Tag Archives: Malaysia

Chen Qiufan, garbage, and Chinese science fiction stories

Garbage has been dominating Canadian news headlines for a few weeks now. First, it was Canadian garbage in the Philippines and now it’s Canadian garbage in Malaysia. Interestingly, we’re also having problems with China, since December 2018, when we detained a top executive from Huawe, a China-based international telecommunicatons company, in accordance with an official request from the US government and, in accordance, with what Prime Minister Justin Trudeau calls the ‘rule of law’. All of this provides an interesting backdrop (for Canadians anyway) on the topic of China, garbage, and science fiction.

A May 16, 2019 article by Anjie Zheng for Fast Company explores some of the latest and greatest from China’s science fiction writing community,

Like any good millennial, I think about my smartphone, to the extent that I do at all, in terms of what it does for me. It lets me message friends, buy stuff quickly, and amass likes. I hardly ever think about what it actually is—a mass of copper wires, aluminum alloys, and lithium battery encased in glass—or where it goes when I upgrade.

Chen Qiufan wants us to think about that. His debut novel, Waste Tide, is set in a lightly fictionalized version of Guiyu, the world’s largest electronic waste disposal. First published in Chinese in 2013, the book was recently released in the U.S. with a very readable translation into English by Ken Liu.

Chen, who has been called “China’s William Gibson,” is part of a younger generation of sci-fi writers who have achieved international acclaim in recent years. Liu Cixin became the first Chinese to win the prestigious Hugo Award for his Three Body Problem in 2015. The Wandering Earth, based on a short story by Liu, became China’s first science-fiction blockbuster when it was released in 2018. It was the highest-grossing film in the fastest-growing film market in the world last year and was recently scooped up by Netflix.

Aynne Kokas in a March 13, 2019 article for the Washington Post describes how the hit film, The Wandering Earth, fits into an overall Chinese-led movie industry focused on the future and Hollywood-like, i. e. like US movie industry, domination,

“The Wandering Earth,” directed by Frant Gwo, takes place in a future where the people of Earth must flee their sun as it swells into a red giant. Thousands of engines — the first of them constructed in Hangzhou, one of China’s tech hubs — propel the entire planet toward a new solar system, while everyone takes refuge from the cold in massive underground cities. On the surface, the only visible reminders of the past are markers of China’s might. The Shanghai Tower, the Oriental Pearl Tower and a stadium for the Shanghai 2044 Olympics all thrust out of the ice, having apparently survived the journey’s tsunamis, deep freeze and cliff-collapsing earthquakes.

The movie is China’s first big-budget sci-fi epic, and its production was ambitious, involving some 7,000 workers and 10,000 specially-built props. Audience excitement was correspondingly huge: Nearly half a million people wrote reviews of the film on Chinese social network site Douban. Having earned over $600 million in domestic sales, “The Wandering Earth” marks a major achievement for the country’s film industry.

It is also a major achievement for the Chinese government.

Since opening up the country’s film market in 2001, the Chinese government has aspired to learn from Hollywood how to make commercially appealing films, as I detail in my book “Hollywood Made in China.” From initial private offerings for state media companies, to foreign investment in films, studios and theme parks, the government allowed outside capital and expertise to grow the domestic commercial film industry — but not at the expense of government oversight. This policy’s underlying aim was to expand China’s cultural clout and political influence.

Until recently, Hollywood films dominated the country’s growing box office. That finally changed in 2015, with the release of major local blockbusters “Monster Hunt” and “Lost in Hong Kong.” The proliferation of homegrown hits signaled that the Chinese box office profits no longer depend on Hollywood studio films — sending an important message to foreign trade negotiators and studios.

Kokas provides some insight into how the Chinese movie industry is designed to further the Chinese government’s vision of the future. As a Canadian, I don’t see that much difference between the US and China industry’s vision. Both tout themselves as the answer to everything, both target various geographic regions for the ‘bad guys’, and both tout their national moral superiority in their films. I suppose the same can be said for most countries’ film industries but both China and the US can back themselves with economic might.

Zheng’s article delves deeper into garbage, and Chen Qiufan’s science fiction while illuminating the process of changing a ‘good guy’ into a ‘bad guy’,

Chen, 37, grew up a few miles from the real Guiyu. Mountains of scrap electronics are shipped there every year from around the world. Thousands of human workers sort through the junk for whatever can be reduced to reusable precious metals. They strip wires and disassemble circuit boards, soaking them in acid baths for bits of copper, tin, platinum, and gold. Whatever can’t be processed is burned. The water in Guiyu has been so contaminated it is undrinkable; the air is toxic. The workers, migrants from poor rural areas in China, have an abnormally high rate of respiratory diseases and cancer.

For the decades China was revving its economic engine, authorities were content to turn a blind eye to the human costs of the recycling business. It was an economic win-win. For developed countries like the U.S., it’s cheaper to ship waste to places like China than trying to recycle it themselves. And these shipments create jobs and profits for the Chinese.

In recent years, however, steps have been taken to protect workers and the environment in China. …

Waste Tide highlights the danger of “throw-away culture,” says Chen, also known in English as Stanley Chan. When our personal electronics stop serving us, whether because they break or our lust for the newest specs get the better of us, we toss them. Hopefully we’re conscientious enough to bring them to local recyclers that claim they’ll dispose of them properly. But that’s likely the end of our engagement with the trash. Out of sight, out of mind.

Fiction, and science fiction in particular, is an apt medium for Chen to probe the consequences of this arrangement. “It’s not journalism,” he says. Instead, the story is an imaginative, action-packed tale of power imbalances, and the individual characters that think they’re doing good. Waste Tide culminates, expectedly, in an insurgency of the workers against their exploitative overlords.

Guiyu has been fictionalized in Waste Tide as “Silicon Isle.” (A homophone of the Chinese character “gui” translates to “Silicon,” and “yu” is an island). The waste hell is ruled by three ruthless family clans, dominated by the Luo clan. They treat workers as slaves and derisively call them “waste people.”

Technology in the near-future has literally become extensions of selves and only exacerbates class inequality. Prosthetic inner ears improve balance; prosthetic limbs respond to mental directives; helmets heighten natural senses. The rich “switch body parts as easily as people used to switch phones.” Those with fewer means hack discarded prosthetics to get the same kick. When they’re no longer needed, synthetic body parts contaminated with blood and bodily fluids are added to the detritus.

At the center of the story is Mimi, a migrant worker who dreams of earning enough money to return home and live a quiet life. She strikes up a relationship with Kaizong, a Chinese-American college graduate trying to rediscover his roots. But the good times are short-lived. The boss of the Luo clan becomes convinced that Mimi holds the key to rousing his son from his coma and soon kidnaps the hapless girl.

For all the advanced science, there is a backwards superstition that animates Silicon Isle. [emphasis mine] The clan bosses subscribe to “a simple form of animism.” They pray to the wind and sea for ample supplies of waste. They sacrifice animals (and some humans) to bring them luck, and use local witches to exorcise evil spirits. Boss Luo has Mimi kidnapped and tortured in an effort to appease the gods in the hopes of waking up his comatose son. The torture of Mimi infects her with a mysterious disease that splits her consciousness. The waste people are enraged by her violation, which eventually sparks a war against the ruling clans. [emphasis mine]

A parallel narrative involves an American, Scott Brandle, who works for an environmental company. While in town trying to set up a recycling facility, he stumbles onto the truth about the virus that may have infected Mimi: a chemical weapon developed and used by the U.S. [emphasis mine] years earlier. Invented by a Japanese researcher [emphasis mine] working in the U.S., the drug is capable of causing mass hallucinations and terror. When Brandle learns that Mimi may have been infected with this virus, he wants a piece of her [emphasis mine] too, so that scientists back home can study its effects.

Despite portraying the future of China in a less-than-positive light, [emphasis mine] Waste Tide has not been banned–a common result for works that displease Beijing; instead, the book won China’s prestigious Nebula award for science fiction, and is about to be reprinted on the mainland. …

An interview with Chen (it’s worthwhile to read his take on what he’s doing) follows the plot description in this intriguing and what seems to be a sometimes disingenuous article.

The animism and the war against the ruling class? It reminds me a little of the tales told about old Chine and Mao’s campaign to overthrow the ruling classes who had kept control of the proletariat, in part, by encouraging ‘superstitious religious belief’.

As far as I’m concerned the interpretation can go either or both ways: a critique of the current government’s policies and where they might lead in the future and/or a reference back to the glorious rising of China’s communist government. Good fiction always contains ambiguity; it’s what fuels courses in literature.

Also, the bad guys are from the US and Japan, countries which have long been allied with each other and with which China has some serious conflicts.

Interesting, non? And, it’s not that different from what you’ll see in US (or any other country’s for that matter) science fiction wiring and movies, except that the heroes are Chinese.

Getting back to the garbage in the Philippines, there are 69 containers on their way back to Canada as of May 30, 2019. As for why all this furor about Canadian garbage in the Philippines and Malaysia, it’s hard to believe that Canada is the only sinner. Of course, we are in China’s bad books due to the Huawei executive’s detention here (she is living in her home in Vancouver and goes out and about as she wishes, albeit under surveillance).

Anyway, I can’t help but wonder if indirect pressure is being exerted by China or if the Philippines and Malaysia have been incentivized in some way by China. The timing has certainly been interesting.

Political speculation aside, it’s probably a good thing that countries are refusing to take our garbage. As I’m sure more than one environmentalist would be happy to point out, it’s about time we took care of our own mess.

The security of the Internet of Nano-Things with NanoMalaysia’s CEO Dr Rezal Khairi Ahmad

I’ve not come across the Internet of Nano-Things before and I’m always glad to be introduced to something new. In this case, I’m doubly happy as I get to catch up (a little) with the Malaysian nano scene. From an April 19, 2017 article by Avanti Kumar for mis.asia.com (Note: Links have been removed),

After being certified in 2011 as a nanocentre, national applied research agency MIMOS continued to make regular moves to boost Malaysia’s nanotechnology ambitions. This included helping to develop the national graphene action plan (NGAP 2020).

Much of the task of driving and commercialising the NGAP ecosystem is in the hands of NanoMalaysia, which was incorporated in 2011 as a company limited by guarantee (CLG) under Malaysia’s Ministry of Science, Technology and Innovation (MOSTI) to act as a business entity.

During another event in March 2016 where I saw that 360 new products were to be commercialised under NGAP, NanoMalaysia’s chief executive officer Dr. Rezal Khairi Ahmad said that benefits would include a US$5 billion impact on GNI (gross net income) and 9,000 related new jobs by the year 2020.

In his capacity as a keynote speaker at this year’s Computerworld Security Summit in Kuala Lumpur (20 April 2017), Dr Rezal agreed to a security-themed interview on this relatively new industry sector.  This is also part of a series of special security features.

To start, I asked Dr Rezal for a brief run-through of his role.

[RKA]  I’m the founding Chief Executive Officer and also Board Member of NanoMalaysia, Nano Commerce Sdn. Bhd, representing NanoMalaysia’s business interests, the Chairman of NanoVerify Sdn. Bhd, a nanotechnology certification entity and a Director of Nanovation Ventures Sdn. Bhd., an investment arm of NanoMalaysia.

Prior to this, I served as Acting Under-Secretary of National Nanotechnology Directorate, Ministry of Science, Technology and Innovation on the policy aspect of nanotechnology and vice president of [national investment body] Khazanah Nasional touching on human capital and investment research.

NanoMalaysia’s primary role in the development of Malaysia’s National Graphene Action Plan 2020 together with Agensi Inovasi Malaysia and PEMANDU [Performance Management & Delivery Unit attached to Prime Minister’s Office] is a major landmark in our journey to ensure Malaysia stays competitive in the global innovation landscape particularly in nanotechnology, which cuts across all industries including ICT [information and communications technologies].

Can you talk about graphene and its significance to local industry?

Graphene is touted as one of the game-changing advanced materials made of one atom-thick carbon and acknowledged by World Economic Forum [WEF] as no. 4 emerging technology in 2016.

Beyond being a fancy nano material, graphene plays a central role in the development of endogenous hardware aspects of Malaysia’s Internet of Things aspirations or the now evolved Internet of Nano-Things (IoNT). Some of these are:
-·Super small, lightweight and hyper-sensitive low-cost Graphene-based sensors and Radio Frequency ID (RFID)
– Higher speed, Low loss and power consumption graphene based optical transmitter and receiver for 5G systems
– Making IoNT a low-cost and practical industrial and domestic solutions in Malaysia.

Let’s move to the security aspects of nanotechnology: what’s your take on IoNT?

In the context of IoNT, which WEF acknowledged to be the top emerging technology in 2016, the current work-in-progress,  ‘ubiquitous’ deployment of sensors in Malaysia and worldwide, I certainly see increasing data security risks at the sensor, transmission, collection, processing and even analytics levels.

The initial industry approaches to IoNT data security will probably be polarised between cascaded and centralised system approaches.

I think some hacking attacks will obviously focus on data theft. I therefore foresee a trend favouring cascaded security – with both hardware, software and more advanced data encryption technologies in place.

What security steps do you currently advise?

The priority is to tackle potential data theft at every stage of IoNT systems.  The best-available preventive measures should include some versions of cascaded and embedded security in the form of hardware tags and advanced encryption.

To end, what’s your main message for business and IT leaders?

The digital era has removed the clear line that once separated State and Business as well as People. Everything and everyone is more interconnected. We are now an ecosystem both by chance and design. Cyber-attacks can be made to afflict either one and be used to hold any one at ransom thus creating a local or even global systemic chain reaction effect.

The connected world presents endless commercial, social and environmental development opportunities…and threats. The development and deployment of emerging cyber-related technologies, in particular IoNT – which promises a market size of US$9.69 billion by 2020 – should be done responsibly in the form of infused data security technologies to ensure prolific market acceptance and profitable returns.

For our part, NanoMalaysia is working with various parties locally and abroad push Malaysia’s strategic industry sectors to be relevant to the Fourth Industrial Revolution supported by cyber-physical systems manifesting into full automation, robots, artificial intelligence, de-centralised power generation, energy storage, water and food supplies, remote assets and logistics management and custom manufacturing requiring secured data sensing, traffic and analytics systems in place.

If you have the time, I advise reading the article in its entirety.

Prawn (shrimp) shopping bags and saving the earth

Using a material (shrimp shells) that is disposed of as waste to create a biodegradable product (shopping bags) can only be described as a major win. A Jan. 10, 2017 news item on Nanowerk makes the announcement,

Bioengineers at The University of Nottingham are trialling how to use shrimp shells to make biodegradable shopping bags, as a ‘green’ alternative to oil-based plastic, and as a new food packaging material to extend product shelf life.

The new material for these affordable ‘eco-friendly’ bags is being optimised for Egyptian conditions, as effective waste management is one of the country’s biggest challenges.

An expert in testing the properties of materials, Dr Nicola Everitt from the Faculty of Engineering at Nottingham, is leading the research together with academics at Nile University in Egypt.

“Non-degradable plastic packaging is causing environmental and public health problems in Egypt, including contamination of water supplies which particularly affects living conditions of the poor,” explains Dr Everitt.

Natural biopolymer products made from plant materials are a ‘green’ alternative growing in popularity, but with competition for land with food crops, it is not a viable solution in Egypt.

A Jan. 10, 2017 University of Nottingham press release, which originated the news item,expands on the theme,

This new project aims to turn shrimp shells, which are a part of the country’s waste problem into part of the solution.

Dr Everitt said: “Use of a degradable biopolymer made of prawn shells for carrier bags would lead to lower carbon emissions and reduce food and packaging waste accumulating in the streets or at illegal dump sites. It could also make exports more acceptable to a foreign market within a 10-15-year time frame. All priorities at a national level in Egypt.”

Degradable nanocomposite material

The research is being undertaken to produce an innovative biopolymer nanocomposite material which is degradable, affordable and suitable for shopping bags and food packaging.

Chitosan is a man-made polymer derived from the organic compound chitin, which is extracted from shrimp shells, first using acid (to remove the calcium carbonate “backbone” of the crustacean shell) and then alkali (to produce the long molecular chains which make up the biopolymer).

The dried chitosan flakes can then be dissolved into solution and polymer film made by conventional processing techniques.

Chitosan was chosen because it is a promising biodegradable polymer already used in pharmaceutical packaging due to its antimicrobial, antibacterial and biocompatible properties. The second strand of the project is to develop an active polymer film that absorbs oxygen.

Enhancing food shelf life and cutting food waste

This future generation food packaging could have the ability to enhance food shelf life with high efficiency and low energy consumption, making a positive impact on food wastage in many countries.

If successful, Dr Everitt plans to approach UK packaging manufacturers with the product.

Additionally, the research aims to identify a production route by which these degradable biopolymer materials for shopping bags and food packaging could be manufactured.

I also found the funding for this project to be of interest (from the press release),

The project is sponsored by the Newton Fund and the Newton-Mosharafa Fund grant and is one of 13 Newton-funded collaborations for The University of Nottingham.

The collaborations, which are designed to tackle community issues through science and innovation, with links formed with countries such as Brazil, Egypt, Philippines and Indonesia.

Since the Newton Fund was established in 2014, the University has been awarded a total of £4.5m in funding. It also boasts the highest number of institutional-led collaborations.

Professor Nick Miles Pro-Vice-Chancellor for Global Engagement said: “The University of Nottingham has a long and established record in global collaboration and research.

The Newton Fund plays to these strengths and enables us to work with institutions around the world to solve some of the most pressing issues facing communities.”

From a total of 68 universities, The University of Nottingham has emerged as the top awardee of British Council Newton Fund Institutional Links grants (13) and is joint top awardee from a total of 160 institutions competing for British Council Newton Fund Researcher Links Workshop awards (6).

Professor Miles added: “This is testament to the incredible research taking place across the University – both here in the UK and in the campuses in Malaysia and China – and underlines the strength of our research partnerships around the world.”

That’s it!

Graphene Malaysia 2016 gathering and Malaysia’s National Graphene Action Plan 2020

Malaysia is getting ready to host a graphene conference according to an Oct. 10, 2016 news item on Nanotechnology Now,

The Graphene Malaysia 2016 [Nov. 8 – 9, 2016] (www.graphenemalaysiaconf.com) is jointly organized by NanoMalaysia Berhad and Phantoms Foundation. The conference will be centered on graphene industry interaction and collaborative innovation. The event will be launched under the National Graphene Action Plan 2020 (NGAP 2020), which will generate about 9,000 jobs and RM20 (US$4.86) billion GNI impact by the year 2020.

First speakers announced:
Murni Ali (Nanomalaysia, Malaysia) | Francesco Bonaccorso (Istituto Italiano di Tecnologia, Italy) | Antonio Castro Neto (NUS, Singapore) | Antonio Correia (Phantoms Foundation, Spain)| Pedro Gomez-Romero (ICN2 (CSIC-BIST), Spain) | Shu-Jen Han (Nanoscale Science & Technology IBM T.J. Watson Research Center, USA) | Kuan-Tsae Huang (AzTrong, USA/Taiwan) | Krzysztof Koziol (FGV Cambridge Nanosystems, UK) | Taavi Madiberk (Skeleton Technologies, Estonia) | Richard Mckie (BAE Systems, UK) | Pontus Nordin (Saab AB, Saab Aeronautics, Sweden) | Elena Polyakova (Graphene Laboratories Inc., USA) | Ahmad Khairuddin Abdul Rahim (Malaysian Investment Development Authority (MIDA), Malaysia) | Adisorn Tuantranont (Thailand Organic and Printed Electronics Innovation Center, Thailand) |Archana Venugopal (Texas Instruments, USA) | Won Jong Yoo (Samsung-SKKU Graphene-2D Center (SSGC), South Korea) | Hongwei Zhu (Tsinghua University, China)

You can check for more information and deadlines in the Nanotechnology Now Oct. 10, 2016 news item.

The Graphene Malalysia 2016 conference website can be found here and Malaysia’s National Graphene Action Plan 2020, which is well written, can be found here (PDF).  This portion from the executive summary offers some insight into Malyasia’s plans to launch itself into the world of high income nations,

Malaysia’s aspiration to become a high-income nation by 2020 with improved jobs and better outputs is driving the country’s shift away from “business as usual,” and towards more innovative and high value add products. Within this context, and in accordance with National policies and guidelines, Graphene, an emerging, highly versatile carbon-based nanomaterial, presents a unique opportunity for Malaysia to develop a high value economic ecosystem within its industries.  Isolated only in 2004, Graphene’s superior physical properties such as electrical/ thermal conductivity, high strength and high optical transparency, combined with its manufacturability have raised tremendous possibilities for its application across several functions and make it highly interesting for several applications and industries.  Currently, Graphene is still early in its development cycle, affording Malaysian companies time to develop their own applications instead of relying on international intellectual property and licenses.

Considering the potential, several leading countries are investing heavily in associated R&D. Approaches to Graphene research range from an expansive R&D focus (e.g., U.S. and the EU) to more focused approaches aimed at enhancing specific downstream applications with Graphene (e.g., South Korea). Faced with the need to push forward a multitude of development priorities, Malaysia must be targeted in its efforts to capture Graphene’s potential, both in terms of “how to compete” and “where to compete”. This National Graphene Action Plan 2020 lays out a set of priority applications that will be beneficial to the country as a whole and what the government will do to support these efforts.

Globally, much of the Graphene-related commercial innovation to date has been upstream, with producers developing techniques to manufacture Graphene at scale. There has also been some development in downstream sectors, as companies like Samsung, Bayer MaterialScience, BASF and Siemens explore product enhancement with Graphene in lithium-ion battery anodes and flexible displays, and specialty plastic and rubber composites. However the speed of development has been uneven, offering Malaysian industries willing to invest in innovation an opportunity to capture the value at stake. Since any innovation action plan has to be tailored to the needs and ambitions of local industry, Malaysia will focus its Graphene action plan initially on larger domestic industries (e.g., rubber) and areas already being targeted by the government for innovation such as energy storage for electric vehicles and conductive inks.

In addition to benefiting from the physical properties of Graphene, Malaysian downstream application providers may also capture the benefits of a modest input cost advantage for the domestic production of Graphene.  One commonly used Graphene manufacturing technique, the chemical vapour deposition (CVD) production method, requires methane as an input, which can be sourced economically from local biomass. While Graphene is available commercially from various producers around the world, downstream players may be able to enjoy some cost advantage from local Graphene supply. In addition, co-locating with a local producer for joint product development has the added benefit of speeding up the R&D lifecycle.

That business about finding downstream applications could also to the Canadian situation where we typically offer our resources (upstream) but don’t have an active downstream business focus. For example, we have graphite mines in Ontario and Québec which supply graphite flakes for graphene production which is all upstream. Less well developed are any plans for Canadian downstream applications.

Finally, it was interesting to note that the Phantoms Foundation is organizing this Malaysian conference since the same organization is organizing the ‘2nd edition of Graphene & 2D Materials Canada 2016 International Conference & Exhibition’ (you can find out more about the Oct. 18 – 20, 2016 event in my Sept. 23, 2016 posting). I think the Malaysians have a better title for their conference, far less unwieldy.

Artificial intelligence used for wildlife protection

PAWS (Protection Assistant for Wildlife Security), an artificial intelligence (AI) program, has been tested in Uganda and Malaysia. according to an April 22, 2016 US National Science Foundation (NSF) news release (also on EurekAlert but dated April 21, 2016), Note: Links have been removed,

A century ago, more than 60,000 tigers roamed the wild. Today, the worldwide estimate has dwindled to around 3,200. Poaching is one of the main drivers of this precipitous drop. Whether killed for skins, medicine or trophy hunting, humans have pushed tigers to near-extinction. The same applies to other large animal species like elephants and rhinoceros that play unique and crucial roles in the ecosystems where they live.

Human patrols serve as the most direct form of protection of endangered animals, especially in large national parks. However, protection agencies have limited resources for patrols.

With support from the National Science Foundation (NSF) and the Army Research Office, researchers are using artificial intelligence (AI) and game theory to solve poaching, illegal logging and other problems worldwide, in collaboration with researchers and conservationists in the U.S., Singapore, Netherlands and Malaysia.

“In most parks, ranger patrols are poorly planned, reactive rather than pro-active, and habitual,” according to Fei Fang, a Ph.D. candidate in the computer science department at the University of Southern California (USC).

Fang is part of an NSF-funded team at USC led by Milind Tambe, professor of computer science and industrial and systems engineering and director of the Teamcore Research Group on Agents and Multiagent Systems.

Their research builds on the idea of “green security games” — the application of game theory to wildlife protection. Game theory uses mathematical and computer models of conflict and cooperation between rational decision-makers to predict the behavior of adversaries and plan optimal approaches for containment. The Coast Guard and Transportation Security Administration have used similar methods developed by Tambe and others to protect airports and waterways.

“This research is a step in demonstrating that AI can have a really significant positive impact on society and allow us to assist humanity in solving some of the major challenges we face,” Tambe said.

PAWS puts the claws in anti-poaching

The team presented papers describing how they use their methods to improve the success of human patrols around the world at the AAAI Conference on Artificial Intelligence in February [2016].

The researchers first created an AI-driven application called PAWS (Protection Assistant for Wildlife Security) in 2013 and tested the application in Uganda and Malaysia in 2014. Pilot implementations of PAWS revealed some limitations, but also led to significant improvements.

Here’s a video describing the issues and PAWS,

For those who prefer to read about details rather listen, there’s more from the news release,

PAWS uses data on past patrols and evidence of poaching. As it receives more data, the system “learns” and improves its patrol planning. Already, the system has led to more observations of poacher activities per kilometer.

Its key technical advance lies in its ability to incorporate complex terrain information, including the topography of protected areas. That results in practical patrol routes that minimize elevation changes, saving time and energy. Moreover, the system can also take into account the natural transit paths that have the most animal traffic – and thus the most poaching – creating a “street map” for patrols.

“We need to provide actual patrol routes that can be practically followed,” Fang said. “These routes need to go back to a base camp and the patrols can’t be too long. We list all possible patrol routes and then determine which is most effective.”

The application also randomizes patrols to avoid falling into predictable patterns.

“If the poachers observe that patrols go to some areas more often than others, then the poachers place their snares elsewhere,” Fang said.

Since 2015, two non-governmental organizations, Panthera and Rimbat, have used PAWS to protect forests in Malaysia. The research won the Innovative Applications of Artificial Intelligence award for deployed application, as one of the best AI applications with measurable benefits.

The team recently combined PAWS with a new tool called CAPTURE (Comprehensive Anti-Poaching Tool with Temporal and Observation Uncertainty Reasoning) that predicts attacking probability even more accurately.

In addition to helping patrols find poachers, the tools may assist them with intercepting trafficked wildlife products and other high-risk cargo, adding another layer to wildlife protection. The researchers are in conversations with wildlife authorities in Uganda to deploy the system later this year. They will present their findings at the 15th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2016) in May.

“There is an urgent need to protect the natural resources and wildlife on our beautiful planet, and we computer scientists can help in various ways,” Fang said. “Our work on PAWS addresses one facet of the problem, improving the efficiency of patrols to combat poaching.”

There is yet another potential use for PAWS, the prevention of illegal logging,

While Fang and her colleagues work to develop effective anti-poaching patrol planning systems, other members of the USC team are developing complementary methods to prevent illegal logging, a major economic and environmental problem for many developing countries.

The World Wildlife Fund estimates trade in illegally harvested timber to be worth between $30 billion and $100 billion annually. The practice also threatens ancient forests and critical habitats for wildlife.

Researchers at USC, the University of Texas at El Paso and Michigan State University recently partnered with the non-profit organization Alliance Vohoary Gasy to limit the illegal logging of rosewood and ebony trees in Madagascar, which has caused a loss of forest cover on the island nation.

Forest protection agencies also face limited budgets and must cover large areas, making sound investments in security resources critical.

The research team worked to determine the balance of security resources in which Madagascar should invest to maximize protection, and to figure out how to best deploy those resources.

Past work in game theory-based security typically involved specified teams — the security workers assigned to airport checkpoints, for example, or the air marshals deployed on flight tours. Finding optimal security solutions for those scenarios is difficult; a solution involving an open-ended team had not previously been feasible.

To solve this problem, the researchers developed a new method called SORT (Simultaneous Optimization of Resource Teams) that they have been experimentally validating using real data from Madagascar.

The research team created maps of the national parks, modeled the costs of all possible security resources using local salaries and budgets, and computed the best combination of resources given these conditions.

“We compared the value of using an optimal team determined by our algorithm versus a randomly chosen team and the algorithm did significantly better,” said Sara Mc Carthy, a Ph.D. student in computer science at USC.

The algorithm is simple and fast, and can be generalized to other national parks with different characteristics. The team is working to deploy it in Madagascar in association with the Alliance Vohoary Gasy.

“I am very proud of what my PhD students Fei Fang and Sara Mc Carthy have accomplished in this research on AI for wildlife security and forest protection,” said Tambe, the team lead. “Interdisciplinary collaboration with practitioners in the field was key in this research and allowed us to improve our research in artificial intelligence.”

Moreover, the project shows other computer science researchers the potential impact of applying their research to the world’s problems.

“This work is not only important because of the direct beneficial impact that it has on the environment, protecting wildlife and forests, but on the way that it can inspire other to dedicate their efforts into making the world a better place,” Mc Carthy said.

The curious can find out more about Panthera here and about Alliance Vohoary Gasy here (be prepared to use your French language skills). Unfortunately, I could not find more information about Rimbat.

Constructing a liver

Chinese researchers have taken a step closer to constructing complex (lifelike) liver tissue according to a Jan. 27, 2016 American Chemical Society (ACS) news release (also on EurekAlert),

Engineered liver tissue could have a range of important uses, from transplants in patients suffering from the organ’s failure to pharmaceutical testing [this usage is sometimes known as liver-on-a-chip]. Now scientists report in ACS’ journal Analytical Chemistry the development of such a tissue, which closely mimics the liver’s complicated microstructure and function more effectively than existing models.

The liver serves a critical role in digesting food and detoxifying the body. But due to a variety of factors, including viral infections, alcoholism and drug reactions, the organ can develop chronic or acute problems. When it doesn’t work well, a person can suffer abdominal pain, swelling, nausea and other symptoms. Complete liver failure can be life-threatening and can require a transplant, a procedure that currently depends on human donors. To curtail this reliance and provide an improved model for predicting drugs’ side effects, scientists have been engineering liver tissue in the lab. But so far, they haven’t achieved the complex architecture of the real thing. Jinyi Wang and colleagues came up with a new approach.

Wang’s team built a microfluidics-based tissue that copies the liver’s complex lobules, the organ’s tiny structures that resemble wheels with spokes. They did this with human cells from a liver and an aorta, the body’s main artery. In the lab, the engineered tissue had a metabolic rate that was closer to real-life levels than other liver models, and it successfully simulated how a real liver would react to various drug combinations. The researchers conclude their approach could lead to the development of functional liver tissue for clinical applications and screening drugs for side effects and potentially harmful interactions.

Here’s a link to and a citation for the paper,

On-Chip Construction of Liver Lobule-like Microtissue and Its Application for Adverse Drug Reaction Assay by Chao Ma, Lei Zhao, En-Min Zhou, Juan Xu, Shaofei Shen, and Jinyi Wang. Northwest A&F University, China Anal. Chem., Article ASAP DOI: 10.1021/acs.analchem.5b03869 Publication Date (Web): January 7, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

In a teleconference earlier this month (January 2016), I spoke to researchers at the University of Malaya, Universiti Teknologi Malaysia (UTM), and Harvard University about a joint lung and nanomedicine research project where I asked researcher Joseph Brain (Harvard) about using lung-on-a-chip testing in place of in vivo (animal) testing and he indicated more confidence in the ‘precision cut lung slices’ technique. (You can find out more about the Malaysian project in my Jan. 12, 2016 posting but there’s only a brief mention of Brain’s preferred alternative animal testing technique.)

University of Malaya (Malaysia) and Harvard University (US) partner on nanomedicine/prevention projects

Unusually for a ‘nanomedicine’ project, the talk turned to prevention during a Jan. 10, 2016 teleconference featuring Dr. Noor Hayaty Abu Kasim of the University of Malaya and Dr. Wong Tin Wui of the Universiti Teknologi Malaysia and Dr. Joseph Brain of  Harvard University in a discussion about Malaysia’s major investment in nanomedicine treatment for lung diseases.

A Jan. 11, 2016 Malaysian Industry-Government Group for High Technology (MIGHT) news release on EurekAlert announces both the lung project (University of Malaya/Harvard University) and others under Malaysia’s NanoMITe (Malaysia Institute for Innovative Nanotechnology) banner,

Malaysian scientists are joining forces with Harvard University experts to help revolutionize the treatment of lung diseases — the delivery of nanomedicine deep into places otherwise impossible to reach.

Under a five-year memorandum of understanding between Harvard and the University of Malaya, Malaysian scientists will join a distinguished team seeking a safe, more effective way of tackling lung problems including chronic obstructive pulmonary disease (COPD), the progressive, irreversible obstruction of airways causing almost 1 in 10 deaths today.

Treatment of COPD and lung cancer commonly involves chemotherapeutics and corticosteroids misted into a fine spray and inhaled, enabling direct delivery to the lungs and quick medicinal effect. However, because the particles produced by today’s inhalers are large, most of the medicine is deposited in the upper respiratory tract.

The Harvard team, within the university’s T.H. Chan School of Public Health, is working on “smart” nanoparticles that deliver appropriate levels of diagnostic and therapeutic agents to the deepest, tiniest sacs of the lung, a process potentially assisted by the use of magnetic fields.

Malaysia’s role within the international collaboration: help ensure the safety and improve the effectiveness of nanomedicine, assessing how nanomedicine particles behave in the body, what attaches to them to form a coating, where the drug accumulates and how it interacts with target and non-target cells.

Led by Joseph Brain, the Cecil K. and Philip Drinker Professor of Environmental Physiology, the research draws on extensive expertise at Harvard in biokinetics — determining how to administer medicine to achieve the proper dosage to impact target cells and assessing the extent to which drug-loaded nanoparticles pass through biological barriers to different organs.

The studies also build on decades of experience studying the biology of macrophages — large, specialized cells that recognize, engulf and destroy target cells as part of the human immune system.

Manipulating immune cells represents an important strategy for treating lung diseases like COPD and lung cancer, as well as infectious diseases including tuberculosis and listeriosis.

Dr. Brain notes that every day humans breathe 20,000 litres of air loaded with bacteria and viruses, and that the world’s deadliest epidemic — an outbreak of airborne influenza in the 1920s — killed tens of millions.

Inhaled nanomedicine holds the promise of helping doctors prevent and treat such problems in future, reaching the target area more swiftly than if administered orally or even intravenously.

This is particularly true for lung cancer, says Dr. Brain. “Experiments have demonstrated that a drug dose administered directly to the respiratory tract achieves much higher local drug concentrations at the target site.”

COPD meanwhile affects over 235 million people worldwide and is on the rise, with 80% of cases caused by cigarette smoking. Exacerbated by poor air quality, COPD is expected to rise from 5th to 3rd place among humanity’s most lethal health problems by 2030.

“Nanotechnology is making a significant impact on healthcare by delivering improvements in disease diagnosis and monitoring, as well as enabling new approaches to regenerative medicine and drug delivery,” says Prof. Zakri Abdul Hamid, Science Advisor to the Prime Minister of Malaysia.

“Malaysia, through NanoMITe, is proud and excited to join the Harvard team and contribute to the creation of these life-giving innovations.”

While neither Dr. Abu Kasim nor Dr. Wong are included in the news release both are key members of the Malaysian team tasked to work on nanomedicines for lung disease. Dr. Abu Kasim is a professor of restorative dentistry at the University of Malaya and familiar with nanotechnology-enabled materials and nanoparticles through her work in that field. She is also the project lead for NanoMITe’s Project 4: Consequences of Smoking among the Malaysian Population. From the project webpage,

Smoking is a prevalent problem worldwide but especially so in Asia where nearly more than half of the world population reside. Smoking kills half of its users and despite the many documented harm to health is still a major problem. Globally six million lives are lost each year because of this addiction. This number is estimated to increase to ten million within the next two decades. Apart from the mortality, smokers are at increased risk of health morbidities of smoking which is a major risk factor for many non-communicable diseases (NCD) such as heart diseases, respiratory conditions and even mental health. Together, smoking reduces life expectancy 10-15 years compared to a non-smoker. Those with mental health lose double the years, 20 -25 years of their life as a result of their smoking. The current Malaysia death toll is at 10,000 lives per year due to smoking related health complications.

Although the health impact of smoking has been reported at length, this information is limited nationally. Lung cancer for example is closely linked to smoking, however, the study of the link between the two is lacking in Malaysia. Lung cancer particularly in Malaysia is also often diagnosed late, usually at stages 3 and 4. These stages of cancer are linked with a poorer prognosis. As a result to the harms to health either directly or indirectly, the World Health Organization (WHO) has introduced a legal treaty, the first, called the Framework Convention for Tobacco Control (FCTC). This treaty currently ratified by 174 countries was introduced in 2005 and consists of 38 FCTC Articles which are evidence based policies, known to assist member countries to reduce their smoking prevalence. Malaysia is an early signatory and early adopter of the MPOWER strategy which are major articles of the FCTC. Among them are education and information dissemination informing the dangers of smoking which can be done through awareness campaigns of advocacy using civil society groups. Most campaigns have focused on health harms with little mention non-health or environmental harm as a result of smoking. Therefore there is an opportunity to further develop this idea as a strong advocacy point towards a smoke-free generation in the near future

It is difficult impossible to recall any other nanomedicine initiative that has so thoroughly embedded prevention as part of its mandate. As Dr. Brain puts it, “Malaysia’s commitment to better health for everyone—sometimes, I’m jealous.”

Getting back to nanomedicine, it’s Dr. Wong, an associate professor in the school of pharmaceutics at Universiti Teknologi Malaysia (UTM), who is developing polymeric nanoparticles designed to carry medications into the lungs and Brain who will work on the best method of transport. From Dr. Brain’s webpage,

Dr. Brain’s research emphasizes responses to inhaled gases, particulates, and microbes. His studies extend from the deposition of inhaled particles in the respiratory tract to their clearance by respiratory defense mechanisms. Of particular interest is the role of lung macrophages; this resident cell keeps lung surfaces clean and sterile. Moreover, the lung macrophage is also a critical regulator of inflammatory and immune responses. The context of these studies on macrophages is the prevention and pathogenesis of environmental lung disease as well as respiratory infection.

His research has utilized magnetic particles in macrophages throughout the body as a non-invasive tool for measuring cell motility and the response of macrophages to various mediators and toxins. …

It was difficult to get any specifics about the proposed lung nanomedicine effort as it seems to be at a very early stage.

  • Malaysia through the Ministry of Higher Education with matching funds from the University of Malaya is funding this effort with 1M Ringgits ($300,00 USD) per year over five years for a total of 5M Ringgits ($1.5M USD)
  • A Malaysian researcher will be going to Harvard to collaborate directly with Dr. Brain and others on his team. The first will be Dr. Wong who will come to Harvard in June 2016 where he will work with his polymeric nanoparticles (vehicles for medications) and where Brain will examine transport strategies (aerosol, intrathecal administration, etc.) for those nanoparticle-bearing medications.
  • There will be a series of comparative studies of smoking in Malaysia and the US and other information efforts designed to support prevention strategies.

One last tidbit about research, Dr. Brain will be testing the nanoparticle-bearing medication once it has entered the lung using the ‘precision cut lung slices’ technique, as an alternative to some, if not all, in vivo testing.

Final comments

Nanomedicine is highly competitive and the Malaysians are interested in commercializing their efforts which according to Dr. Abu Kasim is one of the reasons they approached Harvard and Dr. Brain.

Should you find any errors please do let me know.

Copyright and patent protections and human rights

The United Nations (UN) and cultural rights don’t immediately leap to mind when the subjects of copyright and patents are discussed. A Mar. 13, 2015 posting by Tim Cushing on Techdirt and an Oct. 14, 2015 posting by Glyn Moody also on Techdirt explain the connection in the person of Farida Shaheed, the UN Special Rapporteur on cultural rights and the author of two UN reports one on copyright and one on patents.

From the Mar. 13, 2015 posting by Tim Cushing,

… Farida Shaheed, has just delivered a less-than-complimentary report on copyright to the UN’s Human Rights Council. Shaheed’s report actually examines where copyright meshes with arts and science — the two areas it’s supposed to support — and finds it runs contrary to the rosy image of incentivized creation perpetuated by the MPAAs and RIAAs of the world.

Shaheed said a “widely shared concern stems from the tendency for copyright protection to be strengthened with little consideration to human rights issues.” This is illustrated by trade negotiations conducted in secrecy, and with the participation of corporate entities, she said.

She stressed the fact that one of the key points of her report is that intellectual property rights are not human rights. “This equation is false and misleading,” she said.

The last statement fires shots over the bows of “moral rights” purveyors, as well as those who view infringement as a moral issue, rather than just a legal one.

Shaheed also points out that the protections being installed around the world at the behest of incumbent industries are not necessarily reflective of creators’ desires. …

Glyn Moody’s Oct. 14, 2015 posting features Shaheed’s latest report on patents,

… As the summary to her report puts it:

There is no human right to patent protection. The right to protection of moral and material interests cannot be used to defend patent laws that inadequately respect the right to participate in cultural life, to enjoy the benefits of scientific progress and its applications, to scientific freedoms and the right to food and health and the rights of indigenous peoples and local communities.

Patents, when properly structured, may expand the options and well-being of all people by making new possibilities available. Yet, they also give patent-holders the power to deny access to others, thereby limiting or denying the public’s right of participation to science and culture. The human rights perspective demands that patents do not extend so far as to interfere with individuals’ dignity and well-being. Where patent rights and human rights are in conflict, human rights must prevail.

The report touches on many issues previously discussed here on Techdirt. For example, how pharmaceutical patents limit access to medicines by those unable to afford the high prices monopolies allow — a particularly hot topic in the light of TPP’s rules on data exclusivity for biologics. The impact of patents on seed independence is considered, and there is a warning about corporate sovereignty chapters in trade agreements, and the chilling effects they can have on the regulatory function of states and their ability to legislate in the public interest — for example, with patent laws.

I have two Canadian examples for data exclusivity and corporate sovereignty issues, both from Techdirt. There’s an Oct. 19, 2015 posting by Glyn Moody featuring a recent Health Canada move to threaten a researcher into suppressing information from human clinical trials,

… one of the final sticking points of the TPP negotiations [Trans Pacific Partnership] was the issue of data exclusivity for the class of drugs known as biologics. We’ve pointed out that the very idea of giving any monopoly on what amounts to facts is fundamentally anti-science, but that’s a rather abstract way of looking at it. A recent case in Canada makes plain what data exclusivity means in practice. As reported by CBC [Canadian Broadcasting Corporation] News, it concerns unpublished clinical trial data about a popular morning sickness drug:

Dr. Navindra Persaud has been fighting for four years to get access to thousands of pages of drug industry documents being held by Health Canada.

He finally received the material a few weeks ago, but now he’s being prevented from revealing what he has discovered.

That’s because Health Canada required him to sign a confidentiality agreement, and has threatened him with legal action if he breaks it.

The clinical trials data is so secret that he’s been told that he must destroy the documents once he’s read them, and notify Health Canada in writing that he has done so….

For those who aren’t familiar with it, the Trans Pacific Partnership is a proposed trade agreement including 12 countries (Australia, Brunei Darussalam, Canada, Chile, Japan, Malaysia, Mexico, New Zealand, Peru, Singapore, United States, and Vietnam) from the Pacific Rim. If all the countries sign on (it looks as if they will; Canada’s new Prime Minister as of Oct. 19, 2015 seems to be in favour of the agreement although he has yet to make a definitive statement), the TPP will represent a trading block that is almost double the size of the European Union.

An Oct. 8, 2015 posting by Mike Masnick provides a description of corporate sovereignty and of the Eli Lilly suit against the Canadian government.

We’ve pointed out a few times in the past that while everyone refers to the Trans Pacific Partnership (TPP) agreement as a “free trade” agreement, the reality is that there’s very little in there that’s actually about free trade. If it were truly a free trade agreement, then there would be plenty of reasons to support it. But the details show it’s not, and yet, time and time again, we see people supporting the TPP because “well, free trade is good.” …
… it’s that “harmonizing regulatory regimes” thing where the real nastiness lies, and where you quickly discover that most of the key factors in the TPP are not at all about free trade, but the opposite. It’s about as protectionist as can be. That’s mainly because of the really nasty corprorate sovereignty clauses in the agreement (which are officially called “investor state dispute settlement” or ISDS in an attempt to make it sound so boring you’ll stop paying attention). Those clauses basically allow large incumbents to force the laws of countries to change to their will. Companies who feel that some country’s regulation somehow takes away “expected profits” can convene a tribunal, and force a country to change its laws. Yes, technically a tribunal can only issue monetary sanctions against a country, but countries who wish to avoid such monetary payments will change their laws.

Remember how Eli Lilly is demanding $500 million from Canada after Canada rejected some Eli Lilly patents, noting that the new compound didn’t actually do anything new and useful? Eli Lilly claims that using such a standard to reject patents unfairly attacks its expected future profits, and thus it can demand $500 million from Canadian taxpayers. Now, imagine that on all sorts of other systems.

Cultural rights, human rights, corporate rights. It would seem that corporate rights are going to run counter to human rights, if nothing else.

Global overview of nano-enabled food and agriculture regulation

First off, this post features an open access paper summarizing global regulation of nanotechnology in agriculture and food production. From a Sept. 11, 2015 news item on Nanowerk,

An overview of regulatory solutions worldwide on the use of nanotechnology in food and feed production shows a differing approach: only the EU and Switzerland have nano-specific provisions incorporated in existing legislation, whereas other countries count on non-legally binding guidance and standards for industry. Collaboration among countries across the globe is required to share information and ensure protection for people and the environment, according to the paper …

A Sept. 11, 2015 European Commission Joint Research Centre press release (also on EurekAlert*), which originated the news item, summarizes the paper in more detail (Note: Links have been removed),

The paper “Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries” reviews how potential risks or the safety of nanotechnology are managed in different countries around the world and recognises that this may have implication on the international market of nano-enabled agricultural and food products.

Nanotechnology offers substantial prospects for the development of innovative products and applications in many industrial sectors, including agricultural production, animal feed and treatment, food processing and food contact materials. While some applications are already marketed, many other nano-enabled products are currently under research and development, and may enter the market in the near future. Expected benefits of such products include increased efficacy of agrochemicals through nano-encapsulation, enhanced bioavailability of nutrients or more secure packaging material through microbial nanoparticles.

As with any other regulated product, applicants applying for market approval have to demonstrate the safe use of such new products without posing undue safety risks to the consumer and the environment. Some countries have been more active than others in examining the appropriateness of their regulatory frameworks for dealing with the safety of nanotechnologies. As a consequence, different approaches have been adopted in regulating nano-based products in the agri/feed/food sector.

The analysis shows that the EU along with Switzerland are the only ones which have introduced binding nanomaterial definitions and/or specific provisions for some nanotechnology applications. An example would be the EU labelling requirements for food ingredients in the form of ‘engineered nanomaterials’. Other regions in the world regulate nanomaterials more implicitly mainly by building on non-legally binding guidance and standards for industry.

The overview of existing legislation and guidances published as an open access article in the Journal Regulatory Toxicology and Pharmacology is based on information gathered by the JRC, RIKILT-Wageningen and the European Food Safety Agency (EFSA) through literature research and a dedicated survey.

Here’s a link to and a citation for the paper,

Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries by Valeria Amenta, Karin Aschberger, , Maria Arena, Hans Bouwmeester, Filipa Botelho Moniz, Puck Brandhoff, Stefania Gottardo, Hans J.P. Marvin, Agnieszka Mech, Laia Quiros Pesudo, Hubert Rauscher, Reinhilde Schoonjans, Maria Vittoria Vettori, Stefan Weigel, Ruud J. Peters. Regulatory Toxicology and Pharmacology Volume 73, Issue 1, October 2015, Pages 463–476 doi:10.1016/j.yrtph.2015.06.016

This is the most inclusive overview I’ve seen yet. The authors cover Asian countries, South America, Africa, and the MIddle East, as well as, the usual suspects in Europe and North America.

Given I’m a Canadian blogger I feel obliged to include their summary of the Canadian situation (Note: Links have been removed),

4.2. Canada

The Canadian Food Inspection Agency (CFIA) and Public Health Agency of Canada (PHAC), who have recently joined the Health Portfolio of Health Canada, are responsible for food regulation in Canada. No specific regulation for nanotechnology-based food products is available but such products are regulated under the existing legislative and regulatory frameworks.11 In October 2011 Health Canada published a “Policy Statement on Health Canada’s Working Definition for Nanomaterials” (Health Canada, 2011), the document provides a (working) definition of NM which is focused, similarly to the US definition, on the nanoscale dimensions, or on the nanoscale properties/phenomena of the material (see Annex I). For what concerns general chemicals regulation in Canada, the New Substances (NS) program must ensure that new substances, including substances that are at the nano-scale (i.e. NMs), are assessed in order to determine their toxicological profile ( Environment Canada, 2014). The approach applied involves a pre-manufacture and pre-import notification and assessment process. In 2014, the New Substances program published a guidance aimed at increasing clarity on which NMs are subject to assessment in Canada ( Environment Canada, 2014).

Canadian and US regulatory agencies are working towards harmonising the regulatory approaches for NMs under the US-Canada Regulatory Cooperation Council (RCC) Nanotechnology Initiative.12 Canada and the US recently published a Joint Forward Plan where findings and lessons learnt from the RCC Nanotechnology Initiative are discussed (Canada–United States Regulatory Cooperation Council (RCC) 2014).

Based on their summary of the Canadian situation, with which I am familiar, they’ve done a good job of summarizing. Here are a few of the countries whose regulatory instruments have not been mentioned here before (Note: Links have been removed),

In Turkey a national or regional policy for the responsible development of nanotechnology is under development (OECD, 2013b). Nanotechnology is considered as a strategic technological field and at present 32 nanotechnology research centres are working in this field. Turkey participates as an observer in the EFSA Nano Network (Section 3.6) along with other EU candidate countries Former Yugoslav Republic of Macedonia, and Montenegro (EFSA, 2012). The Inventory and Control of Chemicals Regulation entered into force in Turkey in 2008, which represents a scale-down version of the REACH Regulation (Bergeson et al. 2010). Moreover, the Ministry of Environment and Urban Planning published a Turkish version of CLP Regulation (known as SEA in Turkish) to enter into force as of 1st June 2016 (Intertek).

The Russian legislation on food safety is based on regulatory documents such as the Sanitary Rules and Regulations (“SanPiN”), but also on national standards (known as “GOST”) and technical regulations (Office of Agricultural Affairs of the USDA, 2009). The Russian policy on nanotechnology in the industrial sector has been defined in some national programmes (e.g. Nanotechnology Industry Development Program) and a Russian Corporation of Nanotechnologies was established in 2007.15 As reported by FAO/WHO (FAO/WHO, 2013), 17 documents which deal with the risk assessment of NMs in the food sector were released within such federal programs. Safe reference levels on nanoparticles impact on the human body were developed and implemented in the sanitary regulation for the nanoforms of silver and titanium dioxide and, single wall carbon nanotubes (FAO/WHO, 2013).

Other countries included in this overview are Brazil, India, Japan, China, Malaysia, Iran, Thailand, Taiwan, Australia, New Zealand, US, South Africa, South Korea, Switzerland, and the countries of the European Union.

*EurekAlert link added Sept. 14, 2015.