Tag Archives: Lin Wang

Nano-photosynthesis in your brain as a stroke treatment?

A May 19, 2021 news item on phys.org sheds some light on a new approach to stroke treatments,

Blocked blood vessels in the brains of stroke patients prevent oxygen-rich blood from getting to cells, causing severe damage. Plants and some microbes produce oxygen through photosynthesis. What if there was a way to make photosynthesis happen in the brains of patients? Now, researchers reporting in ACS’ Nano Letters have done just that in cells and in mice, using blue-green algae and special nanoparticles, in a proof-of-concept demonstration.

A May 19, 2021 American Chemical Society (ACS) news release, which originated the news item, provides more information on strokes and how this new approach may prove useful,

Strokes result in the deaths of 5 million people worldwide every year, according to the World Health Organization. Millions more survive, but they often experience disabilities, such as difficulties with speech, swallowing or memory. The most common cause is a blood vessel blockage in the brain, and the best way to prevent permanent brain damage from this type of stroke is to dissolve or surgically remove the blockage as soon as possible. However, those options only work within a narrow time window after the stroke happens and can be risky. Blue-green algae, such as Synechococcus elongatus, have been studied previously to treat the lack of oxygen in heart tissue and tumors using photosynthesis. But the visible light needed to trigger the microbes can’t penetrate the skull, and although near-infrared light can pass through, it is insufficient to directly power photosynthesis. “Up-conversion” nanoparticles, often used for imaging, can absorb near-infrared photons and emit visible light. So, Lin Wang, Zheng Wang, Guobin Wang and colleagues at Huazhong University of Science and Technology wanted to see if they could develop a new approach that could someday be used for stroke patients by combining these parts — S. elongatus, nanoparticles and near-infrared light — in a new “nano-photosynthetic” system.

The researchers paired S. elongatus with neodymium up-conversion nanoparticles that transform tissue-penetrating near-infrared light to a visible wavelength that the microbes can use to photosynthesize. In a cell study, they found that the nano-photosynthesis approach reduced the number of neurons that died after oxygen and glucose deprivation. They then injected the microbes and nanoparticles into mice with blocked cerebral arteries and exposed the mice to near-infrared light. The therapy reduced the number of dying neurons, improved the animals’ motor function and even helped new blood vessels to start growing. Although this treatment is still in the animal testing stage, it has promise to advance someday toward human clinical trials, the researchers say.

The authors acknowledge funding from the National Key Basic Research Program of China, the National Natural Science Foundation of China, the Chinese Ministry of Education’s Science and Technology Program, the Major Scientific and Technological Innovation Projects in Hubei Province, and the Joint Fund of Ministry of Education for Equipment Pre-research.

Here’s a link to and a citation for the paper,

Oxygen-Generating Cyanobacteria Powered by Upconversion-Nanoparticles-Converted Near-Infrared Light for Ischemic Stroke Treatment by Jian Wang, Qiangfei Su, Qiying Lv, Bo Cai, Xiakeerzhati Xiaohalati, Guobin Wang, Zheng Wang, and Lin Wang. Nano Lett. 2021, 21, 11, 4654–4665 DOI: https://doi.org/10.1021/acs.nanolett.1c00719 Publication Date:May 19, 2021 © 2021 American Chemical Society

This paper is behind a paywall.

Gold nanoparticles make a new promise: a non-invasive COVID-19 breathalyser

I believe that swab they stick up your nose to test for COVDI-19 is 10 inches long so it seems to me that discomfort or unpleasant are not the words that best describe the testing experience .

Hopefully, no one will have to find inadequate vocabulary for this new COVID-19 testing assuming that future trials are successful and they are able to put the technology into production. From an August 19, 2020 news item on Nanowerk,

Few people who have undergone nasopharyngeal swabs for coronavirus testing would describe it as a pleasant experience. The procedure involves sticking a long swab up the nose to collect a sample from the back of the nose and throat, which is then analyzed for SARS-CoV-2 RNA [ribonucleic acid] by the reverse-transcription polymerase chain reaction (RT-PCR).

Now, researchers reporting in [American Chemical Society] ACS Nano (“Multiplexed Nanomaterial-Based Sensor Array for Detection of COVID-19 in Exhaled Breath”) have developed a prototype device that non-invasively detected COVID-19 in the exhaled breath of infected patients.

An August 19, 2020 ACS news release (also received via email and on EurekAlert), which originated the news item, provides more technical details,

In addition to being uncomfortable, the current gold standard for COVID-19 testing requires RT-PCR, a time-consuming laboratory procedure. Because of backlogs, obtaining a result can take several days. To reduce transmission and mortality rates, healthcare systems need quick, inexpensive and easy-to-use tests. Hossam Haick, Hu Liu, Yueyin Pan and colleagues wanted to develop a nanomaterial-based sensor that could detect COVID-19 in exhaled breath, similar to a breathalyzer test for alcohol intoxication. Previous studies have shown that viruses and the cells they infect emit volatile organic compounds (VOCs) that can be exhaled in the breath.

The researchers made an array of gold nanoparticles linked to molecules that are sensitive to various VOCs. When VOCs interact with the molecules on a nanoparticle, the electrical resistance changes. The researchers trained the sensor to detect COVID-19 by using machine learning to compare the pattern of electrical resistance signals obtained from the breath of 49 confirmed COVID-19 patients with those from 58 healthy controls and 33 non-COVID lung infection patients in Wuhan, China. Each study participant blew into the device for 2-3 seconds from a distance of 1¬-2 cm. Once machine learning identified a potential COVID-19 signature, the team tested the accuracy of the device on a subset of participants. In the test set, the device showed 76% accuracy in distinguishing COVID-19 cases from controls and 95% accuracy in discriminating COVID-19 cases from lung infections. The sensor could also distinguish, with 88% accuracy, between sick and recovered COVID-19 patients. Although the test needs to be validated in more patients, it could be useful for screening large populations to determine which individuals need further testing, the researchers say.

The authors acknowledge funding from the Technion-Israel Institute of Technology.

Here’s a link to and a citation for the paper,

Multiplexed Nanomaterial-Based Sensor Array for Detection of COVID-19 in Exhaled Breath by Benjie Shan, Yoav Y Broza, Wenjuan Li, Yong Wang, Sihan Wu, Zhengzheng Liu, Jiong Wang, Shuyu Gui, Lin Wang, Zhihong Zhang, Wei Liu, Shoubing Zhou, Wei Jin, Qianyu Zhang, Dandan Hu, Lin Lin, Qiujun Zhang, Wenyu Li, Jinquan Wang, Hu Liu, Yueyin Pan, and Hossam Haick. ACS Nano 2020, XXXX, XXX, XXX-XXX DOI: https://doi.org/10.1021/acsnano.0c05657 Publication Date:August 18, 2020 Copyright © 2020 American Chemical Society

This paper is behind a paywall.

Slippery toilet coating could save water

On a practical level, it’s becoming clear that we need to become more thoughtful about our use of water. We here in Canada tend to take our water for granted, as if we have an inexhaustible supply. According to this August 21, 2008 CBC (Canadian Broadcasting Corporation) online news item, that’s not the case,

Canada’s stores of fresh water are not as plentiful as once thought, and threaten to pinch the economy and pit provinces against each other, a federal document says.

An internal report drafted last December [2007] by Environment Canada warns that climate change and a growing population will further drain resources.

“We can no longer take our extensive water supplies for granted,” says the report, titled A Federal Perspective on Water Quantity Issues.

The Canadian Press obtained the 21-page draft report under the Access to Information Act.

It suggests the federal government take a more hands-on role in managing the country’s water, which is now largely done by the provinces. Ottawa still manages most of the fresh water in the North through water boards.

The Conservatives promised a national water strategy in last fall’s throne speech but have been criticized since for announcing only piecemeal projects.

The Tories, like the previous Liberal government, are also behind in publishing annual reports required by law that show how water supplies are used and maintained.

The last assessment posted on Environment Canada’s website is from 2005-06.

The internal draft report says the government currently does not know enough about the country’s water to properly manage it.

‘This is not a crisis yet. Why would we expect any government, regardless of political leaning or level, to do anything about it?’

“Canada lacks sound information at a national scale on the major uses and user[s] of water,” it says.

“National forecasting of water availability has never been done because traditionally our use of the resource was thought to be unlimited.”

Canada has a fifth of the world’s supply of fresh water, but only seven per cent of it is renewable. The rest comes from ice-age glaciers and underground aquifers.

One per cent of Canada’s total water supply is renewed each year by precipitation, the report says.

Moreover, government data on the country’s groundwater reserves is deemed “sparse and often inadequate.”

That’s in contrast to the United States, which has spent more than a decade mapping its underground water reserves. Canada shares aquifers with the U.S., and the report says: “Our lack of data places Canada at strategic disadvantage for bilateral negotiations with the U.S.”

The most recent update I can find is Ivan Semeniuk’s June 11, 2017 article for the Globe and Mail tilted: Charting Canada’s troubled waters: Where the danger lies for watersheds across the country,

A comprehensive review [World Wildlife Federation: a national assessment of of Canada’s freshwater Watershed Reports; 2017] freshwater ecosystems reveals rising threats from pollution, overuse, invasive species and climate change among other problems. Yet, the biggest threat of all may be a lack of information that hinders effective regulation, Ivan Semeniuk reports. …

Some of that information may be out of date.

Getting back on topic, here’s one possible solution to better managing our use of water.

Toilet coating

A November 18, 2019 news item on phys.org announces research that could save water,

Every day, more than 141 billion liters of water are used solely to flush toilets. With millions of global citizens experiencing water scarcity, what if that amount could be reduced by 50%?

The possibility may exist through research conducted at Penn State, released today (Nov. 18) in Nature Sustainability.

“Our team has developed a robust bio-inspired, liquid, sludge- and bacteria-repellent coating that can essentially make a toilet self-cleaning,” said Tak-Sing Wong, Wormley Early Career Professor of Engineering and associate professor of mechanical engineering and biomedical engineering.

Penn State researchers have developed a method that dramatically reduces the amount of water needed to flush a conventional toilet, which usually requires 6 liters. Image: Wong Laboratory for Nature Inspired Engineering

A November 18, 2019 Pennsylvania State University news release (also on EurekAlert,) which originated the news item, describes the research in more detail,

In the Wong Laboratory for Nature Inspired Engineering, housed within the Department of Mechanical Engineering and the Materials Research Institute, researchers have developed a method that dramatically reduces the amount of water needed to flush a conventional toilet, which usually requires 6 liters.

Co-developed by Jing Wang, a doctoral graduate from Wong’s lab, the liquid-entrenched smooth surface (LESS) coating is a two-step spray that, among other applications, can be applied to a ceramic toilet bowl. The first spray, created from molecularly grafted polymers, is the initial step in building an extremely smooth and liquid-repellent foundation.

“When it dries, the first spray grows molecules that look like little hairs, with a diameter of about 1,000,000 times thinner than a human’s,” Wang said.

While this first application creates an extremely smooth surface as is, the second spray infuses a thin layer of lubricant around those nanoscopic “hairs” to create a super-slippery surface.

“When we put that coating on a toilet in the lab and dump synthetic fecal matter on it, it (the synthetic fecal matter) just completely slides down and nothing sticks to it (the toilet),” Wang said.

With this novel slippery surface, the toilets can effectively clean residue from inside the bowl and dispose of the waste with only a fraction of the water previously needed. The researchers also predict the coating could last for about 500 flushes in a conventional toilet before a reapplication of the lubricant layer is needed.

While other liquid-infused slippery surfaces can take hours to cure, the LESS two-step coating takes less than five minutes. The researcher’s experiments also found the surface effectively repelled bacteria, particularly ones that spread infectious diseases and unpleasant odors.

If it were widely adopted in the United States, it could direct critical resources toward other important activities, to drought-stricken areas or to regions experiencing chronic water scarcity, said the researchers.

Driven by these humanitarian solutions, the researchers also hope their work can make an impact in the developing world. The technology could be used within waterless toilets, which are used extensively around the world.

“Poop sticking to the toilet is not only unpleasant to users, but it also presents serious health concerns,” Wong said.

However, if a waterless toilet or urinal used the LESS coating, the team predicts these types of fixtures would be more appealing and safer for widespread use.

To address these issues in both the United States and around the world, Wong and his collaborators, Wang, Birgitt Boschitsch, and Nan Sun, all mechanical engineering alumni, began a start-up venture.

With support from the Ben Franklin Technology Partners’ TechCelerator, the National Science Foundation, the Department of Energy, the Office of Naval Research, the Rice Business Plan Competition and Y-Combinator, their company, spotLESS Materials, is already bringing the LESS coating to market.

“Our goal is to bring impactful technology to the market so everyone can benefit,” Wong said. “To maximize the impact of our coating technology, we need to get it out of the lab.”

Looking forward, the team hopes spotLESS Materials will play a role in sustaining the world’s water resources and continue expanding the reach of their technology.

“As a researcher in an academic setting, my goal is to invent things that everyone can benefit from,” Wong said. “As a Penn Stater, I see this culture being amplified through entrepreneurship, and I’m excited to contribute.”

Here’s a link to and a citation for the paper,

Viscoelastic solid-repellent coatings for extreme water saving and global sanitation by Jing Wang, Lin Wang, Nan Sun, Ross Tierney, Hui Li, Margo Corsetti, Leon Williams, Pak Kin Wong & Tak-Sing Wong. Nature Sustainability (2019) DOI: https://doi.org/10.1038/s41893-019-0421-0 Published 18 November 2019

This paper is behind a paywall. However, the researchers have made a brief video available,

There you have it. One random thought, that toilet image reminded me of the controversy over Marcel Duchamp, the Fountain, and who actually submitted a urinal for consideration as a piece of art (Jan. 23, 2019 posting). Hint: Some believe it was Baroness Elsa von Freytag-Loringhoven.