Tag Archives: Mark Brockman

Simon Fraser University’s (SFU; Vancouver, Canada) Café Scientifique Winter/Spring 2024 events + a 2023 Nobel-themed lecture

There are three upcoming Simon Fraser University (SFU) Café Scientifique events (Zoom) and one upcoming Nobel=themed lecture (in person) according to a January 15, 2024 notice (received via email), Note: All the events are free,

Hello SFU Cafe Scientifique friends!

We are back with a brand new line up for our Cafe Scientifique discussion series.  Zoom invites will be sent closer to the event dates [emphasis mine].  We hope you can join us.

All event information and registration links on this page: https://www.sfu.ca/science/community.html

Café Scientifique: Why Do Babies Get Sick? A Systems Biology Approach to Developing Diagnostics and Therapeutics for Neonatal Sepsis. 

Tuesday, January 30, 5:00-6:30pm over Zoom 

Around the world five newborn babies die each second from life-threatening infections. Unfortunately there is no fast or easy way to tell which microbes are involved. Molecular Biology and Biochemistry assistant professor Amy Lee will share how we can use genomics and machine learning approaches to tackle this challenge.
Register here. https://events.sfu.ca/event/38235-cafe-scientifique-january-why-do-babies-get-sick?

Cafe Scientifique: From data to dollars: A journey through financial modelling
Tuesday, February 27, 5:00-6:30 pm over Zoom 

Financial modelling involves using mathematical and statistical techniques to understand future financial scenarios, helping individuals and businesses make informed decisions about their investments. Join Dr. Jean-François Bégin as he explores how these models can empower us to navigate the complexities of financial markets.

Register here: https://www.eventbrite.ca/e/763521010897

Cafe Scientifique: Overtraining and the Everyday Athlete
Tuesday, April 30, 5:00-6:30 pm over Zoom 

What happens when we train too hard, don’t take enough time to recover, or underfuel while exercising, and how that applies to both elite athletes and just your “everyday athlete.” Join Dr. Alexandra Coates from our Biomedical Physiology and Kinesiology Department in this interesting discussion.

Register here: https://www.eventbrite.ca/e/763521010897

Missed our last Café Scientifique talk [Decoding how life senses and responds to carbon dioxide gas] with Dustin King? [SFU Molecular Biology and Biochemistry Assistant Professor Dustin King’s Indigenous background is central to his work and relationship with the biochemical research he conducts. He brings Indigenous ways of knowing and a two-eye seeing approach to critical questions about humanity’s impact upon the natural world …] Watch it on YouTube: https://www.youtube.com/watch?v=xCHTSbF3RVs&list=PLTMt9gbqLurAMfSHQqVAHu7YbyOFq81Ix&index=10

The ‘2023 Nobel Prize Lectures’ being presented by SFU do not feature the 2023 winners but rather, SFU experts in the relevant field, from the January 15, 2024 SFU Café Scientifique notice (received via email),

BACK IN-PERSON AT THE SCIENCE WORLD THEATRE!

Location: Science World Theatre 1455 Quebec Street Vancouver, BC V6A 3Z7

NOBEL PRIZE LECTURES  

Wednesday, March 6, 2024 

6:30-7:30 pm Refreshments, 7:30-9:30 pm Lectures 

Celebrate the 2023 Nobel awardees in Chemistry, Physics, Physiology or Medicine!

SFU experts will explain Nobel laureates’ award-winning research and its significance to our everyday lives. 

Featured presenters are

*Mark Brockman from Molecular Biology and Biochemistry for the Nobel Prize in Medicine and Physiology;

*Byron Gates from Chemistry for the Nobel Prize in Chemistry; and

*Shawn Sederberg from the School of Engineering Science for the Nobel Prize in Physics.

Register here: https://www.eventbrite.ca/e/nobel-prize-lectures-tickets-773387301237

For anyone who has trouble remembering who and why the winners were awarded a 2023 Nobel Prize, here’s a nobleprize.org webpage devoted to the 2023 winners.

2014 Sanofi BioGENEius Challenge Canada (SBCC) national winners announced

Last week on May 23, 2014, the Sanofi BioGENEius Challenge Canada (SBCC) National winners were announced in Ottawa. (A Feb. 20, 2013 posting recounts the organization’s history and accomplishments on its 20th anniversary). Here’s more about the 2014 national winners from a May 23, 2014 Sanofi BioGENEius Challenge Canada news release,

A novel method of HIV detection for newborns under the age of 18 months and for adults before three months post-transmission earned a grade 10, British Columbia student top national honours today [May 23, 2014] in the 2014 “Sanofi BioGENEius Challenge Canada” (SBCC).

Nicole Ticea, 15, from York House School in Burnaby, BC was awarded the top prize of $5,000 by a panel of eminent Canadian scientists assembled at the Ottawa headquarters of the National Research Council of Canada (NRC).

Her impressive research project, mentored at Simon Fraser University by associate professor, Dr. Mark Brockman, is the first test capable of analyzing HIV viral nucleic acids in a point-of-care, low-resource setting.Nicole’s research, was deemed an incredibly innovative solution to a global challenge according to the judges led by Dr. Julie Ducharme, General Manager, Human Health Therapeutics, NRC.

See a full project description below and online here: http://sanofibiogeneiuschallenge.ca/2014/05/23/

Ten brilliant young scientists from nine Canadian regions, all just 15 to 18 years old, took part in the national finals. They had placed first at earlier regional SBCC competitions, conducted between March 27 and May 22, 2014.

High school and CEGEP students from Victoria to Saskatoon to St. John’s, focused on biotechnology fields of discovery and study, submitted more than 200 proposals. Working closely with mentors, these students conducted research in diverse areas such as telomeres, diabetes, stress management, Alzheimer’s, autism and pulp production. Since its inauguration in 1994, more than 4,700 young Canadians have competed in SBCC, with the majority of competitors going on to pursue careers in science and biotechnology.

1st place winner, Nicole Ticea will compete for Canada on June 22-25 at the International BioGENEius Challenge, conducted at the annual BIO conference in San Diego, CA.

2nd place, $4,000 – Ontario: Varsha Jayasankar, 17, grade 12, Sir Winston Churchill Secondary School, St. Catherines won with research into how an extract created from mango ginger can be used to inhibit the growth of multiple antibiotic-resistant bacteria. Project description: http://sanofibiogeneiuschallenge.ca/2014/05/23/

3rd place, $3,000 – Ontario: Anoop Manjunath, 17, grade 11, University of Toronto Schools, Toronto investigated image processing techniques for the analysis of ultrasound stimulated bubble interactions with fibrin clots.Project description: http://sanofibiogeneiuschallenge.ca/2014/05/23/

There were a couple of other projects (one for its ‘nano’ focus and the other for its ‘wheat’ focus), which caught my attention, from the SBCC 2014 National Competitor Project Descriptions page by Anne Ramsay,

Amit Scheer, Grade 10

Colonel By Secondary School, Ottawa, ON

“Development of a Novel Quantum Dot-Aptamer Bioconjugate Targeted Cancer Therapy for Precision Nanomedicine Applications”

A novel nanoparticle for targeted cancer therapeutics is described. This research was effectuated to create a theranostic bioconjugate with an optimal effective therapeutic index, achieved by biomarker-specific targeting. Estimates show that over 14 million new cases of cancer are diagnosed annually worldwide. Aptamer-quantum dot (APT-QD) bioconjugates were synthesized by conjugating cadmium-telluride quantum dots (QDs, semiconductor nanoparticles) to aptamers (nucleic-acid based ligands), by amide crosslinking. Aptamers targeted mucin-1 (MUC1), a glycosylated surface protein overexpressed on many cancers, including MCF7 breast cancer cells, and only minimally expressed in MCF-10A non-cancerous cells. The bioconjugate and unmodified QD treatments (the control) were tested for cellular uptake and cytotoxicity in MCF7 (cancerous) and MCF-10A (comparison) cell cultures. MTT assays, which quantify cellular viability by assessing mitochondrial activity, were used for dose-response analysis at several treatment concentrations. APT-QDs caused a statistically significant decrease in viability specifically in MUC1-overexpressing cultures, suggesting cell-specific internalization by receptor-mediated endocytosis. Apoptosis and necrosis were quantified using immunofluorescence assays; bioconjugate-treated cells were early apoptotic after 4 hours, proving effective initiation of programmed cell death. Finally, confocal microscopy was used for aptamer-dependent nanoparticle internalization analysis, demonstrating that APT-QDs accumulate outside of nuclei. A fluorochrome-modified DNA complement to the aptamer was synthesized for co-localization of aptamers and QDs, proving effective endosomal escape for both components. The bioconjugate has applications in combination and theranostic treatments for cancer, and in precision medicine to diversify targeting based on patient-specific panomics analyses. The researcher created a novel bioconjugate nanoparticle and has proven numerous viable applications in cancer therapeutics.

Wenyu Ruan, Grade 9, & Amy Yu Ruiyun Wang, Grade 10

Walter Murray Collegiate Institute, Saskatoon, SK

“Identification of Leaf Rust Resistance in Wheat”

Leaf rust is the most common disease in wheat, a crop which contributes $11B annually to Canada’s economy. The most effective strategy to control leaf rust has been to grow resistant varieties. There are two general types of resistance genes found in wheat: Race-specific genes confer a high-level of resistance to specific strains of leaf rust but can be easily overcome by genetic mutation in pathogen populations, while slow rusting (APR) resistance provides partial resistance to a broad spectrum of races, but is typically effective only at the adult stage of plant growth. A three-phase experiment was conducted on a doubled-haploid population derived from the cross RL4452/AC Domain to determine if the resistance of a recently discovered gene (Lr2BS) worked with other resistance genes to synergistically enhance resistance to leaf rust. Linkage and quantitative trait loci (QTL) mapping were performed by combining our new genotypic data with a previously generated genetic map for this population, then adding rust disease data from our experiment to identify genomic regions associated with leaf rust resistance. In addition, a fluorescent microscope was used to examine host-pathogen interaction on a cellular level. These experiments showed that lines carrying Lr2BS alone, and in combination with other APR genes were susceptible at the seedling stage, which suggests that Lr2BS is an adult plant gene. It appears that the synergistic effect of some multiple gene combinations, including Lr2BS, enhances leaf rust resistance. Furthermore, QTL mapping identified an uncharacterized resistance gene (LrUsw4B) that conferred resistance at the seedling stage.

I am sorry to see they are not sending all three national finalists to the international competition as they did in 2012. As I noted in my July 16, 2012 posting the international standings did not reflect the national standings,

As the 2012 winner of the Sanofi BioGENEius Challenge Canada competition, Tam was invited to compete in this year’s international Sanofi BioGENEisu Challenge held in Boston, Massachusetts on June 19, 2012. [Janelle] Tam received an honourable mention for her work while Rui Song of Saskatoon placed third internationally.

Presumably the costs are too high to continue the practice.

Getting back to 2014, congratulations to all the competitors and the winners! And, good luck to Nicole Ticea at the International BioGENEius Challenge which will be conducted at the annual BIO conference, June 22-25  2014, in San Diego, CA!