Tag Archives: Maggie Koerth-Baker

American Assocation for the Advancement of Science (AAAS) meeting in Chicago, Illinois (13 – 17 February 2014)

The 2014 annual meeting of the American Association for the Advancement of Science (AAAS) will take place Feb. 13 – 17, 2014 in Chicago (one of my favourite places), Illinois. It’s always interesting to take a look at the programme and here’s a few of the items I found interesting,

Thursday, Feb. 13, 2014  the AAAS has arranged a number of talks about ‘communicating science and, as usual, bloggers, etc. are confined to presenting under the rubric of social media:

9:00 AM-10:30 AM

Seminar: Communicating Science

11:00 AM-12:30 PM

Seminar: Communicating Science

Engaging with Social Media

To be more specific, here’s the list of presenters for the ‘Journalist’ talk (Note: I have removed links),

Cornelia Dean, The New York Times and Brown University
Carl Zimmer, Independent Science Journalist [Note: Zimmer writes for the NY Times and other prestigious print publications, as well as, being a blogger]

Robert Lee Hotz, The Wall Street Journal

David Baron, Public Radio International

Paula Apsell, NOVA [science program on the US PBS {Public Broadcasting Service} network)

[emphases mine]

Meanwhile, we have this for social media,

Dominique Brossard, University of Wisconsin
Kim Cobb, University of Georgia
Navigating the Science-Social Media Space: Pitfalls and Opportunities
Danielle N. Lee, Cornell University
Raising STEM Awareness Among Under-Served and Under-Represented Audiences
Maggie Koerth-Baker, BoingBoing.net
What’s the Point of Social Media?

It’s nice to see Danielle N. Lee as one of the presenters. Her blog, The Urban Scientist is on the Scientific American blog network (she also featured as a whistle blower and more in the 2013 science blogging scandals [my first post on the topic was Oct. 18, 2013 towards the end of the scandals and I mused on the scandals and discussed  gender in an end-of-year Dec. 31, 2013 posting ) and there’s of course, someone representing BoingBoing, an online publisher,which was conceptualized as a magazine and has now evolved into a group blog.

My basic thesis is that blogs and such are emerging as part of the science media landscape and the types of sessions which isolate bloggers, etc.  do not acknowledge that fact. Yes, it’s true that Zimmer blogs but I can guarantee that the discussion will revolve exclusively around his high profile publishers such as the NY Times and how the participants can get their stories in front of mainstream media journalists and as for the social media session that’s going to focus on how scientists can directly approach their publics.

Moving on, there’s a nanotechnology aspect to the following presentation, although you’d never guess it from the title,

 Preserving Our Cultural Heritage: Science in the Service of Art
Friday, 14 February 2014: 10:00 AM-11:30 AM
Acapulco (Hyatt Regency Chicago)
In 2009 a group of chemists and materials scientists from a wide range of institutions came together for a workshop on “Chemistry and Materials Research at the Interface Between Science and Art,” co-sponsored by the Andrew W. Mellon Foundation and the National Science Foundation. One of the workshop conclusions was that scientists in academia need to be encouraged to collaborate with their peers in cultural heritage institutions, to both increase scientist knowledge of this heritage and also to develop the necessary tools and apply the science to be able to preserve it. The session covers different collaborations that are ongoing in this area, relating to different mediums of art and different technologies that can be applied. The session will also include recent results and successes in this process, both in better understanding of materials as well as in developments for their conservation. The discussion will also address what is needed for collaborations like this to continue to flourish and grow.

One doesn’t get to the ‘nano’ part until looking at the speakers’ list (Note: Links have been removed),

Nicholas Bigelow, University of Rochester
Leonor Sierra, University of Rochester
Nicholas Bigelow, University of Rochester
21st Century Tools for 19th Century Nanotechnology ‘[emphasis mine]
Richard Van Duyne, Northwestern University
Detecting Organic Dyestuffs in Art with SERS
Anikó Bezur, Yale University
Aiming for a Perfect Match: Pairing Collections-Based Scientific Research with Academia

The 19th Century nanotechnology referred to in the title of Biglow’s talk is the daggeureotype (a type of 19th century photographic process) which gained a lot of attention in the last few years when a display of irreplaceable pieces started showing signs of visible (25 pieces) and catastrophic (five pieces) deterioration. There’s more about this fascinating story in my Jan. 10, 2013 posting.

Saturday, Feb.15, 2014, Alan Alda will be at the meeting as a plenary speaker,

Alan Alda: Getting Beyond a Blind Date with Science
Plenary Lecture
Saturday, 15 February 2014: 5:00 PM-6:00 PM
Imperial Ballroom (Fairmont Chicago)
Alan Alda is an actor, writer, director, and visiting professor at the Alan Alda Center for Communicating Science at Stony Brook University, where he helps current and future scientists learn to communicate more clearly and vividly with the public. In collaboration with theater arts faculty at Stony Brook, he is pioneering the use of improvisational theater exercises to help scientists connect more directly with people outside their field. Alda is best known for his award-winning work in movies, theater, and television, but he also has a distinguished record in the public communication of science. For 13 years he hosted the PBS series Scientific American Frontiers, which he has called “the best thing I ever did in front of a camera.” After interviewing hundreds of scientists around the world, he became convinced that many researchers have wonderful stories but need to learn how to tell them better. That realization inspired the creation of Stony Brook’s multidisciplinary Alan Alda Center for Communicating Science in 2009.

The last two sessions I’m highlighting are on standard nanotechnology topics. On Sunday, Feb. 16, 2014, there’s

Nanoelectronics for Renewable Energy: How Nanoscale Innovations Address Global Needs
Sunday, 16 February 2014: 1:30 PM-4:30 PM
Regency B (Hyatt Regency Chicago)
Sometimes it’s possible to get a handle on the world’s biggest problems by thinking creatively on a very small scale—and advances in the rapidly maturing field of nanoelectronics prove it. Innovations that hold promise for broader and faster adoption of renewable energy technologies loom large against a backdrop of population growth, rapid industrialization in developing countries, and initiatives to decrease reliance on both fossil fuels and nuclear power. In this symposium, researchers from the U.S. and Europe will review the latest progress in nanoelectronics for renewable energy across a series of interrelated programs. For instance, new manufacturing approaches such as nanoimprinting, nanotransfer, and spray-on fabrication of organic semiconductors not only point the way toward low-cost production of large-scale electronics such as solar panels, they also enable and inspire novel nanoelectronic device designs. These device-level innovations range from ultrasensitive molecular sensors to nanomagnet logic circuits, and they are of particular interest in solar energy applications. Many lines of research appear to be converging on nanostructure-based solar cells that will be vastly more efficient in capturing sunlight (or even heat) and converting it to electrical power. In addition to outlining these promising paths toward higher-efficiency, lower-cost photovoltaics, the symposium will highlight some of the remaining hurdles, including needed advances in fundamental science.
Patrick Regan, Technical University Munich
William Gilroy, University of Notre Dame
and Hillary Sanctuary, Swiss Federal Institute of Technology (EPFL)

On Monday, Feb. 17, 2014,  nanotechnology features in the final plenary session,

John A. Rogers: Stretchy Electronics That Dissolve in Your Body
Plenary Lecture
Monday, 17 February 2014: 8:30 AM-9:30 AM
Imperial Ballroom (Fairmont Chicago)
Dr. John Rogers’ research includes fundamental and applied aspects of nano- and molecular scale fabrication. He also studies materials and patterning techniques for unusual electronic and photonic devices, with an emphasis on bio-integrated and bio-inspired systems. He received a Ph.D. in physical chemistry from Massachusetts Institute of Technology in 2005. He has published more than 350 papers and is an inventor on over 80 patents and patent applications, many of which are licensed or in active use by large companies and startups that he co-founded. He previously worked for Bell Laboratories as director of its research program in condensed matter physics. He has received recognition including a MacArthur Fellowship from the John D. and Catherine T. MacArthur Foundation, the Lemelson-MIT Prize, the National Security Science and Engineering Faculty Fellowship from the U.S. Department of Defense, the George Smith Award from IEEE, the Robert Henry Thurston Award from American Society of Mechanical Engineers, the Mid-Career Researcher Award from Materials Research Society, the Leo Hendrick Baekeland Award from the American Chemical Society, and the Daniel Drucker Eminent Faculty Award from the University of Illinois.
John Rogers, Ph. D., University of Illinois, Urbana-Champaign

You can find out more about registration and public events for the AAAS 2014 annual meeting here.

Nicholas Bigelow, University of Rochester
Leonor Sierra, University of Rochester
Nicholas Bigelow, University of Rochester
21st Century Tools for 19th Century Nanotechnology

Richard Van Duyne, Northwestern University
Detecting Organic Dyestuffs in Art with SERS

Anikó Bezur, Yale University
Aiming for a Perfect Match: Pairing Collections-Based Scientific Research with Academia

Australian government makes an unexpected nano announcement; San Diego, the Olympics of Science, and the AAAS; Manitoba high school student discusses copyright

Late last week I wrote about a new report, Nanotechnology in Australia: Trends, Applications and Collaborative Opportunities, that was supposed to be launched today. The news article which originated the story was by Cheryl Jones of The Australian, who noted,

THE number of Australian companies in a nanotechnology market likely to be worth trillions of dollars within a decade has plummeted, according to an Australian Academy of Science report.

Federal government reports previously put at about 80 the number of companies engaged in the technology underlying a burgeoning global market.

But now there are only 55 to 60, say nanotechnology experts cited in the academy report, to be released next week.

Little work has moved from the benchtop to the market, the report says, and one obstacle to commercialisation is “often dysfunctional” university intellectual property services.

I checked and this item from the Government of Australia was announced instead (from the Azo Materials site),

The Rudd Government is introducing a comprehensive national framework to guide the safe development of new technologies such as nanotechnology and biotechnology as part of a $38.2 million National Enabling Technologies Strategy released today.

“Technologies like nanotechnology and biotechnology have enormous potential, but we can only realise that potential with the community’s support,” said Innovation Minister, Senator Kim Carr.

“Health, safety and environmental protection are paramount for the Government. This strategy is about ensuring we meet the highest standards while at the same time maximising opportunities to develop these cutting-edge technologies.

I’m not sure what happened to the report but this announcement was a bit of a surprise. Given the material cited in Jones’ story, I would have expected the government to pull back rather than invest more heavily. It seems the government has recognized the barriers noted in the report (which has yet to be released or even seen by anyone other than Cheryl Jones [see my posting here] ETA: my apologies to Ms. Jones, I did find the report days later here at a location I failed to check, for penance I will leave my original wrong-headed and now embarrassing comment) and decided to address the issues head on.

Meanwhile, the ‘Olympics of Science’ is finishing today in San Diego (Feb. 18-22, 2010), the 176th annual meeting of the American Association for the Advancement of Science (AAAS). From the AAAS site,

The 2010 AAAS Annual Meeting is coming to San Diego for the first time, bringing cutting-edge research and a host of free events for the public in its role as the United States’ largest general scientific conference.

Described in The Times Higher Education Supplement as “the Olympics of science conferences,” the Annual Meeting has long been known as the premier multidisciplinary science gathering in the United States. This year, it will continue its evolution to a prime international affair: When the 176th meeting of the society convenes from 18-22 February, scientists, journalists, and educators from more than 50 nations will be there.

Under the banner “Bridging Science and Society,” top researchers will discuss their findings in the context of global challenges in the environment, economy, health, and education. Attendees can explore research in the neurosciences, energy, astrobiology, public health, and environmental change, and learn how these advances directly affect courtroom trials, care for the elderly, sustainable cities, border security, and other public concerns.

As part of an unprecedented effort to share the excitement of scientific discovery with the public, AAAS’s Family Science Days and other free events offer a chance at hands-on learning for students of all ages.

I mention it not just because I’m currently experiencing Vancouver’s Winter Olympics but because, in 2012, the AAAS  will be hosting its annual meeting in Vancouver.  To get a better idea of what this means, I’ve excerpted parts of a story by Maggie Koerth-Baker on Boing, Boing about attending some of the presentations at the AAAS 2010 San Diego Meeting. First an excerpt from a nanotechnology presentation,

[David] Cahill [University of Illinois] is part of a team working to improve thermal insulation with nanotechnology. His goal: Create some kind of new material that will disrupt the transfer of heat energy between two objects. Getting it right would have big implications. For instance, we could drastically improve our ability to capture the waste heat from electrical generation and put it to use in other ways.One possible solution is silicon nanowires. These structures are normally baby-butt smooth, but as you make their surfaces more and more rough, the nanowires conduct less and less thermal energy. Right now, it’s not exactly clear why that trick works. But understanding it could put Cahill’s team on the right path.

He’s not the only one taking energy technology nano. Another researcher on the same panel, Yi Cui, Ph.D., of Stanford, is applying nanostructures to energy storage, in hopes of developing smaller batteries that can hold more power.

In fact, according to Cui, nanotech is absolutely essential to any future progress with batteries. Storage capacity for size has plateaued, he explained. To go further, we have to start making electrodes out of completely different—and probably completely new—materials.

Note: I’ve mentioned Cui and his work at Stanford University here. More from Koerth-Baker, this time it’s from a science history presentation on measurements and averages,

Before that [1761], obviously, scientists still made mistakes. Multiple measurements or experiments still yielded varying results. But they dealt with the variation in a very different way—they picked the answer they thought represented their best work.

To modern ears, that sounds like cheating—”You just randomly decided on the number you liked best? That’s science?” But, at the time, it was perfectly logical. Historically, scientists viewed themselves as craftsmen,[Jeff]  Buchwald said. If you were building a piece of fine furniture, you wouldn’t make a bunch and pick the average to display. You’d choose the finished version that was the best, and best displayed your woodworking skill.

Intriguing, eh? If you want to find out who introduced the concept of averaging scientific measurements and why he was too embarrassed to publish this in his first research, do read Koerth-Baker’s piece.

For my last bit, I’m back on the copyright trail and thanks to Techdirt for alerting me to this essay on file-sharing and morality written by a grade 12 student at Balmoral Hall School (all girls) in Winnipeg,Manitoba. Kamal Dhillon won the 2010 Glassen Ethics competition,

This year’s essay topic was: “Is it OK to download music, movies and games without paying?” There were about 80 entries from high schools in Winnipeg and across the province. The contest, held annually since 2007, is jointly sponsored by The Centre for Professional and Applied Ethics and The Department of Philosophy at the University of Manitoba. The winner receives $1,000. The Winnipeg Free Press publishes the winning essay.

From the Winnipeg Free Press (Feb.13, 2010 edition), an excerpt from Dhillon’s essay,

MILLIONS of people, mostly but not all young, engage in file sharing.

The multinational corporations who make and sell the material are not happy with this development. Their profits are threatened and they, in turn, are threatening to sue, for huge amounts of money, individuals who engage in file sharing.

I support the act of file sharing and argue that the free sharing of these forms of intellectual property would likely produce, overall, more good than harm for society.

It’s a thoughtful piece and well worth reading.