Tag Archives: Mark Kendall

Preventing warmed-up vaccines from becoming useless

One of the major problems with vaccines is that they need to be refrigerated. (The Nanopatch, which additionally wouldn’t require needles or syringes, is my favourite proposed solution and it comes from Australia.) This latest research into making vaccines more long-lasting is from the UK and takes a different approach to the problem.

From a June 8, 2020 news item on phys.org,

Vaccines are notoriously difficult to transport to remote or dangerous places, as they spoil when not refrigerated. Formulations are safe between 2°C and 8°C, but at other temperatures the proteins start to unravel, making the vaccines ineffective. As a result, millions of children around the world miss out on life-saving inoculations.

However, scientists have now found a way to prevent warmed-up vaccines from degrading. By encasing protein molecules in a silica shell, the structure remains intact even when heated to 100°C, or stored at room temperature for up to three years.

The technique for tailor-fitting a vaccine with a silica coat—known as ensilication—was developed by a Bath [University] team in collaboration with the University of Newcastle. This pioneering technology was seen to work in the lab two years ago, and now it has demonstrated its effectiveness in the real world too.

Here’s the lead researcher describing her team’s work

Ensilication: success in animal trials from University of Bath on Vimeo.

A June 8, 2020 University of Bath press release (also on EurekAlert) fills in more details about the research,

In their latest study, published in the journal Scientific Reports, the researchers sent both ensilicated and regular samples of the tetanus vaccine from Bath to Newcastle by ordinary post (a journey time of over 300 miles, which by post takes a day or two). When doses of the ensilicated vaccine were subsequently injected into mice, an immune response was triggered, showing the vaccine to be active. No immune response was detected in mice injected with unprotected doses of the vaccine, indicating the medicine had been damaged in transit.

Dr Asel Sartbaeva, who led the project from the University of Bath’s Department of Chemistry, said: “This is really exciting data because it shows us that ensilication preserves not just the structure of the vaccine proteins but also the function – the immunogenicity.”

“This project has focused on tetanus, which is part of the DTP (diphtheria, tetanus and pertussis) vaccine given to young children in three doses. Next, we will be working on developing a thermally-stable vaccine for diphtheria, and then pertussis. Eventually we want to create a silica cage for the whole DTP trivalent vaccine, so that every child in the world can be given DTP without having to rely on cold chain distribution.”

Cold chain distribution requires a vaccine to be refrigerated from the moment of manufacturing to the endpoint destination.

Silica is an inorganic, non-toxic material, and Dr Sartbaeva estimates that ensilicated vaccines could be used for humans within five to 15 years. She hopes the technology to silica-wrap proteins will eventually be adopted to store and transport all childhood vaccines, as well as other protein-based products, such as antibodies and enzymes.

“Ultimately, we want to make important medicines stable so they can be more widely available,” she said. “The aim is to eradicate vaccine-preventable diseases in low income countries by using thermally stable vaccines and cutting out dependence on cold chain.”

Currently, up to 50% of vaccine doses are discarded before use due to exposure to suboptimal temperatures. According to the World Health Organisation (WHO), 19.4 million infants did not receive routine life-saving vaccinations in 2018.

Here’s a link to and a citation for the paper,

Ensilicated tetanus antigen retains immunogenicity: in vivo study and time-resolved SAXS characterization by A. Doekhie, R. Dattani, Y-C. Chen, Y. Yang, A. Smith, A. P. Silve, F. Koumanov, S. A. Wells, K. J. Edler, K. J. Marchbank, J. M. H. van den Elsen & A. Sartbaeva. Scientific Reports volume 10, Article number: 9243 (2020) DOI: https://doi.org/10.1038/s41598-020-65876-3 Published 08 June 2020

This paper is open access

Nanopatch update

I tend to lose track as a science gets closer to commercialization since the science news becomes business news and I almost never scan that sector. It’s been about two-and-half years since I featured research that suggested Nanopatch provided more effective polio vaccination than the standard needle and syringe method in a December 20, 2017 post. The latest bits of news have an interesting timeline.

March 2020

Mark Kendal (Wikipedia entry) is the researcher behind the Nanopatch. He’s interviewed in a March 5, 2020 episode (about 20 mins.) in the Pioneers Series (bankrolled by Rolex [yes, the watch company]) on Monocle.com. Coincidentally or not, a new piece of research funded by Vaxxas (the nanopatch company founded by Mark Kendall; on the website you will find a ‘front’ page and a ‘Contact us’ page only) was announced in a March 17, 2020 news item on medical.net,

Vaxxas, a clinical-stage biotechnology company commercializing a novel vaccination platform, today announced the publication in the journal PLoS Medicine of groundbreaking clinical research indicating the broad immunological and commercial potential of Vaxxas’ novel high-density microarray patch (HD-MAP). Using influenza vaccine, the clinical study of Vaxxas’ HD-MAP demonstrated significantly enhanced immune response compared to vaccination by needle/syringe. This is the largest microarray patch clinical vaccine study ever performed.

“With vaccine coated onto Vaxxas HD-MAPs shown to be stable for up to a year at 40°C [emphasis mine], we can offer a truly differentiated platform with a global reach, particularly into low and middle income countries or in emergency use and pandemic situations,” said Angus Forster, Chief Development and Operations Officer of Vaxxas and lead author of the PLoS Medicine publication. “Vaxxas’ HD-MAP is readily fabricated by injection molding to produce a 10 x 10 mm square with more than 3,000 microprojections that are gamma-irradiated before aseptic dry application of vaccine to the HD-MAP’s tips. All elements of device design, as well as coating and QC, have been engineered to enable small, modular, aseptic lines to make millions of vaccine products per week.”

The PLoS publication reported results and analyses from a clinical study involving 210 clinical subjects [emphasis mine]. The clinical study was a two-part, randomized, partially double-blind, placebo-controlled trial conducted at a single Australian clinical site. The clinical study’s primary objective was to measure the safety and tolerability of A/Singapore/GP1908/2015 H1N1 (A/Sing) monovalent vaccine delivered by Vaxxas HD-MAP in comparison to an uncoated Vaxxas HD-MAP and IM [intramuscular] injection of a quadrivalent seasonal influenza vaccine (QIV) delivering approximately the same dose of A/Sing HA protein. Exploratory outcomes were: to evaluate the immune responses to HD-MAP application to the forearm with A/Sing at 4 dose levels in comparison to IM administration of A/Sing at the standard 15 μg HA per dose per strain, and to assess further measures of immune response through additional assays and assessment of the local skin response via punch biopsy of the HD-MAP application sites. Local skin response, serological, mucosal and cellular immune responses were assessed pre- and post-vaccination.

Here’s a link to and a citation for the latest ‘nanopatch’ paper,

Safety, tolerability, and immunogenicity of influenza vaccination with a high-density microarray patch: Results from a randomized, controlled phase I clinical trial by Angus H. Forster, Katey Witham, Alexandra C. I. Depelsenaire, Margaret Veitch, James W. Wells, Adam Wheatley, Melinda Pryor, Jason D. Lickliter, Barbara Francis, Steve Rockman, Jesse Bodle, Peter Treasure, Julian Hickling, Germain J. P. Fernando. DOI: https://doi.org/10.1371/journal.pmed.1003024 PLOS (Public Library of Science) Published: March 17, 2020

This is an open access paper.

May 2020

Two months later, Merck, an American multinational pharmaceutical company, showed some serious interest in the ‘nanopatch’. A May 28, 2020 article by Chris Newmarker for drugdelvierybusiness.com announces the news (Note: Links have been removed),

Merck has exercised its option to use Vaxxas‘ High Density Microarray Patch (HD-MAP) platform as a delivery platform for a vaccine candidate, the companies announced today [Thursday, May 28, 2020].

Also today, Vaxxas announced that German manufacturing equipment maker Harro Höfliger will help Vaxxas develop a high-throughput, aseptic manufacturing line to make vaccine products based on Vaxxas’ HD-MAP technology. Initial efforts will focus on having a pilot line operating in 2021 to support late-stage clinical studies — with a goal of single, aseptic-based lines being able to churn out 5 million vaccine products a week.

“A major challenge in commercializing microarray patches — like Vaxxas’ HD-MAP — for vaccination is the ability to manufacture at industrially-relevant scale, while meeting stringent sterility and quality standards. Our novel device design along with our innovative vaccine coating and quality verification technologies are an excellent fit for integration with Harro Höfliger’s aseptic process automation platforms. Adopting a modular approach, it will be possible to achieve output of tens-of-millions of vaccine-HD-MAP products per week,” Hoey [David L. Hoey, President and CEO of Vaxxas] said.

Vaxxas also claims that the patches can deliver vaccine more efficiently — a positive when people around the world are clamoring for a vaccine against COVID-19. The company points to a recent [March 17, 2020] clinical study in which their micropatch delivering a sixth of an influenza vaccine dose produced an immune response comparable to a full dose by intramuscular injection. A two-thirds dose by HD-MAP generated significantly faster and higher overall antibody responses.

As I noted earlier, this is an interesting timeline.

Final comment

In the end, what all of this means is that there may be more than one way to deal with vaccines and medicines that deteriorate all too quickly unless refrigerated. I wish all of these researchers the best.

Nanopatch more effective with poliovirus

No more needles or syringes that’s the Nanopatch promise and its one I’ve been writing about since 2009. It seems 2017 marks another step closer to seeing this idea become a product. From an Oct. 5, 2017 news item on ScienceDaily,

Efforts to rid the world of polio have taken another significant step, thanks to research led by University of Queensland [UQ] bioscience experts and funding from the World Health Organisation (WHO).

A fresh study of the Nanopatch — a microscopic vaccine delivery platform first developed by UQ researchers — has shown the device more effectively combats poliovirus than needles and syringes.

Here’s a prototype,

Caption: This is an image of the intended commercial product. Credit: Courtesy Vaxxas Pty Ltd

An Oct. 5, 2017 University of Queensland press release (also on EurekAlert), which originated the news item, provides more detail (Note: Links have been removed),

Head of UQ’s School of Chemistry and Molecular Biosciences Professor Paul Young said the breakthrough provided the next step in consigning polio to history.

“Polio was one of the most dreaded childhood diseases of the 20th century, resulting in limb disfigurement and irreversible paralysis in tens of millions of cases,” Professor Young said.

“This most recent study showed the Nanopatch enhanced responses to all three types of inactivated poliovirus vaccines (IPV) – a necessary advancement from using the current live oral vaccine.

“We are extremely grateful to the WHO for providing funding to Vaxxas Pty Ltd, the biotechnology company commercialising the Nanopatch.

“The support specifically assists pre-clinical studies and good manufacturing practices.”

Patch inventor Professor Mark Kendall said the study exhibited a key advantage of the Nanopatch.

“It targets the abundant immune cell populations in the skin’s outer layers, rather than muscle, resulting in a more efficient vaccine delivery system,” Professor Kendall said.

“The ease of administration, coupled with dose reduction observed in this study suggests that the Nanopatch could facilitate inexpensive vaccination of inactivated poliovirus vaccines.”

UQ Australian Institute for Biotechnology and Nanotechnology researcher Dr David Muller said effectively translating the dose could dramatically reduce the cost.

“A simple, easy-to-administer polio Nanopatch vaccine could increase the availability of the IPV vaccine and facilitate its administration in door-to-door and mass vaccination campaigns,” said Dr Muller.

“As recently as 1988, more than 350,000 cases occurred every year in more than 125 endemic countries.

“Concerted efforts to eradicate the disease have reduced incidence by more than 99 per cent.”

“Efforts are being intensified to eradicate the remaining strains of transmission once and for all.”

Data from the study encourages efforts by Vaxxas – established by UQ’s commercialisation company UniQuest – to bring the technology to use for human vaccinations.

“The research we are undertaking in conjunction with UQ and WHO can improve the reach of life-saving vaccines to children everywhere,” Vaxxas chief executive officer David Hoey said.

Here’s a link to and a citation for the paper,

High-density microprojection array delivery to rat skin of low doses of trivalent inactivated poliovirus vaccine elicits potent neutralising antibody responses by David A. Muller, Germain J. P. Fernando, Nick S. Owens, Christiana Agyei-Yeboah, Jonathan C. J. Wei, Alexandra C. I. Depelsenaire, Angus Forster, Paul Fahey, William C. Weldon, M. Steven Oberste, Paul R. Young, & Mark A. F. Kendall. Scientific Reports 7, Article number: 12644 (2017) doi:10.1038/s41598-017-13011-0 Published online: 03 October 2017

This paper is open access.

Should you be interested in seeing previous posts, just use ‘Nanopatch’ as your search term in the blog search engine.

Australia’s nanopatch: a way to eliminate needle vaccinations

Tristan Clemons has written a Nov. 9, 2016 essay for The Conversation on one of my favourite stories, the nanopatch,

Who likes getting a needle? I know I definitely don’t.

Someone else who doesn’t is Mark Kendall from the University of Queensland, winner of the Young Florey Medal 2016.

Mark’s work in developing the nanopatch has provided a clear pathway for vaccine delivery science to move beyond 160 year-old needle and syringe technology.

… There are approximately 20,000 projections per square centimeter on each patch, each around 60 to 100 micrometres in length. One micrometre is one million times smaller than a metre, so the height of these tiny spikes is approximately the width of a human hair.

The nanopatch is produced using a technique known as “deep reactive ion etching”, which essentially makes use of ions (charged atoms) in an electric field to selectively etch the surface of a material away. Controlling the electric field and the ions allows a high degree of control, so the microprojections are regularly spaced and of similar dimensions.

An added advantage of this approach is it has been used in the electronic circuit and solar energy industries for many years, and has the potential for increasing the scale of production.

The tiny projections on each nanopatch are invisible to the naked eye, but are long enough to breach the outermost skin layer, the stratum corneum. The stratum corneum is a layer of dead skin cells which acts as the first barrier in protecting us from infection and skin water loss.

The nanopatch projections penetrate through the stratum corneum to reach the living skin layers directly below, the epidermis and the dermis. In the epidermis are several types of immune cells that are vital for the vaccine to work.

Hence the nanopatch is well suited to the delivery of vaccines where targeting immune cells is vital for vaccination success. Examples include influenza, polio and cholera.

Mark Kendall and his colleagues have shown they are able to coat nanopatch microprojections with a vaccine, apply the nanopatch to the skin and achieve vaccination with one tenth to one thirtieth of the dose required using traditional needle and syringe approaches.

… it’s more than just a good idea. Mark Kendall and his colleagues are now running human clinical trials of nanopatches in Brisbane, and the WHO is planning a polio vaccine trial in Cuba in 2017.

The latest information I have about this research is from a Feb. 26, 2016 University of Queensland press release,

Needle-free Nanopatch technology developed at The University of Queensland has been used to successfully deliver an inactivated poliovirus vaccine.

Delivery of a polio vaccine with the Nanopatch was demonstrated by UQ’s Professor Mark Kendall and his research team at UQ’s Australian Institute for Bioengineering and Nanotechnology, in collaboration with the World Health Organisation, the US Centres for Disease Control and Prevention, and vaccine technology company Vaxxas.

Professor Kendall said the Nanopatch had been used to administer an inactivated Type 2 poliovirus vaccine in a rat model.

“We compared the Nanopatch to the traditional needle and syringe, and found that there is about a 40-fold improvement in delivered dose-sparing,” Professor Kendall said.

“This means about 40 times less polio vaccine was needed in Nanopatch delivery to generate a functional immune response as the needle and syringe.

“To our knowledge, this is the highest level of dose-sparing observed for an inactivated polio vaccine in rats achieved by any type of delivery technology, so this is a key breakthrough.”

The next step will be clinical testing.

Dr David Muller, first author of the research published in Scientific Reports, said the work demonstrated a key advantage of the Nanopatch.

“The Nanopatch targets the abundant immune cell populations in the skin’s outer layers; rather than muscle, resulting in a more efficient vaccine delivery system,” he said.

Clinical success and widespread use of the Nanopatch against polio could help in the current campaign to eradicate polio. It could be produced and distributed at a cheaper cost, and its ease of use would make it suitable for house-to-house vaccination efforts in endemic areas with only minimal training required.

World Health Organisation Global Polio Eradication Initiative Director Mr Michel Zaffran said only Afghanistan and Pakistan remained polio-endemic, but all countries were at risk until the disease was eradicated everywhere.

“Needle-free microneedle patches such as the Nanopatch offer great promise for reaching more children with polio vaccine as well as other antigens such as measles vaccine, particularly in hard-to-reach areas or areas with inadequate healthcare infrastructure,” Mr Zaffran said.

Nanopatch technology is being commercialised by Vaxxas Pty Ltd, which has scaled the Nanopatch from use in small models to prototypes for human use.

Vaxxas CEO Mr David Hoey said the first human vaccination studies are scheduled for this year [2016].

“Key attributes of the Nanopatch, including its ease of use and potential to not require refrigeration, could improve the reach and efficiency of vaccination campaigns in difficult-to-reach locations, including those where polio remains endemic,” Mr Hoey said.

The work was funded by the World Health Organisation, Vaxxas, Rotary District 9630 and the Rotary Foundation.

Here’s a link to and a citation for the paper,

Inactivated poliovirus type 2 vaccine delivered to rat skin via high density microprojection array elicits potent neutralising antibody responses by David A. Muller, Frances E. Pearson, Germain J.P. Fernando, Christiana Agyei-Yeboah, Nick S. Owens, Simon R. Corrie, Michael L. Crichton, Jonathan C.J. Wei, William C. Weldon, M. Steven Oberste, Paul R. Young, & Mark A. F. Kendall. Scientific Reports 6, Article number: 22094 (2016) doi:10.1038/srep22094 Published online: 25 February 2016

This paper is open access.

As befitting a ‘favourite story’, I’ve been following it for a number of years starting with this April 23, 2009 posting (scroll down about 25% of the way) although you might prefer to read this more substantive July 26, 2010 posting. The last time (Aug. 3, 2011 posting) I featured the story, it was to announce an investment of AUD $15M in Vaxxas (Kendall is not listed as member of the company) in order to bring the nanopatch to market.

About Nanoject and about Microryza; it’s all about research crowdfunding

A July 15, 2013 news item on Nanowerk features a ‘nano’ research crowdfunding campaign (Note: A link has been removed),

Two researchers at York University in the UK have launched a crowdfunding campaign to raise enough cash to research a nanoparticle cancer treatment that’s delivered via a patch – the Nanject. The two are looking to rise $3000 for their project – to buy chemicals and raw materials – which is listed on Microryza (“Targeted Drug Delivery by using Magnetic Nanoparticles”).

The goal of this project is to develop a pharmaceutical Nano Patch which is called the Nanject. This patch can be applied to the skin and will deliver specific amounts of target drugs where necessary. The team is initially developing a patch for treating cancer, by injecting microscopic particles (or nanoparticles) into the bloodstream that can pinpoint, attach themselves to, and kill cancer cells. They are then naturally disposed by the body.

The Nanowerk news item includes an embedded video created by project proponents, Atif Syed and Zakareya Hussein.

Here’s more from Syed and Hussein on their Targeted Drug Delivery by using Magnetic Nanoparticles campaign page on Microryza,

The goal of this project is to develop a pharmaceutical Nano Patch which we call as the Nanject.This patch can be applied to the skin and will deliver specific amounts of target drugs where necessary. We are initially developing a patch for treating cancer, by injecting microscopic particles (or nanoparticles) into the bloodstream that can pinpoint, attach themselves to, and kill cancer cells. They are then naturally disposed by the body. This technology could potentially revolutionise health care and medicine and save millions of lives around the world as well as allow treatment of new types of cancer. We appreciate any and all support.

The funds will allow us to get Chemicals and Raw Materials. Everything else is being fuelled by our IT, programming, and nanotechnology expertise, the access we have to cutting-edge university clean rooms and other facilities, and above all our passion for making this a reality that could improve and allow many people’s future. …

With $1456 raised, as of July 16, 2013 at 10:10 am PDT, they are approximately half way to their $3000 goal with 14 days left to the campaign.

This is the first ‘nanopatch’ project I’ve seen where the main focus is cancer treatment. The other projects, such as Mark Kendall’s in Australia (my Aug. 3, 2011 posting), are largely focussed on vaccines. I wish the researchers all the best.

I recently came across Microryza (again), a crowdfunding platform for science projects, in a June 25, 2013 posting by David Bruggeman at his Pasco Phronesis blog (Note: Links have been removed),

Microryza is a research-oriented crowdfunding platform.  Created in 2012, the founders were motivated to do something when one of them was dismissed out of hand (H/T STEM Daily) as an undergraduate when she sought a small grant for research on hospital infections.  The site has 100 projects, of which 30 have been funded to date.  It forgoes the incentives many crowdfunding sites have for their projects, and encourages project researchers to share as much information as they can with their donors.

I don’t necessarily agree that the Microryza projects are as ‘fringe’ as Fast Company implies.  There are a fair amount of applied research projects, which don’t necessarily fit well with the traditional research agencies.  …

David, in amongst his other comments, notes that while the Microryza organizers do provide some oversight before accepting a project, potential funders should check out the researchers and their projects for themselves.

You can find out more about Microrzya here. I last mentioned it in an April 30, 2012 posting about science crowdfunding platforms.

For anyone who’s wondering about the name Microryza (from the website’s FAQs page),

What are Mycorrhiza? What’s the story behind the name?
Mycorrhizae are a type of symbiotic, microscopic fungi that live in the roots of plants. They process nutrients, fight off pathogens, and stabilize the soil. Although they’re small and unnoticeable individually, when you have a lot of them together they support an entire ecosystem of roots, shrubs, and trees.

In the same way, we’re growing a community of individuals who provide microgrants to help new research ideas. With Microryza, people from all over the world can come together and help new seed ideas blossom into new scientific discoveries.

Microneedles from Tufts University

Here’s some very exciting news from Tufts University in a Dec. 21, 2011 news item on Nanowerk,

Bioengineers at Tufts University School of Engineering have developed a new silk-based microneedle system able to deliver precise amounts of drugs over time and without need for refrigeration. The tiny needles can be fabricated under normal temperature and pressure and from water, so they can be loaded with sensitive biochemical compounds and maintain their activity prior to use. They are also biodegradable and biocompatible.

I have previously written about a micro needle project at the Georgia Institute of Technology in Nov. 9, 2011 posting and about Mark Kendall’s nano vaccine patch on more than one occasion, most recently in my Aug. 3, 2011 posting.

This new drug delivery project surprised me; I didn’t realize that horesradish could also be a drug,

The Tufts researchers successfully demonstrated the ability of the silk microneedles to deliver a large-molecule, enzymatic model drug, horseradish peroxidase (HRP), at controlled rates while maintaining bioactivity. In addition, silk microneedles loaded with tetracycline were found to inhibit the growth of Staphylococcus aureus, demonstrating the potential of the microneedles to prevent local infections while also delivering therapeutics.

“By adjusting the post-processing conditions of the silk protein and varying the drying time of the silk protein, we were able to precisely control the drug release rates in laboratory experiments,” said Fiorenzo Omenetto, Ph.D., senior author on the paper. “The new system addresses long-standing drug delivery challenges, and we believe that the technology could also be applied to other biological storage applications.”

If we’re all lucky, it won’t be too long before syringes are a museum item and we’ll be getting our medication with far less discomfort/pain and, in some cases, fear.

Micro needle patches project gets Grand Challenges Explorations grant

The project being funded with a Grand Challenges Explorations grant (from the Bill & Melinda Gates Foundation) reminds me a lot of the nanopatch that Mark Kendall and his team have been developing in Australia (a project last mentioned in my Aug. 3, 2011 posting). This new initiative comes from the Georgia Institute of Technology and is aimed at the eradication of polio. From the Nov. 7, 2011 news item on Nanowerk,

The Georgia Institute of Technology will receive funding through Grand Challenges Explorations, an initiative created by the Bill & Melinda Gates Foundation that enables researchers worldwide to test unorthodox ideas that address persistent health and development challenges. Mark Prausnitz, Regents’ professor in Georgia Tech’s School of Chemical and Biomolecular Engineering, will pursue an innovative global health research project focused on using microneedle patches for the low-cost administration of polio vaccine through the skin in collaboration with researchers Steve Oberste and Mark Pallansch of the US Centers for Disease Control and Prevention (CDC).

The goal of the Georgia Tech/CDC project is to demonstrate the scientific and economic feasibility for using microneedle patches in vaccination programs aimed at eradicating the polio virus. Current vaccination programs use an oral polio vaccine that contains a modified live virus. This vaccine is inexpensive and can be administered in door-to-door immunization campaigns, but in rare cases the vaccine can cause polio. There is an alternative injected vaccine that uses killed virus, which carries no risk of polio transmission, but is considerably more expensive than the oral vaccine, requires refrigeration for storage and must be administered by trained personnel. To eradicate polio from the world, health officials will have to discontinue use of the oral vaccine with its live virus, replacing it with the more expensive and logistically-complicated injected vaccine.

Prausnitz and his CDC collaborators believe the use of microneedle patches could reduce the cost and simplify administration of the injected vaccine.

Iwonder if this team working at the microscale rather than the nanoscale, as Kendall’s team does, is finding some of the same benefits, from my August 3, 2011 posting,

Early stage testing in animals so far has shown a Nanopatch-delivered flu vaccine is effective with only 1/150th of the dose compared to a syringe and the adjuvants currently required to boost the immunogenicity of vaccines may not be needed. [emphases mine]

I find the notion that only 1/150th of a standard syringe dosage can be effective quite extraordinary. I wonder if this will hold true in human clinical trials.

If they get similar efficiencies at the microscale as they do at the nanoscale, the expense associated with vaccines using killed viruses should plummet dramatically. I do have one thought, do we have to eradicate the polio virus in a ‘search and destroy mission’? Couldn’t we learn to live with them peacefully while discouraging their noxious effects on our own biology?

AUD$15M for nano vaccine patch

AUD $15M has been invested in Vaxxas Pty Ltd making it one of Australia’s largest investments in a start-up biotechnology company.  The investment will allow Professor Mark Kendall at the Australian Institute for Bioengineering and Nanotechnology to bring his Nanopatch to market (Kendall’s work has been previously mentioned in my July 26, 2011 posting and my October 29, 2010 posting.)

From the University of Queensland, August 1, 2011 news release,

The Nanopatch has thousands of small projections designed to deliver the vaccine to abundant immune cells in the skin, whereas the traditional syringe hits the muscle where there are few immune cells.

Early stage testing in animals so far has shown a Nanopatch-delivered flu vaccine is effective with only 1/150th of the dose compared to a syringe and the adjuvants currently required to boost the immunogenicity of vaccines may not be needed. [emphases mine]

I find the notion that only 1/150th of a standard syringe dosage can be effective quite extraordinary. I wonder if this will hold true in human clinical trials.

There are many advantages to the nanopatch including the elimination of needle stick injuries, cross contamination, and the need for refrigerating vaccines. From the August 2, 2011 news item in The Times of India,

Prof Kendall says that’s one of the most exciting things about the new technology because it will dramatically cut costs and make transportation easier.

“In Africa about half of vaccines aren’t working properly because of a breakdown in the cold chain,” he said in a statement.

“The Nanopatch also offers a way to stop needle-stick injuries during vaccination which again is a particularly important problem in Africa; with a third of vaccines affected by other complications brought about through cross contamination needle stick injury,” he added.

Kendall’s work has attracted international attention. From the University of Queensland news release,

The investment is led by OneVentures, with co-investors Brandon Capital, the Medical Research Commercialisation Fund (MRCF) and US-based HealthCare Ventures.

OneVentures General Partner Dr Paul Kelly said the significance of the million investment was not just in its size.

“This investment syndicate includes both local and international investors, which is a real vote of confidence in the Nanopatch approach and an appreciation of the potential of the technology to revolutionise vaccine delivery worldwide,” Dr Kelly said.


The million investment was negotiated by UniQuest Pty Limited, The University of Queensland’s main commercialisation company. UniQuest has led the commercialisation of the Nanopatch technology to date, and will hand over the responsibility to Vaxxas following this investment.

I’m looking forward to the day when being ‘jabbed by a needle’ is no longer necessary for anyone.

 

Nano vaccine patch on the way to commercialization?

Professor Mark Kendall, the Australian scientist heading up the team that’s working on a nanopatch for vaccines without needles, and his team have just won the 2010 Translational Research Excellence Commercialisation Award. From the news item on Nanowerk,

As a consequence of winning the 2010 Translational Research Excellence Commercialisation Award, Professor Kendall will meet senior executives from global pharmaceutical company Merck Sharp and Dohme in the US.

“This is important, as it is a step towards partnering our Nanopatch with one of the world’s leading vaccine companies,” he [Mark Kendall] said.

“Our ambition is for Nanopatch to be taken from the current stage of animal model success through the clinical trials, and on to the market as a next-generation vaccine delivery device, potentially displacing the needle and syringe.

“This progression requires commercialisation and partnership with the right players. This award is an important step along this pathway.”

Nanopatch has been shown in trials to provide a protective immunisation in mice, with less than a hundredth of the dosage used compared to needle and syringe.

A part of the appeal of the Nanopatch is that it is painless, needle-free and is a potential solution for those with needle phobia.

Because the vaccine is formulated in dry form, it is also thermostable, removing the need for refrigeration.

Nanopatch is smaller than a postage stamp and is dissolvable, eliminating the possibility of needle-stick injury.

Congratulations, again. (The nanopatch was last mentioned here in my July 26, 2010 posting.)

A dissolving nanopatch that delivers vaccines without needles

I briefly noted the ‘nanopatch’ last year in an April 22, 2009 posting,

Scientists in Australia are developing a ‘nanopatch’ which would replace the use of needles for vaccinations.

It looks like those Australian scientists have gotten a step closer. According to a news item on Nanowerk,

“What we have been able to show for the first time is that the Nanopatch is completely dissolvable,” Professor [Mark] Kendall {Project Leader, Australian Institute for Bioengineering and Nanotechnology] said.

“That means zero needles, zero sharps, zero opportunity for contamination and zero chance of needle-stick injury.

“The World Health Organisation estimates that 30 percent of vaccinations in Africa are unsafe due to cross contamination caused by needle-stick injury. That’s a healthcare burden of about $25 per administration.”

The Nanopatch is smaller than a postage stamp and is packed with thousands of tiny projections – invisible to the human eye – now dried to include the vaccine itself together with biocompatible excipients.

Research published in journal PLos One [Public Library of Science] in April found that the Nanopatch achieved a protective immune response using an unprecedented one-hundredth of the standard needle and syringe dose.

Professor Kendall said this was 10 times better than any other delivery method.

Congratulations to Professor Kendall and his team.