Tag Archives: lactate

Monitoring your saliva via mouth guard and smart phone

I first came across the notion that saliva instead of blood and urine could be used to assess and monitor health in a presentation abstract for the 2004 American Association for the Advancement of Science (AAAS) annual meeting held in Seattle, Washington (as per my Feb. 15, 2011 posting). There have been a few ‘saliva’ health monitoring projects mentioned here over the years but this proof-of-concept version seems like it has the potential to get to the marketplace. An August 31, 2015 news item on Nanowerk features a ‘saliva’ health monitoring project from the University of California at San Diego (UCSD),

Engineers at the University of California, San Diego, have developed a mouth guard that can monitor health markers, such as lactate, cortisol and uric acid, in saliva and transmit the information wirelessly to a smart phone, laptop or tablet.
The technology, which is at a proof-of-concept stage, could be used to monitor patients continuously without invasive procedures, as well as to monitor athletes’ performance or stress levels in soldiers and pilots. In this study, engineers focused on uric acid, which is a marker related to diabetes and to gout. Currently, the only way to monitor the levels of uric acid in a patient is to draw blood.

An August 31, 2015 UCSD news release (also on EurekAlert), which originated the news item, describes the research and the mouth guard in more detail,

In this study, researchers showed that the mouth guard sensor could offer an easy and reliable way to monitor uric acid levels. The mouth guard has been tested with human saliva but hasn’t been tested in a person’s mouth.

Researchers collected saliva samples from healthy volunteers and spread them on the sensor, which produced readings in a normal range. Next, they collected saliva from a patient who suffers from hyperuricemia, a condition characterized by an excess of uric acid in the blood. The sensor detected more than four times as much uric acid in the patient’s saliva than in the healthy volunteers.

The patient also took Allopurinol, which had been prescribed by a physician to treat their condition. Researchers were able to document a drop in the levels of uric acid over four or five days as the medication took effect. In the past, the patient would have needed blood draws to monitor levels and relied instead on symptoms to start and stop his medication.

Fabrication and design

Wang’s team created a screen-printed sensor using silver, Prussian blue ink and uricase, an enzyme that reacts with uric acid. Because saliva is extremely complex and contains many different biomarkers, researchers needed to make sure that the sensors only reacted with the uric acid. Nanoengineers set up the chemical equivalent of a two-step authentication system. The first step is a series of chemical keyholes, which ensures that only the smallest biochemicals get inside the sensor. The second step is a layer of uricase trapped in polymers, which reacts selectively with uric acid. The reaction between acid and enzyme generates hydrogen peroxide, which is detected by the Prussian blue ink.  That information is then transmitted to an electronic board as electrical signals via metallic strips that are part of the sensor.

The electronic board, developed by Mercier’s team, uses small chips that sense the output of the sensors, digitizes this output and then wirelessly transmits data to a smart phone, tablet or laptop. The entire electronic board occupies an area slightly larger than a U.S. penny.

Next steps

The next step is to embed all the electronics inside the mouth guard so that it can actually be worn. Researchers also will have to test the materials used for the sensors and electronics to make sure that they are indeed completely biocompatible. The next iteration of the mouth guard is about a year out, Mercier estimates.

“All the components are there,” he said. “It’s just a matter of refining the device and working on its stability.”

Wang and Mercier lead the Center for Wearable Sensors at UC San Diego, which has made a series of breakthroughs in the field, including temporary tattoos that monitor glucose, ultra-miniaturized energy-processing chips and pens filled with high-tech inks for Do It Yourself chemical sensors.

Here’s a link to and a citation for the paper,

Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics by Jayoung Kim, Somayeh Imani, William R. de Araujo, Julian Warchall, Gabriela Valdés-Ramírez, Thiago R.L.C. Paixão, Patrick P. Mercier, & Joseph Wang. Biosensors and Bioelectronics Volume 74, 15 December 2015, Pages 1061–1068 doi:10.1016/j.bios.2015.07.039

This paper is behind a paywall.

Here’s an image of UCSD’s proposed mouth guard,

The mouth guard sensor offers an easy and reliable way to monitor uric acid levels in human saliva. Credit: Jacobs School of Engineering, UC San Diego

The mouth guard sensor offers an easy and reliable way to monitor uric acid levels in human saliva. Credit: Jacobs School of Engineering, UC San Diego

A tattoo that’s a biobattery and a sensor?

It’s going to be an American Chemical Society (ACS) 248th meeting kind of week as yet another interesting piece of scientific research is bruited (spread) about the internet. This time it’s all about sweat, exercise, and biobatteries. From an Aug. 13, 2014 news item on Nanowerk,

In the future, working up a sweat by exercising may not only be good for your health, but it could also power your small electronic devices. Researchers will report today that they have designed a sensor in the form of a temporary tattoo that can both monitor a person’s progress during exercise and produce power from their perspiration.

An Aug. 13, 2014 ACS news release on EurekAlert, which originated the news item, describes the inspiration (as opposed to perspiration) for this technology,

The device works by detecting and responding to lactate, which is naturally present in sweat. “Lactate is a very important indicator of how you are doing during exercise,” says Wenzhao Jia, Ph.D.

In general, the more intense the exercise, the more lactate the body produces. During strenuous physical activity, the body needs to generate more energy, so it activates a process called glycolysis. Glycolysis produces energy and lactate, the latter of which scientists can detect in the blood.

Professional athletes monitor their lactate levels during performance testing as a way to evaluate their fitness and training program. In addition, doctors measure lactate during exercise testing of patients for conditions marked by abnormally high lactate levels, such as heart or lung disease. Currently, lactate testing is inconvenient and intrusive because blood samples must be collected from the person at different times during the exercise regime and then analyzed.

The news release goes on to describe the research process which resulted in a temporary tattoo that could be used to power small scale electronics,

Jia, a postdoctoral student in the lab of Joseph Wang, D.Sc., at the University of California San Diego, and her colleagues developed a faster, easier and more comfortable way to measure lactate during exercise. They imprinted a flexible lactate sensor onto temporary tattoo paper. The sensor contained an enzyme that strips electrons from lactate, generating a weak electrical current. The researchers applied the tattoo to the upper arms of 10 healthy volunteers. Then the team measured the electrical current produced as the volunteers exercised at increasing resistance levels on a stationary bicycle for 30 minutes. In this way, they could continuously monitor sweat lactate levels over time and with changes in exercise intensity.

The team then went a step further, building on these findings to make a sweat-powered biobattery. Batteries produce energy by passing current, in the form of electrons, from an anode to a cathode. In this case, the anode contained the enzyme that removes electrons from lactate, and the cathode contained a molecule that accepts the electrons.

When 15 volunteers wore the tattoo biobatteries while exercising on a stationary bike, they produced different amounts of power. Interestingly, people who were less fit (exercising fewer than once a week) produced more power than those who were moderately fit (exercising one to three times per week). Enthusiasts who worked out more than three times per week produced the least amount of power. The researchers say that this is probably because the less-fit people became fatigued sooner, causing glycolysis to kick in earlier, forming more lactate. The maximum amount of energy produced by a person in the low-fitness group was 70 microWatts per cm2 of skin.

“The current produced is not that high, but we are working on enhancing it so that eventually we could power some small electronic devices,” Jia says. “Right now, we can get a maximum of 70 microWatts per cm2, but our electrodes are only 2 by 3 millimeters in size and generate about 4 microWatts — a bit small to generate enough power to run a watch, for example, which requires at least 10 microWatts. So besides working to get higher power, we also need to leverage electronics to store the generated current and make it sufficient for these requirements.”

Biobatteries offer certain advantages over conventional batteries: They recharge more quickly, use renewable energy sources (in this case, sweat), and are safer because they do not explode or leak toxic chemicals.

“These represent the first examples of epidermal electrochemical biosensing and biofuel cells that could potentially be used for a wide range of future applications,” Wang says.

The ACS has made a video about this work available,

It seems to me this tattoo battery could be used as a self-powered monitoring device in a medical application for heart or lung disease.