Tag Archives: leaves

Tree-on-a-chip

It’s usually organ-on-a-chip or lab-on-a-chip or human-on-a-chip; this is my first tree-on-a-chip.

Engineers have designed a microfluidic device they call a “tree-on-a-chip,” which mimics the pumping mechanism of trees and other plants. Courtesy: MIT

From a March 20, 2017 news item on phys.org,

Trees and other plants, from towering redwoods to diminutive daisies, are nature’s hydraulic pumps. They are constantly pulling water up from their roots to the topmost leaves, and pumping sugars produced by their leaves back down to the roots. This constant stream of nutrients is shuttled through a system of tissues called xylem and phloem, which are packed together in woody, parallel conduits.

Now engineers at MIT [Massachusetts Institute of Technology] and their collaborators have designed a microfluidic device they call a “tree-on-a-chip,” which mimics the pumping mechanism of trees and plants. Like its natural counterparts, the chip operates passively, requiring no moving parts or external pumps. It is able to pump water and sugars through the chip at a steady flow rate for several days. The results are published this week in Nature Plants.

A March 20, 2017 MIT news release by Jennifer Chu, which originated the news item, describes the work in more detail,

Anette “Peko” Hosoi, professor and associate department head for operations in MIT’s Department of Mechanical Engineering, says the chip’s passive pumping may be leveraged as a simple hydraulic actuator for small robots. Engineers have found it difficult and expensive to make tiny, movable parts and pumps to power complex movements in small robots. The team’s new pumping mechanism may enable robots whose motions are propelled by inexpensive, sugar-powered pumps.

“The goal of this work is cheap complexity, like one sees in nature,” Hosoi says. “It’s easy to add another leaf or xylem channel in a tree. In small robotics, everything is hard, from manufacturing, to integration, to actuation. If we could make the building blocks that enable cheap complexity, that would be super exciting. I think these [microfluidic pumps] are a step in that direction.”

Hosoi’s co-authors on the paper are lead author Jean Comtet, a former graduate student in MIT’s Department of Mechanical Engineering; Kaare Jensen of the Technical University of Denmark; and Robert Turgeon and Abraham Stroock, both of Cornell University.

A hydraulic lift

The group’s tree-inspired work grew out of a project on hydraulic robots powered by pumping fluids. Hosoi was interested in designing hydraulic robots at the small scale, that could perform actions similar to much bigger robots like Boston Dynamic’s Big Dog, a four-legged, Saint Bernard-sized robot that runs and jumps over rough terrain, powered by hydraulic actuators.

“For small systems, it’s often expensive to manufacture tiny moving pieces,” Hosoi says. “So we thought, ‘What if we could make a small-scale hydraulic system that could generate large pressures, with no moving parts?’ And then we asked, ‘Does anything do this in nature?’ It turns out that trees do.”

The general understanding among biologists has been that water, propelled by surface tension, travels up a tree’s channels of xylem, then diffuses through a semipermeable membrane and down into channels of phloem that contain sugar and other nutrients.

The more sugar there is in the phloem, the more water flows from xylem to phloem to balance out the sugar-to-water gradient, in a passive process known as osmosis. The resulting water flow flushes nutrients down to the roots. Trees and plants are thought to maintain this pumping process as more water is drawn up from their roots.

“This simple model of xylem and phloem has been well-known for decades,” Hosoi says. “From a qualitative point of view, this makes sense. But when you actually run the numbers, you realize this simple model does not allow for steady flow.”

In fact, engineers have previously attempted to design tree-inspired microfluidic pumps, fabricating parts that mimic xylem and phloem. But they found that these designs quickly stopped pumping within minutes.

It was Hosoi’s student Comtet who identified a third essential part to a tree’s pumping system: its leaves, which produce sugars through photosynthesis. Comtet’s model includes this additional source of sugars that diffuse from the leaves into a plant’s phloem, increasing the sugar-to-water gradient, which in turn maintains a constant osmotic pressure, circulating water and nutrients continuously throughout a tree.

Running on sugar

With Comtet’s hypothesis in mind, Hosoi and her team designed their tree-on-a-chip, a microfluidic pump that mimics a tree’s xylem, phloem, and most importantly, its sugar-producing leaves.

To make the chip, the researchers sandwiched together two plastic slides, through which they drilled small channels to represent xylem and phloem. They filled the xylem channel with water, and the phloem channel with water and sugar, then separated the two slides with a semipermeable material to mimic the membrane between xylem and phloem. They placed another membrane over the slide containing the phloem channel, and set a sugar cube on top to represent the additional source of sugar diffusing from a tree’s leaves into the phloem. They hooked the chip up to a tube, which fed water from a tank into the chip.

With this simple setup, the chip was able to passively pump water from the tank through the chip and out into a beaker, at a constant flow rate for several days, as opposed to previous designs that only pumped for several minutes.

“As soon as we put this sugar source in, we had it running for days at a steady state,” Hosoi says. “That’s exactly what we need. We want a device we can actually put in a robot.”

Hosoi envisions that the tree-on-a-chip pump may be built into a small robot to produce hydraulically powered motions, without requiring active pumps or parts.

“If you design your robot in a smart way, you could absolutely stick a sugar cube on it and let it go,” Hosoi says.

This research was supported, in part, by the Defense Advance Research Projects Agency [DARPA].

This research’s funding connection to DARPA reminded me that MIT has an Institute of Soldier Nanotechnologies.

Getting back to the tree-on-a-chip, here’s a link to and a citation for the paper,

Passive phloem loading and long-distance transport in a synthetic tree-on-a-chip by Jean Comtet, Kaare H. Jensen, Robert Turgeon, Abraham D. Stroock & A. E. Hosoi. Nature Plants 3, Article number: 17032 (2017)  doi:10.1038/nplants.2017.32 Published online: 20 March 2017

This paper is behind a paywall.

‘Beleafing’ in magic; a new type of battery

A Jan. 28, 2016 news item on ScienceDaily announces the ‘beleaf’,

Scientists have a new recipe for batteries: Bake a leaf, and add sodium. They used a carbonized oak leaf, pumped full of sodium, as a demonstration battery’s negative terminal, or anode, according to a paper published yesterday in the journal ACS Applied Materials Interfaces.

Scientists baked a leaf to demonstrate a battery. Credit: Image courtesy of Maryland NanoCenter

Scientists baked a leaf to demonstrate a battery.
Credit: Image courtesy of Maryland NanoCenter

A Jan. ??, 2016 Maryland NanoCenter (University of Maryland) news release, which originated the news item, provides more information about the nature (pun intended) of the research,

“Leaves are so abundant. All we had to do was pick one up off the ground here on campus,” said Hongbian Li, a visiting professor at the University of Maryland’s department of materials science and engineering and one of the main authors of the paper. Li is a member of the faculty at the National Center for Nanoscience and Technology in Beijing, China.

Other studies have shown that melon skin, banana peels and peat moss can be used in this way, but a leaf needs less preparation.

The scientists are trying to make a battery using sodium where most rechargeable batteries sold today use lithium. Sodium would hold more charge, but can’t handle as many charge-and-discharge cycles as lithium can.

One of the roadblocks has been finding an anode material that is compatible with sodium, which is slightly larger than lithium. Some scientists have explored graphene, dotted with various materials to attract and retain the sodium, but these are time consuming and expensive to produce.  In this case, they simply heated the leaf for an hour at 1,000 degrees C (don’t try this at home) to burn off all but the underlying carbon structure.

The lower side of the maple [?] leaf is studded with pores for the leaf to absorb water. In this new design, the pores absorb the sodium electrolyte. At the top, the layers of carbon that made the leaf tough become sheets of nanostructured carbon to absorb the sodium that carries the charge.

“The natural shape of a leaf already matches a battery’s needs: a low surface area, which decreases defects; a lot of small structures packed closely together, which maximizes space; and internal structures of the right size and shape to be used with sodium electrolyte,” said Fei Shen, a visiting student in the department of materials science and engineering and the other main author of the paper.

“We have tried other natural materials, such as wood fiber, to make a battery,” said Liangbing Hu, an assistant professor of materials science and engineering. “A leaf is designed by nature to store energy for later use, and using leaves in this way could make large-scale storage environmentally friendly.”

The next step, Hu said, is “to investigate different types of leaves to find the best thickness, structure and flexibility” for electrical energy storage.  The researchers have no plans to commercialize at this time.

Here’s a link to and a citation for the paper,

Carbonized-leaf Membrane with Anisotropic Surfaces for Sodium-ion Battery by Hongbian Li, Fei Shen, Wei Luo, Jiaqi Dai, Xiaogang Han, Yanan Chen, Yonggang Yao, Hongli Zhu, Kun Fu, Emily Hitz, and Liangbing Hu. ACS Appl. Mater. Interfaces, 2016, 8 (3), pp 2204–2210 DOI: 10.1021/acsami.5b10875 Publication Date (Web): January 4, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

The secret life of leaves at Vancouver’s (Canada) Café Scientifique on Jan. 27, 2015

Vancouver’s next Café Scientifique is being held in the back room of the The Railway Club (2nd floor of 579 Dunsmuir St. [at Seymour St.], Vancouver, Canada), on Jan. 27,  2015*. Here’s the meeting description (from the Jan. 19, 2015 announcement),

Happy New Year!  We hope you all had an enjoyable and relaxing holiday season.  We’d like to send out a big thank you for your generosity in our crowdfunding campaign and your help in its promotion.  Your donations and support will help to keep us running for another year and more!

Speaking of which, our next café will happen on Tuesday, January 27th, at 7:30pm at The Railway Club. Our speaker for the evening will be Dr. Chris Muir, a Postdoctoral Fellow in the Biodiversity Research Centre at the University of British Columbia.  The title of his talk is:

More than salad: the inner lives of leaves

To most of us, leaves are the green things in a salad or the emblem on our flag. To a biologist, leaves are the critical interface between a plant and its environment. I will talk about some of the remarkable ways that leaves adapt plants to their environment. First, I will cover some basic functions that leaves perform for a plant: How do plants eat? How do plants avoid being eaten? What goes on inside a leaf? Next, I will talk about some of the unorthodox ways that leaves help plants make a living: How do plants without roots get water? Why do leaves track the sun? How did the Swiss Cheese Plant get its holes? The close connection between a leaf’s form and its function to the plant attests to the relentless action of natural selection in adapting organisms to their environment.

Muir has an eponymous website where you can find out more about his work and about him.

* Jan. 27, 2014 corrected to Jan. 27, 2015 on Feb. 12, 2015.