Tag Archives: Maggie Boden

Does understanding your pet mean understanding artificial intelligence better?

Heather Roff’s take on artificial intelligence features an approach I haven’t seen before. From her March 30, 2017 essay for The Conversation (h/t March 31, 2017 news item on phys.org),

It turns out, though, that we already have a concept we can use when we think about AI: It’s how we think about animals. As a former animal trainer (albeit briefly) who now studies how people use AI, I know that animals and animal training can teach us quite a lot about how we ought to think about, approach and interact with artificial intelligence, both now and in the future.

Using animal analogies can help regular people understand many of the complex aspects of artificial intelligence. It can also help us think about how best to teach these systems new skills and, perhaps most importantly, how we can properly conceive of their limitations, even as we celebrate AI’s new possibilities.
Looking at constraints

As AI expert Maggie Boden explains, “Artificial intelligence seeks to make computers do the sorts of things that minds can do.” AI researchers are working on teaching computers to reason, perceive, plan, move and make associations. AI can see patterns in large data sets, predict the likelihood of an event occurring, plan a route, manage a person’s meeting schedule and even play war-game scenarios.

Many of these capabilities are, in themselves, unsurprising: Of course a robot can roll around a space and not collide with anything. But somehow AI seems more magical when the computer starts to put these skills together to accomplish tasks.

Thinking of AI as a trainable animal isn’t just useful for explaining it to the general public. It is also helpful for the researchers and engineers building the technology. If an AI scholar is trying to teach a system a new skill, thinking of the process from the perspective of an animal trainer could help identify potential problems or complications.

For instance, if I try to train my dog to sit, and every time I say “sit” the buzzer to the oven goes off, then my dog will begin to associate sitting not only with my command, but also with the sound of the oven’s buzzer. In essence, the buzzer becomes another signal telling the dog to sit, which is called an “accidental reinforcement.” If we look for accidental reinforcements or signals in AI systems that are not working properly, then we’ll know better not only what’s going wrong, but also what specific retraining will be most effective.

This requires us to understand what messages we are giving during AI training, as well as what the AI might be observing in the surrounding environment. The oven buzzer is a simple example; in the real world it will be far more complicated.

Before we welcome our AI overlords and hand over our lives and jobs to robots, we ought to pause and think about the kind of intelligences we are creating. …

Source: pixabay.com

It’s just last year (2016) that an AI system beat a human Go master player. Here’s how a March 17, 2016 article by John Russell for TechCrunch described the feat (Note: Links have been removed),

Much was written of an historic moment for artificial intelligence last week when a Google-developed AI beat one of the planet’s most sophisticated players of Go, an East Asia strategy game renowned for its deep thinking and strategy.

Go is viewed as one of the ultimate tests for an AI given the sheer possibilities on hand. “There are 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 possible positions [in the game] — that’s more than the number of atoms in the universe, and more than a googol times larger than chess,” Google said earlier this year.

If you missed the series — which AlphaGo, the AI, won 4-1 — or were unsure of exactly why it was so significant, Google summed the general importance up in a post this week.

Far from just being a game, Demis Hassabis, CEO and Co-Founder of DeepMind — the Google-owned company behind AlphaGo — said the AI’s development is proof that it can be used to solve problems in ways that humans may be not be accustomed or able to do:

We’ve learned two important things from this experience. First, this test bodes well for AI’s potential in solving other problems. AlphaGo has the ability to look “globally” across a board—and find solutions that humans either have been trained not to play or would not consider. This has huge potential for using AlphaGo-like technology to find solutions that humans don’t necessarily see in other areas.

I find Roff’s thesis intriguing and is likely applicable to the short-term but in the longer term and in light of the attempts to  create devices that mimic neural plasticity and neuromorphic engineering  I don’t find her thesis convincing.