Analytic Design Group. It offers another perspective, this one being mildly cautionary.

Robots, pain, and dance

There was a time many years ago when I knew and interacted with a lot of dancers (mostly in the modern genre) and they often talked about pain. It seems to be a feature of any field where you push your body, e.g., sports, dance, combat, etc. This is somewhat unrelated to the post I’d planned on robots and pain but, this morning I found some information on robots and dance in addition to the previous material on pain and that old memory about dancers and pain popped up out of nowhere.

The article which started this ball rolling in the first place is by Kit Eaton for Fast Company and is titled, Why Robots Are Learning Our Pain Threshold (from the article),

How do you teach a robot how not to hurt humans? Train one to hit someone in an experiment, to find our pain limit. Sounds infinitely sensible, doesn’t it? Until you remember your dystopian sci-fi and consider the implications. [emphasis mine]

The robot experiments are taking place at the lab of Professor Borut Povse in Slovenia. (Yes, he is probably well aware that he sounds like a Bond villain.) He’s been thinking about the future of human-machine interactions, when our daily lives involve working much more closely with robots than we do now. …

Povse spotted a key problem with this scenario: Machines don’t know how much energy in any given impact would result in pain to a person. Or to put it in laymen’s terms, robots don’t know their own strength. Hence he came up with an experiment to solve the problem. Somewhere in Solvenia there’s a robot punching volunteers at a variety of energies, with blunt or sharper “hammers,” so it can work out where the pain threshold is.

The plan is to use the data to inform the design of robots that will operate in close proximity to humans, so that they don’t make sudden movements with too much energy.

As Eaton goes on to note, robots could also be used to hurt/torture in very precise ways that could evade detection. These ethical issues are raised in the article with a suggestion that ethical issues around another ‘robotic programme’, the Predator drone programme (Predator drones are remotely controlled, unmanned planes) have not been handled as well as they could be. Eaton specifically cites an article by Jane Mayer for The New Yorker Magaine (The Predator War; What are the risks of the C.I.A.’s covert drone program?). If you’re interested in these kinds of issues please do read the article. As I don’t want to copy Mayer’s entire piece into this posting I’m going to focus on the pragmatic aspects of the problems  discussed (from the article),

David Kilcullen, a counter-insurgency warfare expert who has advised General David Petraeus in Iraq, has said that the propaganda costs of drone attacks have been disastrously high. Militants have used the drone strikes to denounce the Zardari government—a shaky and unpopular regime—as little more than an American puppet. A study that Kilcullen co-wrote for the Center for New American Security, a think tank, argues, “Every one of these dead non-combatants represents an alienated family, a new revenge feud, and more recruits for a militant movement that has grown exponentially even as drone strikes have increased.” His co-writer, Andrew Exum, a former Army Ranger who has advised General Stanley McChrystal in Afghanistan, told me, “Neither Kilcullen nor I is a fundamentalist—we’re not saying drones are not part of the strategy. But we are saying that right now they are part of the problem. If we use tactics that are killing people’s brothers and sons, not to mention their sisters and wives, we can work at cross-purposes with insuring that the tribal population doesn’t side with the militants. Using the Predator is a tactic, not a strategy.”

Exum says that he’s worried by the remote-control nature of Predator warfare. “As a military person, I put myself in the shoes of someone in FATA”—Pakistan’s Federally Administered Tribal Areas—“and there’s something about pilotless drones that doesn’t strike me as an honorable way of warfare,” he said. [emphasis mine] “As a classics major, I have a classical sense of what it means to be a warrior.” An Iraq combat veteran who helped design much of the military’s doctrine for using unmanned drones also has qualms. He said, “There’s something important about putting your own sons and daughters at risk when you choose to wage war as a nation. We risk losing that flesh-and-blood investment if we go too far down this road.”

It seems to me that from a practical perspective, the use of drones (according to the military strategists quoted in the article) is turning neutral parties into hostile parties at a greater rate than standard warfare tactics would accomplish. At least one of these advisors is also implying that the morale of the parties using the drones is at risk if the means of warfare (the drones) are viewed as less than honourable.

On a possibly less disturbing note, Kit Eaton has another Fast Company article, Robots Dance Their Way Into Uncanny Valley, Next Stop: Your Heart, about a recent demonstration of the HRP-C4 robot. From the article,

Now rewind it, squint a little, and watch again: You’ll almost be able to mistake the ‘bot for one of the real dancers on the stage. Uncanny valley, ladies and gentlemen–HRP4C is busy dancing her way in here, and if the trend continues we can imagine future HRPx units dancing out the other side with a realism and finesse that may even be enough to move you emotionally if you saw them performing live.

Here’s one of the videos available (you can find at least one more on YouTube) but this gives you the best grasp of the ‘uncanny valley’,

For those who like definitions, here’s one for ‘uncanny valley’ from a Wikipedia essay,

The uncanny valley is a hypothesis regarding the field of robotics.[2] The theory holds that when robots and other facsimiles of humans look and act almost like actual humans, it causes a response of revulsion among human observers. The “valley” in question is a dip in a proposed graph of the positivity of human reaction as a function of a robot’s lifelikeness.

I think that’s enough for robots and disturbing thoughts about ethics and ‘uncanny valleys’.

Graphene, the Nobel Prize, and levitating frogs

As you may have heard, two  scientists (Andre Geim and Konstantin Novoselov) who performed groundbreaking research on graphene [Nov. 29, 2010: I corrected this entry Nov. 26, 2010 which originally stated that these researchers discovered graphene] have been awarded the 2010 Nobel Prize for Physics. In honour of their award, the journal, Nature Materials, is giving free access to  a 2007 article authored by the scientists. From the news item on Nanowerk,

The 2007 landmark article in Nature Materials “The rise of graphene” by the just announced winners of the 2010 Nobel prize in physics, Andre Geim and Kosta Novoselov, has now been made available as a free access article.

Abstract:

Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here.

Here’s a description of the scientists and their work from the BBC News article by Paul Rincon,

Prof Geim, 51, is a Dutch national while Dr Novoselov, 36, holds British and Russian citizenship. Both are natives of Russia and started their careers in physics there.

The Nobels are valued at 10m Swedish kronor (£900,000; 1m euros; $1.5m).

They first worked together in the Netherlands before moving to the UK. They were based at the University of Manchester when they published their groundbreaking research paper on graphene in October 2004.

Dr Novoselov is among the youngest winners of a prize that normally goes to scientists with decades of experience.

Graphene is a form of carbon. It is a flat layer of carbon atoms tightly packed into a two-dimensional honeycomb arrangement.

Because it is so thin, it is also practically transparent. As a conductor of electricity it performs as well as copper, and as a conductor of heat it outperforms all other known materials.

The unusual electronic, mechanical and chemical properties of graphene at the molecular scale promise ultra-fast transistors for electronics.

Some scientists have predicted that graphene could one day replace silicon – which is the current material of choice for transistors.

It could also yield incredibly strong, flexible and stable materials and find applications in transparent touch screens or solar cells.

Geim and Novoselov first isolated fine sheets of graphene from the graphite which is widely used in pencils.

A layer of graphite 1mm thick actually consists of three million layers of graphene stacked on top of one another.

The technique that Geim and Novoselov used to create the first graphene sheets both amuses and fascinates me (from the article by Kit Eaton on the Fast Company website),

The two scientists came up with the technique that first resulted in samples of graphene–peeling individual atoms-deep sheets of the material from a bigger block of pure graphite. The science here seems almost foolishly simple, but it took a lot of lateral thinking to dream up, and then some serious science to investigate: Geim and Novoselo literally “ripped” single sheets off the graphite by using regular adhesive tape. Once they’d confirmed they had grabbed micro-flakes of the material, Geim and Novoselo were responsible for some of the very early experiments into the material’s properties. Novel stuff indeed, but perhaps not so unexpected from a scientist (Geim) who the Nobel Committe notes once managed to make a frog levitate in a magnetic field.

I’ll get to the levitating frog in a minute but first the bit about using regular adhesive tape to peel off single sheets only atoms thick of graphite from a larger block of the stuff reminds me of how scientists at Northwestern University are using shrinky dinks (a child’s craft material) to create large scale nanopatterns cheaply (my Aug. 16, 2010 posting).

It’s reassuring to me that despite all of the high tech equipment that costs the earth, scientists still use fairly mundane, inexpensive objects to do some incredibly sophisticated work. The other thing I find reassuring is that Novoselov probably was not voted ‘most likely to be awarded a Nobel Prize’. Interestingly, Novoselov’s partner, Geim, was not welcomed into a physics career with open arms. From the news item on physoorg.com,

Konstantin Novoselov, the Russian-born physicist who shared this year’s Nobel prize, struggled with physics as a student and was awarded a handful of B grades, his university said Wednesday.

The Moscow Physics and Technology University (MFTI) posted report cards on its website for Novoselov, who at 36 won the Nobel prize for physics with his research partner Andre Geim.

The reports reveal that he gained a handful of B grades in his term reports for theoretical and applied physics from 1991 to 1994.

He was also not strong on physical education — a compulsory subject at Russian universities — gaining B grades. And while he now lives in Britain, he once gained a C grade for English.

The university also revealed documents on Nobel prize winner Geim, who studied at the same university from 1976 to 1982. His brilliant academic career was only marred by a few B-grades for Marxist political economy and English.

Geim was turned down when he applied first to another Moscow university specialising in engineering and physics, and worked as a machinist at a factory making electrical instruments for eight months.

Given the increasing emphasis on marks, in Canadian universities at least, I noticed that Novoselov was not a straight-A student. As for Geim, it seems the fact that his father was German posed a problem. (You can find more details in the physorg.com article.)

As for levitating frogs, I first found this information in particle physicist Jon Butterworth’s October 5, 2010 posting on his Guardian blog,

Geim is also well known (or as his web page puts it “notorious”) for levitating frogs. This is a demonstration of the peculiar fact that all materials have some magnetism, albeit very weak in most cases, and that if you put them in a high enough magnetic field you can see the effects – and make them fly.

Why frogs? Well, no frogs were harmed in the experiments. But also, magnetism is a hugely important topic in physics that can seem a little dry to students …

I hunted down a video of the levitating frog on youtube,

As a particle physicist, Butterworth notes that the graphene work is outside his area of expertise so if you’re looking for a good, general explanation with some science detail added in for good measure, I’d suggest reading his succinct description.

E-readers: musings on publishing and the word (part 1 of 3)

There’ve been a lot of online articles about e-readers in the last few weeks in particular as debate rages as to whether or not this technology will be viable. It got me to thinking about e-literature, e-readers, e-books, e-paper, e-ink, e-publishing, literacy and on and on. I’ve divided my musings (or attempts to distinguish some sort of pattern within all these contradictory developments) into three parts.This first part is more concerned with the technology/business end of things.

Samsung just announced that it was moving out of the e-reader business. From an article (Aug. 25 2010) by Kit Eaton in Fast Company,

Need any evidence that the dedicated e-reader is destined to become a mere niche-appeal device? Here you go: Tech giant Samsung is ditching its clever e-paper business after years of clever successes and a ton of research into what may be the future for the technology.

Back in 2009 at CES Samsung teased its good-looking Kindle-challenging e-reader, the Papyrus, which used Samsung’s own proprietary electronic ink system for the display. At CES this year it followed up with its “E6” device, with a rumored cost of $400. Samsung had been shaking the e-paper world since late in 2008 with numerous e-paper announcements, including revealing a color 14-inch flexible e-paper display as long ago as October 2008, which used carbon nanotube tech to achieve its sharp image quality.

Now it seems that revolutions in the e-reader market (namely that odd race-to-the-bottom in pricing over quality of service) combined with revolutions in the tablet PC market (which means the iPad, which can do a million more things than the Papyrus or E6 could) and pricing that neatly undercuts Samsung’s planned price points has resulted in Samsung killing its e-paper research and development.

According to Eaton, Samsung hasn’t entirely withdrawn from the e-reader business; the company will be concentrating on its LCD-based systems instead. Samsung is also releasing its own tablet, Galaxy Tab as competition to Apple’s iPad,  in mid-September 2010 (Sept. 2, 2010 news item at Financial Post website).

Dan Nosowitz also writing for Fast Company presents an opinion (Aug. 12, 2010 posting) which sheds light on why Samsung is focusing on LCD -based readers over e-ink-based readers such as Kindle and Nook,

E-ink is one of the more unusual technologies to spring up in recent years. It’s both more expensive and less versatile than LCD, a long-established product seen in everything from iPods to TVs. It’s incredibly specific, but also incredibly good at its one job: reading text.

E-ink e-book readers like the Amazon Kindle and Barnes & Noble Nook offer, in the opinion of myself and many others, the best digital book-reading experience available. …

E-ink will die mostly because it fundamentally can’t compete with tablets. That’s why announcements like today’s, in which E-Ink (it’s a company as well as that company’s main–or only?–product) claimed it will release both a color and a touchscreen version by early 2011, is so confusing. But color and interface are hardly the only obstacles e-ink has to overcome to compete with tablets: Its refresh rates make video largely impossible, it can’t cram in enough pixels to make still photos look any more crisp than a day-old McDonald’s french fry, and, most damnably, it’s still extremely expensive.

Amazon showed that the way to make e-book readers sell like blazes is to lower the price to near-impulse-item territory. Its new $140 Kindle sold out of pre-orders almost immediately, and there’s been more buzz around the next version than can be explained through hardware upgrades alone. It’s a great reader, don’t get me wrong, but its incredible sales numbers are due in large part to the price cut.

That comment about the price cut for the e-reader as being key to its current success can certainly be borne out by this article E-reader faceoff: Kindle or Nook? Here’s a comparison by Mark W. Smith on physorg.com

There’s a titanic battle brewing in the e-reader market. The Amazon Kindle and Barnes & Noble Nook are leaving competitors in the dust this summer and are locked in a war that has dropped prices by more than half in just a year.

and with this article E-readers gain steam with lower prices and new models by Christine Matthias on Salon.com,

The Wall Street Journal and Tech News Daily have a few things you should consider before wading into the increasingly crowded e-book market, as well as new research that reveals folks with an e-reader tend to read a whole lot more than ever before. The Barnes and Noble Nook is trying to wrestle some market share away from the big boys, and Sharper Image just announced a new e-reader called the Literati that hopes to, maybe, nail down more male readers? It’s got a color screen, in any event.

Or you could get a library card. It’s free.

Addy Dugdale at the Fast Company site in her article, Borders Cuts E-Reader Prices as Kindle Goes to Staples, has this to say,

Borders has slashed the prices of E-Readers Kobo and Aluratek by $20, illustrating just how meh they’ve become in the tech world. The price drop is nothing new–both the Kindle and Nook, Amazon and Barnes & Noble’s market leaders, have seen their prices slashed recently, and they’re thought to be the most exciting brands in the sector. But who does the news bode worst for?

But most of all, this news proves that, as my colleague Kit Eaton pointed out a few months back, this is about as good as it gets for the e-Reader. It’s not quite dead, but it’s looking a bit peaky, like. The reason is, of course, the tablet.

There are efforts that may revive e-readers/e-books/e-paper such as this, a new development in the e-paper/e-reader market was announced in a news item on Azonano (Aug.27, 2010),

The FlexTech Alliance, focused on developing the electronic display and the flexible, printed electronics industry supply chain, today announced a contract award to Nyx Illuminated Clothing Company to develop a foldable display constructed from a panel of multiple e-paper screens.

Applications for this type of product are numerous. For consumer electronics, a foldable display can increase the size of e-reader screens without increasing the device foot-print. In military applications, maps may be read and stored more easily in the field. Medical devices can be enhanced with more accessible and convenient patient charts.

“To enable this unique technology to work, our engineers will develop circuitry to simultaneously drive six separate e-paper screens as one single display,” described John Bell, project manager for Nyx. “The screen panels will be able to be folded up into the area of a single panel or unfolded to the full six panel area on demand.”

Convenience is always important and a flexible screen that I could fold up and fits easily into a purse or a pocket offers  a big advantage over an e-book or an iPad (or other tablet device). I’d be especially interested if there’s a sizing option, e.g., being able to view in 1-screen, 2-screen, 3-screen and up to 6-screen options.

As for the debate about tablets vs e-readers such as Kindle, Nook, and their brethren, I really don’t know. E-readers apparently offer superior reading experiences but that presupposes interest in reading will be maintained. Something like Mongoliad (as described in my Sept. 7, 2010 posting), for example, would seem ideally suited to a tablet environment where the reader becomes a listener and/or a participant in the story environment.

Tomorrow: Part 2 where I look at the reading and writing experience in this digital world.

Mongoliad launch

I made mention of the Mongoliad writing project when it was first announced in late spring (my May 31, 2010 posting). The project features Neal Stepheonson and Greg Bear, both well known science fiction writers (in fact, both have written novels that incorporate nanotechnology), amongst a cast of other writers, artists, techno types, and others. They’re forging into 21st century publishing with a model that is lifted in part from the 19th century, stories produced serially and available by subscription, but made available with contemporary technology, the interrnet. I guess you could call it ‘steam punk publishing’.

Last week, a free preview was made available and registration was opened. Here’s the view from Andrew Leonard at Salon.com,

Behold the power of branding! Chapter I of “The Mongoliad” launched online this week, and I plunked down $9.99 for a year’s subscription, sight unseen, simply because Neal Stephenson’s name was attached. …

But after spending some time with the site and reading the first chapter, it is not exactly clear to me exactly how much Stephenson is baked into this project. He is the co-founder and chairman of Subutai, the start-up that is producing “The Mongoliad.” But the content-creation is a group effort. This serial digital novel is being produced online by a team of writers , artists, hackers and sword-fighting geeks — another big name involved is Greg Bear, also a veteran science fiction author. …

“The Mongoliad” is supposed to be more than “just” a book. Eventually the intention is to incorporate multimedia offerings, along with the hypertext-branching contributions of a user community extending far beyond the core team.

Leonard goes on to express his hope that Mongoliad will be a grand adventure. He really is a Stephenson fan and seems to be genuinely looking forward to reading this experiment in publishing/social media enhancing/serializing a novel. Kit Eaton at Fast Company (Neal Stephenson’s Novel-Redefining Novel, “The Mongoliad,” Launches, Online)  is another fan,

Ghengis Khan shook up the world in the 12th Century, and now in the 21st Century Neal Stephenson’s novel about him may shake up the publishing world: It’s partly interactive, partly social media, and wholly digital.

The Mongoliad promises to be unlike any other book ever written. For starters it’s written, in part, by Neal Stephenson, whose ideas in earlier novels like Snow Crash and The Diamond Age have contributed to many modern marvels like Google Earth and augmented reality. When you learn sci-fi writer Greg Bear is contributing to the team effort too, it makes the whole thing even more promising.

The innovation in The Mongoliad isn’t in its team writing effort, however: It’s in the entire concept of a serialized, dynamic, digital “book” that includes video, imagery, music, and background articles among the text of the storyline and comes with a social media companion, with which fans/readers can comment and interact.

In fact it looks as if they are incorporating fan fiction into their overall plan. If you go to the Mongoliad website, you are encouraged to add your stories and artwork to the site.  This is from their ‘terms of service’,

Contributor Submissions

1. Policy. We welcome the submission of text, stories, vignettes, paragraphs, concepts, characters, ideas, poems, songs, images, animations, or interactive features submitted by registered contributors for potential publication on the Site (“Contributor Submissions”). Subutai grants you a limited, non-exclusive, non-transferable and revocable license to modify, broadcast, and transmit Content solely in order to create and submit Contributor Submissions to Subutai.

You understand that whether or not such Contributor Submissions are published, Subutai cannot guarantee proper attribution with respect to any submissions because of the interactive nature of the Site.

It’ll be interesting to see whether or not this works purely from the perspective of its business model. As for the story itself, I’m not loving it so far.  First, a précis. It’s the thirteenth century in Europe and the Mongolians have a conquered a chunk of it. (Apparently, they did conquer a good chunk by 1241 and were about to conquer the rest when Ögedei Khan, then current Mongol ruler, died and their general,  Subitai, according to custom had to return to Mongolis.  See: Wikipedia essay)

In Mongoliad, there is no withdrawal of the Mongol forces and they are poised to sweep Europe meanwhile a small band of European knights gather to fight (from the Mongoliad Welcome page),

It’s spring of 1241, and the West is shitting its pants (that’s “bewraying its kecks” for you medieval time-travelers).

The Mongol takeover of Europe is almost complete. The hordes commanded by the sons of Genghis Khan have swept out of their immense grassy plains and ravaged Russia, Poland, and Hungary… and now seem poised to sweep west to Paris and south to Rome. King and pope and peasant alike face a bleak future—until a small band of warriors, inheritors of a millennium-old secret tradition, set out to probe the enemy.

Their leader, the greatest knight of their order, will set his small group of specially trained warriors on a perilous eastern journey. They will be guided by an agile, elusive, and sharp-witted adolescent girl, who believes the master’s plan is insane. But this small band is the West’s last, best hope to turn aside the floodtide of the violent genius of the Steppes kingdoms.

In the preview chapter (which is free), we meet Haakon who’s obviously one of the small band of warriors fighting for Europe. At this point,  he’s engaging in some sort of sword fighting duel in a Mongol arena while the crowds roar for blood.  We never learn much more about him or any of the other characters we’re introduced to as the preview is designed to draw us into buying a subscription so we can find out more.  I’m not a big fan of the writing that I see in the preview,

Haakon wanted to roar with anger, but it came out as a strangled laugh. “I am about to do battle with a demon,” he complained, “and you want me to–”

“It’s no demon,” Brother Rutger said, and spat on the loose ocher ground that had been tracked down the tunnel on the boots of surviving combatants. “It’s a man dressed as one.” He rammed the helm down onto Haakon’s head and slapped him on the ass. Even through surcoat, chain mail, gambeson, and drawers, the impact came through solidly. “Oh yes,” he added, “and the Red Veil. We would also like to know what is on the other side.”

Haakon grunted as he adjusted the helmet to suit him. The mysterious Veil. He might have seen it several weeks ago when a group led by the physician Raphael had been sent to retrieve Illarion, the ailing Ruthenian.

Now, their party had divided again, and Feronantus and his team were off on their secret mission–while Haakon and the rest of the Shield-Brethren remained to compete against the champions of the Mongol Empire.

Rutger put his hand on Haakon’s shoulder. They regarded each other silently. Saying goodbye would be worse than useless, since Rutger and the others would see it as a premature admission of defeat, and it might demoralize them. Haakon knew he would be back among them in less time than it took to run out to the gutter and take a shit.

I also have some questions about the politics of it all. Here are a couple pictures from the site, Haakon first,

Art by Jamie Jones (from Mongoliad site)

And here’s one of the two Mongolian thug images currently available,

Concept art from Aleksi Briclot (from Mongoliad site)

This is just the beginning of the series and I’m hoping they head away from seems to be a pretty standard storyline where pretty, blond, white people struggle and eventually turn the tide against a demonic, dark-haired and darker-skinned people.

Emotions and robots

Two new robots (the type that can show their emotions, more or less) have recently been introduced according to an article by Kit Eaton titled Kid and Baby Robots Get Creepy Emotional Faces on Fast Company. From the article,

The two bots were revealed today by creators the JST Erato Asada Project–a research team dedicated to investigating how humans and robots can better relate to each other in the future and so that robots can learn better (though given the early stages of current artificial intelligence science, it’s almost a case of working out how humans can feel better about interacting with robots).

..

The first is M3-Kindy, a 27-kilo machine with 42 motors and over a hundred touch-sensors. He’s about the size of a 5-year-old child, and can do speech recognition, and machine vision with his stereoscopic camera eyes. Kindy’s also designed to be led around by humans holding its hand, and can be taught to manipulate objects.

But it’s Kindy’s face that’s the freakiest bit. It’s been carefully designed so that it can portray emotions. That’ll undoubtedly be useful in the future, when, for instance, having more friendly, emotionally attractive robot carers look after elderly people and patients in hospitals is going to be important.

… Noby will have you running out of the room. It’s a similar human-machine interaction research droid, but is meant to model a 9-month-old baby, right down to the mass and density of its limbs and soft skin.

Do visit the article to see the images of the two robots and read more.

nanoBIDS; military robots from prototype to working model; prosthetics, the wave of the future?

The Nanowerk website is expanding. From their news item,

Nanowerk, the leading information provider for all areas of nanotechnologies, today added to its nanotechnology information portal a new free service for buyers and vendors of micro- and nanotechnology equipment and services. The new application, called nanoBIDS, is now available on the Nanowerk website. nanoBIDS facilitates the public posting of Requests for Proposal (RFPs) for equipment and services from procurement departments in the micro- and nanotechnologies community. nanoBIDS is open to all research organizations and companies.

I checked out the nanoBIDS page and found RFP listings from UK, US (mostly), and Germany. The earliest are dated Jan.25, 2010 so this site is just over a week old and already has two pages.

The Big Dog robot (which I posted about briefly here) is in the news again. Kit Eaton (Fast Company) whose article last October first alerted me to this device now writes that the robot is being put into production. From the article (Robocalypse Alert: Defense Contract Awarded to Scary BigDog),

The contract’s been won by maker Boston Dynamics, which has just 30 months to turn the research prototype machines into a genuine load-toting, four-legged, semi-intelligent war robot–“first walk-out” of the newly-designated LS3 is scheduled in 2012.

LS3 stands for Legged Squad Support System, and that pretty much sums up what the device is all about: It’s a semi-autonomous assistant designed to follow soldiers and Marines across the battlefield, carrying up to 400 pounds of gear and enough fuel to keep it going for 24 hours over a march of 20 miles.

They have included a video of the prototype on a beach in Thailand and as Eaton notes, the robot is “disarmingly ‘cute'” and, to me, its legs look almost human-shaped, which leads me to my next bit.

I found another article on prosthetics this morning and it’s a very good one. Written by Paul Hochman for Fast Company [ETA March 23, 2022: an updated version of the article is now on Genius.com], Bionic Legs, iLimbs, and Other Super-Human Prostheses delves further into the world where people may be willing to trade a healthy limb for a prosthetic. From the article,

There are many advantages to having your leg amputated.

Pedicure costs drop 50% overnight. A pair of socks lasts twice as long. But Hugh Herr, the director of the Biomechatronics Group at the MIT Media Lab, goes a step further. “It’s actually unfair,” Herr says about amputees’ advantages over the able-bodied. “As tech advancements in prosthetics come along, amputees can exploit those improvements. They can get upgrades. A person with a natural body can’t.”

I came across both a milder version of this sentiment and a more targeted version (able-bodied athletes worried about double amputee Oscar Pistorius’ bid to run in the Olympics rather than the Paralympics) when I wrote my four part series on human enhancement (July 22, 23, 24 & 27, 2009).

The Hochman article also goes on to discuss some of the aesthetic considerations (which I discussed in the same posting where I mentioned the BigDog robots). What Hochman does particularly well is bringing all this information together and explaining how the lure of big money (profit) is stimulating market development,

Not surprisingly, the money is following the market. MIT’s Herr cofounded a company called iWalk, which has received $10 million in venture financing to develop the PowerFoot One — what the company calls the “world’s first actively powered prosthetic ankle and foot.” Meanwhile, the Department of Veterans Affairs recently gave Brown University’s Center for Restorative and Regenerative Medicine a $7 million round of funding, on top of the $7.2 million it provided in 2004. And the Defense Advanced Research Projects Administration (DARPA) has funded Manchester, New Hampshire-based DEKA Research, which is developing the Luke, a powered prosthetic arm (named after Luke Skywalker, whose hand is hacked off by his father, Darth Vader).

This influx of R&D cash, combined with breakthroughs in materials science and processor speed, has had a striking visual and social result: an emblem of hurt and loss has become a paradigm of the sleek, modern, and powerful. Which is why Michael Bailey, a 24-year-old student in Duluth, Georgia, is looking forward to the day when he can amputate the last two fingers on his left hand.

“I don’t think I would have said this if it had never happened,” says Bailey, referring to the accident that tore off his pinkie, ring, and middle fingers. “But I told Touch Bionics I’d cut the rest of my hand off if I could make all five of my fingers robotic.”

This kind of thinking is influencing surgery such that patients are asking to have more of their bodies removed.

The article is lengthy (by internet standards) and worthwhile as it contains nuggets such as this,

But Bailey is most surprised by his own reaction. “When I’m wearing it, I do feel different: I feel stronger. As weird as that sounds, having a piece of machinery incorporated into your body, as a part of you, well, it makes you feel above human. It’s a very powerful thing.”

So the prosthetic makes him “feel above human,” interesting, eh? It leads to the next question (and a grand and philosophical one it is), what does it mean to be human? At least lately, I tend to explore that question by reading fiction.

I have been intrigued by Catherine Asaro‘s Skolian Empire series of books. The series features human beings (mostly soldiers) who have something she calls ‘biomech’  in their bodies to make them smarter, stronger, and faster. She also populates worlds with people who’ve had (thousands of years before) extensive genetic manipulation so they can better adapt to their new homeworlds. Her characters represent different opinions about the ‘biomech’ which is surgically implanted usually in adulthood and voluntarily. Asaro is a physicist who writes ‘hard’ science fiction laced with romance. She handles a great many thorny social questions in the context of this Skolian Empire that she has created where the technologies (nano, genetic engineering, etc.)  that we are exploring are a daily reality.

Happy T Day! Robots; Nano-enabled prosthetics; ISEA 2009 aesthetics and prosthetics; Global TV (national edition): part 2

Happy Thanksgiving to everyone as Canada celebrates.

Since I have mentioned military robots in the not too distant past, this recent headline Two Military Robots That Rival the Creepiest Sci-Fi Creatures for Kit Eaton’s Fast Company article caught my eye. One of the robots, Big Dog (and its companion prototype Small Dog), utilizes artificial intelligence to navigate terrain and assist soldiers in the field. The larger one can carry heavy loads while the smaller one could be used for reconnaissance. The other robot is a cyborg beetle. Electrodes have been implanted so the beetle’s flight patterns can be controlled. There are two videos, one for each robot. It is a very disconcerting experience watching the beetle being flown by someone standing in front of a set of controls.

Keeping with the theme of planting electrodes, I found something on Azonano about a bio- adaptive prosthetic hand. Funded by the European Union as a nanotechnology project, here’s more from the news item,

What is unique about the sophisticated prototype artificial hand developed by the SMARTHAND partners is that not only does it replicate the movements of a real hand, but it also gives the user sensations of touch and feeling. The researchers said the hand has 4 electric motors and 40 sensors that are activated when pressed against an object. These sensors stimulate the arm’s nerves to activate a part in the brain that enables patients to feel the objects.

Led by Sweden’s Lund University, the researchers continue to work on the sensory feedback system within the robotic hand. The hurdle they need to cross is to make the cables and electric motors smaller. Nanotechnology could help the team iron out any problems. Specifically, they would implant a tiny processing unit, a power source and a trans-skin communication method into the user of the hand to optimise functionality.

It’s a fascinating read which brought to mind an ISEA (International Symposium on Electronic Arts) 2009 presentation by Dr. Lanfranco Aceti (professor at Sabanci University in Istanbul, Turkey). Titled The Aesthetic Beauty of the Artificial: When Prosthetic Bodies Become an Art Expression of Empowering Design Technologies, the presentation was a revelation. Dr. Aceti’s research yielded a rather surprising insight from a doctor in London, England who specializes in prosthetics. According to the doctor, women want limbs that most closely resemble their original but men (under 50 years old usually) want limbs that are metallic and/or look high tech. Lanfranco suggested that the men have been influenced by movies. Take for example, Wolverine (Wikipedia entry here) where the hero’s skeleton has been reinforced with metal and he can make his claws (now covered with metal) protrude from his arms at will. You can view Lanfranco’s site here or a simple biography about him here.

A few months back I posted about  prosthetics and design student projects and I’m starting to sense a trend emerging from these bits and pieces of information. There is the repair aspect to prosthetics but there is also an increasing interest not just in the aesthetics but in the notion of improving on the original. At its most extreme, I can imagine people wanting to remove perfectly healthy limbs and organs to get an improved version.

I got a chance to see part 2 of Global TV’s (broadcast in Canada) nanotechnology series, Small Wonders. As I’ve noticed that my link for part 1 of the series is no longer useful I am providing a link to part 2 which will land you on the search page. If you don’t see part 2 listed, go to the mutimedia tab which is just above the search results and where you can find part 1 and I assume, at some point, part 2.

As I hoped, they focused on nanotechnology projects in the materials field in part 2 of the series. They noted that nanotechnology-based materials in sports equipment and clothing are already available in the market place. An interview with Dr. Robert Wolkow at the National Institute of Nanotechnology and at the Physics Dept. at the University of Alberta, featured a discussion about replacing silicon chips with more efficient materials built at the molecular level.

Alberta welcomes a new nanotechnology product and research centre plus some news on a kissing phone

The new facility will be called the Hitachi Electron Microscopy Products Development Centre (HEMiC) at Canada’s National Institute of Nanotechnology (NINT) at the University of Alberta, Edmonton. From the media release (on Azonano),

“Alberta’s strength in nanotechnologies, and the province’s coordinated strategy for nanotechnology made our decision to seek a partnership here easy,” said John Cole, President of Hitachi High-Technologies Canada, Inc. “This initiative engages Hitachi with Alberta’s nanotechnology community at the leading edge of research while contributing to commercial opportunities.”

The Centre will house three new electron microscopes valued at $7 million, including the first-ever Hitachi environmental transmission electron microscope Model H-9500 in operation outside of Japan.

There are many quotes in the media release, surprisingly, none from Dr. Nils Petersen, NINT’s  Director General.

Fast Company is featuring an article by Kit Eaton about phones that won’t require buttons for control (more touch screen-type technology but introducing a new level of innovation). As it turns out, these phones will be coming from Nokia. Kissing the phone as a gesture that you want to contact a loved is just one of the ideas being explored. More here including a Nokia video about the project. The product designers are looking at how people gesture and, depending on your culture, the meaning behind gestures can vary greatly as the Nokia designer notes in the video. Anyway, this type of project relates to my interest in multimodal discourse and my suspicion that we won’t be writing (or for the matter reading) as much as we do now.

Rob Annan over at Don’t leave Canada behind has picked up on my series of last week’s about innovation in Canada, in his posting Canada not simply hewers and drawers.