Tag Archives: Maksym Kovalenko

Memristors based on halide perovskite nanocrystals are more powerful and easier to manufacture

A March 8, 2023 news item on phys.org announces research from Swiss and Italian researchers into a new type of memristor,

Researchers at Empa, ETH Zurich and the Politecnico di Milano are developing a new type of computer component that is more powerful and easier to manufacture than its predecessors. Inspired by the human brain, it is designed to process large amounts of data fast and in an energy-efficient way.

In many respects, the human brain is still superior to modern computers. Although most people can’t do math as fast as a computer, we can effortlessly process complex sensory information and learn from experiences, while a computer cannot – at least not yet. And, the brain does all this by consuming less than half as much energy as a laptop.

One of the reasons for the brain’s energy efficiency is its structure. The individual brain cells – the neurons and their connections, the synapses – can both store and process information. In computers, however, the memory is separate from the processor, and data must be transported back and forth between these two components. The speed of this transfer is limited, which can slow down the whole computer when working with large amounts of data.

One possible solution to this bottleneck are novel computer architectures that are modeled on the human brain. To this end, scientists are developing so-called memristors: components that, like brain cells, combine data storage and processing. A team of researchers from Empa, ETH Zurich and the “Politecnico di Milano” has now developed a memristor that is more powerful and easier to manufacture than its predecessors. The researchers have recently published their results in the journal Science Advances.

A March 8, 2023 Swiss Federal Laboratories for Materials Science and Technology (EMPA) press release (also on EurekAlert), which originated the news item, provides details about what makes this memristor different,

Performance through mixed ionic and electronic conductivity

The novel memristors are based on halide perovskite nanocrystals, a semiconductor material known from solar cell manufacturing. “Halide perovskites conduct both ions and electrons,” explains Rohit John, former ETH Fellow and postdoctoral researcher at both ETH Zurich and Empa. “This dual conductivity enables more complex calculations that closely resemble processes in the brain.”

The researchers conducted the experimental part of the study entirely at Empa: They manufactured the thin-film memristors at the Thin Films and Photovoltaics laboratory and investigated their physical properties at the Transport at Nanoscale Interfaces laboratory. Based on the measurement results, they then simulated a complex computational task that corresponds to a learning process in the visual cortex in the brain. The task involved determining the orientation of light based on signals from the retina.

“As far as we know, this is only the second time this kind of computation has been performed on memristors,” says Maksym Kovalenko, professor at ETH Zurich and head of the Functional Inorganic Materials research group at Empa. “At the same time, our memristors are much easier to manufacture than before.” This is because, in contrast to many other semiconductors, perovskites crystallize at low temperatures. In addition, the new memristors do not require the complex preconditioning through application of specific voltages that comparable devices need for such computing tasks. This makes them faster and more energy-efficient.

Complementing rather than replacing

The technology, though, is not quite ready for deployment yet. The ease with which the new memristors can be manufactured also makes them difficult to integrate with existing computer chips: Perovskites cannot withstand temperatures of 400 to 500 degrees Celsius that are needed to process silicon – at least not yet. But according to Daniele Ielmini, professor at the “Politecnico di Milano”, that integration is key to the success for new brain-like computer technologies. “Our goal is not to replace classical computer architecture,” he explains. “Rather, we want to develop alternative architectures that can perform certain tasks faster and with greater energy efficiency. This includes, for example, the parallel processing of large amounts of data, which is generated everywhere today, from agriculture to space exploration.”

Promisingly, there are other materials with similar properties that could be used to make high-performance memristors. “We can now test our memristor design with different materials,” says Alessandro Milozzi, a doctoral student at the “Politecnico di Milano”. “It is quite possible that some of them are better suited for integration with silicon.”

Here’s a link to and a citation for the paper,

Ionic-electronic halide perovskite memdiodes enabling neuromorphic computing with a second-order complexity by Rohit Abraham John, Alessandro Milozzi, Sergey Tsarev, Rolf Brönnimann, Simon C. Boehme, Erfu Wu, Ivan Shorubalko, Maksym V. Kovalenko, and Daniele Ielmini. Science Advances 23 Dec 2022 Vol 8, Issue 51 DOI: 10.1126/sciadv.ade0072

This paper is open access.

Swiss researchers, memristors, perovskite crystals, and neuromorphic (brainlike) computing

A May 18, 2022 news item on Nanowerk highlights research into making memristors more ‘flexible’, (Note: There’s an almost identical May 18, 2022 news item on ScienceDaily but the issuing agency is listed as ETH Zurich rather than Empa as listed on Nanowerk),

Compared with computers, the human brain is incredibly energy-efficient. Scientists are therefore drawing on how the brain and its interconnected neurons function for inspiration in designing innovative computing technologies. They foresee that these brain-inspired computing systems, will be more energy-efficient than conventional ones, as well as better at performing machine-learning tasks.

Much like neurons, which are responsible for both data storage and data processing in the brain, scientists want to combine storage and processing in a single type of electronic component, known as a memristor. Their hope is that this will help to achieve greater efficiency because moving data between the processor and the storage, as conventional computers do, is the main reason for the high energy consumption in machine-learning applications.

Researchers at ETH Zurich, Empa and the University of Zurich have now developed an innovative concept for a memristor that can be used in a far wider range of applications than existing memristors.

“There are different operation modes for memristors, and it is advantageous to be able to use all these modes depending on an artificial neural network’s architecture,” explains ETH Zurich postdoc Rohit John. “But previous conventional memristors had to be configured for one of these modes in advance.”

The new memristors can now easily switch between two operation modes while in use: a mode in which the signal grows weaker over time and dies (volatile mode), and one in which the signal remains constant (non-volatile mode).

Once you get past the first two paragraphs in the Nanowerk news item, you find the ETH Zurich and Empa May 18, 2022 press releases by Fabio Begamin, in both cases, are identical (ETH is listed as the authoring agency on EurekAlert), (Note: A link has been removed in the following),

Just like in the brain

“These two operation modes are also found in the human brain,” John says. On the one hand, stimuli at the synapses are transmitted from neuron to neuron with biochemical neurotransmitters. These stimuli start out strong and then gradually become weaker. On the other hand, new synaptic connections to other neurons form in the brain while we learn. These connections are longer-​lasting.

John, who is a postdoc in the group headed by ETH Professor Maksym Kovalenko, was awarded an ETH fellowship for outstanding postdoctoral researchers in 2020. John conducted this research together with Yiğit Demirağ, a doctoral student in Professor Giacomo Indiveri’s group at the Institute for Neuroinformatics of the University of Zurich and ETH Zurich.

Semiconductor known from solar cells

The memristors the researchers have developed are made of halide perovskite nanocrystals, a semiconductor material known primarily from its use in photovoltaic cells. “The ‘nerve conduction’ in these new memristors is mediated by temporarily or permanently stringing together silver ions from an electrode to form a nanofilament penetrating the perovskite structure through which current can flow,” explains Kovalenko.

This process can be regulated to make the silver-​ion filament either thin, so that it gradually breaks back down into individual silver ions (volatile mode), or thick and permanent (non-​volatile mode). This is controlled by the intensity of the current conducted on the memristor: applying a weak current activates the volatile mode, while a strong current activates the non-​volatile mode.

New toolkit for neuroinformaticians

“To our knowledge, this is the first memristor that can be reliably switched between volatile and non-​volatile modes on demand,” Demirağ says. This means that in the future, computer chips can be manufactured with memristors that enable both modes. This is a significance advance because it is usually not possible to combine several different types of memristors on one chip.

Within the scope of the study, which they published in the journal Nature Communications, the researchers tested 25 of these new memristors and carried out 20,000 measurements with them. In this way, they were able to simulate a computational problem on a complex network. The problem involved classifying a number of different neuron spikes as one of four predefined patterns.

Before these memristors can be used in computer technology, they will need to undergo further optimisation.  However, such components are also important for research in neuroinformatics, as Indiveri points out: “These components come closer to real neurons than previous ones. As a result, they help researchers to better test hypotheses in neuroinformatics and hopefully gain a better understanding of the computing principles of real neuronal circuits in humans and animals.”

Here’s a link to and a citation for the paper,

Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing by Rohit Abraham John, Yiğit Demirağ, Yevhen Shynkarenko, Yuliia Berezovska, Natacha Ohannessian, Melika Payvand, Peng Zeng, Maryna I. Bodnarchuk, Frank Krumeich, Gökhan Kara, Ivan Shorubalko, Manu V. Nair, Graham A. Cooke, Thomas Lippert, Giacomo Indiveri & Maksym V. Kovalenko. Nature Communications volume 13, Article number: 2074 (2022) DOI: https://doi.org/10.1038/s41467-022-29727-1 Published: 19 April 2022

This paper is open access.